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Abstract—In this paper, we present a maximum likelihood
(ML) based approach to estimate velocity of mobile users in
Heterogeneous Networks (HetNets). HetNets by architecture are
hierarchal combination of randomly deployed base stations (BSs)
with varied transmit power levels and hence have non-uniform
coverage area. Further, in order to improve network capacity, BS
density in HetNets is much higher in comparison to traditional
cellular networks. The increased BS densification in HetNets
results in frequent handovers which if not managed properly
may leads to service failures. One of the fundamental challenge
in effective handover management is to accurately estimate the
velocity of mobile users. Thus, we propose a velocity estimation
strategy based on handover count samples which is in accordance
with Release-8 of LTE specifications. We analyze the handover
statistics by modeling BS location via stochastic geometry and
coverage area by Poisson-Voronoi tessellation. The probability
mass function (PMF) of handover count is approximated via
Gamma distribution as it has very small approximation error
compared to Gaussian distribution. Using the approximated
PMF, we first derive maximum likelihood (ML) base velocity
estimator for the respective mobile user in the network. In
addition, we also derive the Cramer-Rao lower bound (CRLB).
We validate our proposed estimation approach via numerical
results in which we observe tight closeness between asymptotic
variance of estimated velocity and CRLB. Our results also
demonstrate that velocity estimation error decreases individually
with increase in BS density and time duration specified for
handover count measurements.

Keywords—Cramer-Rao lower bound (CRLB), Maximum
likelihood (ML) estimator, Heterogeneous networks (HetNets),
Velocity estimation, Handover count, Gamma distribution.

I. INTRODUCTION

Over the past few decades, cellular network have gone

through a remarkable development while catering to increased

demand of data rate [1]. Network densification appears to

be one of the promising solution as it contributes towards

1000-fold times capacity improvement as needed for 5G

cellular networks [2]. Deploying small cells inside the macro

cell to support the above requirement of high data rate, is

the main idea of heterogeneous networks (HetNets). HetNets

includes a variety of the base stations (BSs) supported by

diverse radio access technology with different power levels

[3]. This network densification reduces the load served by

individual BSs, thereby increasing per user throughput in the

overall network. The promising solution comes at the cost of

increased handover count [4]. This is due to mobility of users

in the network which aggressively change their connectivity

with the nearby BS’s in order to achieve best Quality of

Service (QoS).

In HetNets, densification of BSs results in reduction of

respective cell coverage areas which leads to small travel time

of high velocity mobile user in the cell [5]. In absence of

adequate mobility management, the small travel time may

result in increased service failures. Mobility management is

a process of handover of ongoing connectivity from serving

BS to a new BS when mobile user passes through cells

of neighboring BSs. In this process user velocity and BS

density act as vital parameters for successful transfer of

connectivity. Knowledge of BS density in a geographical area

is a network parameter and can be assumed to be known.

However, computing accurate velocity of mobile users is a

challenging task. The current generation smart devices are

equipped which with different sensors along with global

positioning system (GPS) and Wi-Fi network can help in

immediate velocity measurement. However, these devices

come with the limited battery capacity. Further, services like

GPS are not ubiquitous, as it gives a weak signal strength in

the dense urban area. Similarly Wi-Fi signals are not available

in rural area [6]. Therefore, these features are insufficient for

accurate computation of mobile user velocity.

In Release-8 of long-term evaluation (LTE) specification,

handover count based regulation for mobility state detection

has been made. Estimation of mobile user velocity and

mobility state detection based on handover count are

introduced in [7], [8]. In these works, it is shown that

probability mass function (PMF) of handover count can

be approximated by Gamma and Gaussian distribution

functions. It is further identified that mean square error for

Gamma approximation is comparatively very less compared

to Gaussian approximation. However, due to computation

complexity authors of [7], [8] have designed velocity estimator

based on Gaussian approximation of PMF for handover count.

On the basis of our limited literature survey, we have not found

any practical velocity estimator based on Gamma distribution

approximated PMF for handover count.

In this paper, we exploit PMF of handover count to design a

maximum likelihood (ML) based velocity estimation approach

in HetNets. ML estimator is a most prominent approach to

design practical estimator as it is an alternative in the situation

where minimum variance unbiased (MVU) estimator doesn’t

exists, or is very difficult to find even it exists [9]. The PMF of



Fig. 1: Coverage of heterogeneous cellular network

handover count in our approach is approximated by Gamma

distribution. We have also derived corresponding Cramer-Rao

lower bound (CRLB) to characterize the accuracy of proposed

estimator for a given BS density. Since service provider has the

information of the number of BSs in a particular geographical

area, the BS density in that area can be calculated and

broad-casted as part of system information in next generation

networks.

Rest of the paper is organized as follows. The system

model used for deploying small cell BSs inside the macro

cells using stochastic geometry is explained in Section II.

Next, we determined the approximated PMF of handover count

using Gamma distribution in Section III. In section IV, a

ML estimator based on approximated PMF of handover count

using Gamma distribution is derived. In section V, CRLB

for velocity estimator based on handover count is calculated.

The proposed velocity estimation approach is validated via

numerical results in Section VI. Section VII carries the

conclusion of the paper.

II. SYSTEM MODEL

Consider a geographical area in which small cells (eg.

femto-cells, pico-cells) are deployed inside a traditional macro

cell network. Since footprint of small cell BSs varies according

to the location and radiated power level, we model respective

coverage area via Poisson-Voronoi tessellation as shown in

Fig. 1. Further, we exploits stochastic geometry to model the

random deployment of BS in the considered geographical

area. Here we denote, the small cell BS density by λ in

BSs/km2. In addition, for simplicity in analysis we consider

mobile user’s travel in straight path trajectory. However, other

movement trajectories of mobile users can be accounted by

analyzing them as sum of piecewise linear trajectories. Due

to movement of mobile user, BS have to perform handover

process in order to maintain desired QoS. We define handover

count as the total number of handovers that takes place in a

predefined time period (T ), or it is the number of intersections

between the user path and the coverage area boundaries of BSs

[8], [10].
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Fig. 2: PMF of handoff count for λ = 100BS/km2
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Fig. 3: PMF of handoff count for λ = 1000BS/km2

Since the geometrical location of small cell BS and its

coverage area is considered as stochastic in nature, the

handover count is also a random value. However, the statistics

of handover count is assume to remain same irrespective of the

change in the direction of the mobile user. The computation of

exact density function of handover count has been found to be

very complex and mathematically intractable [10]; therefore,

we perform Monte Carlo simulation to plot the probability

mass function (PMF) for handover count as a function of

velocity v and BS density λ. The graphs of PMF against

handover count for different user velocities and for λ = 100
and 1000 are shown in Fig. 2 and Fig. 3, respectively.

The specified time (T) for taking handover count sample is

assumed to be 10s so that estimator can provide fast results.



From Fig. 2, we can be observe that, when BS density

is small, there is overlapped in PMFs for different velocity.

Thus, we can expect a smaller accuracy of estimated velocity.

On the other hand, for higher BS density as shown in Fig.

3 , the PMFs are separated fairly apart, and thus we can

expect better accuracy in velocity estimation. Further, we can

also observe that with increase in user velocity there is the

higher variance of handover count, which will results in lower

accuracy of velocity estimation. Here, it is also necessary to

notice that with an increase in BS density (λ) and velocity,

PMF of handover count resembles the Gamma distribution.

These observations have also be verified in some previous

research work [7].

III. HANDOVER COUNT PMF APPROXIMATION

As explained in the introduction section, objective of this

work is to estimate the user velocity on the basis of number

of handovers in a fixed time span. Since exact expression

for PMF of handover count is not available in the literature,

we approximate the PMF using Gamma distribution. This

approach is validated in [8]. Gamma distribution is generally

used for approximating the statistical distribution of the

parameters related to Poisson point process (PPP) such as area,

edges etc. It can also be effectively exploited to statistically

approximate handover count PMF. The expression for Gamma

probability density function (PDF) for random variable x can

be stated as,

p (x) =
βα

Γ (α)
xα−1e−βx, for x ∈ (0,∞) (1)

where, Γ (α) =
∞∫
0

tα−1e−tdt is the Gamma function and α,

β are respective shape and scale parameter. We can not directly

map the Gamma PDF to handover count PMF as Gamma PDF

is continuous while handover count PMF is a discrete function.

Therefore, we fit the sections of Gamma PDF to the PMF

of handover count. The Gamma PDF sections are obtained

by integrating Gamma PDF between integer values of x. For

example, integrating the gamma PDF for the values of x lying

between 0 and 1 gives the PMF value for h = 0; similarly,

for x lying between 1 and 2 gives the PMF value for h = 1,

and so on. Thus, the PMF of handover count h for a given

velocity v and BS density λ can be expressed as,

pGH (h; v) =

h+1∫
h

p (x) dx, for h ∈ (0, 1, 2, . . .) . (2)

By substituting the value of p(x) from equation (1) to (2) we

get,

pGH (h; v) =
βα

Γ (α)

h+1∫
h

xα−1e−βxdx, for h ∈ (0, 1, . . .) .

(3)

By transform of variable, let r = xβ; replacing x by r equation

(3) we get,

pGH (h; v) =
1

Γ (α)

β(h+1)∫
β(h)

rα−1e−rdr (4)

=
Γ (α, βh, β (h+ 1))

Γ (α)
(5)

where, Γ (α, βh, β (h+ 1)) = Γ (α, βh)− Γ (α, β (h+ 1))

=
β(h+1)∫
β(h)

rα−1e−rdr is the incomplete Gamma function.
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Fig. 4: β parameter for PMF of handover count versus BS density

The shape and scale parameters for Gamma distribution

based approximation are selected such that the mean square

error (MSE) between simulated and approximated Gamma

distribution is minimized. The α and β parameters for

approximated Gamma distributed based PMF of handover

count is analyzed in [7], and can be stated here as,

α = 2.7 + 4vT
√
λ (6)

β = π +
0.8

0.38 + vT
√
λ
. (7)

Here, we have assumed that the distance traveled by the

mobile user with velocity (v) is d = vT during the specified

time period (T ). For Gamma distribution the variance of

random variable is inversely proportional to the β parameter.

In Fig. 4, we plot the variation in β parameter against BS

density for specified duration T = 10s. It can be verified

from equation (7) as well as from Fig. 4, that with increase in

BS density the β parameter decreases resulting in increase in

variance of handover count. Further, we can notice that with an

increase in velocity v, β decreases, resulting in increase in the

variance of handover count and thus implying lower estimation



accuracy. These observations are analogous to our discussion

in Section II, and thus satisfying the Gamma distribution based

approximation of PMF for handover count.

The PMF of handover count can also be approximated using

Gaussian distribution as presented in [7] and is stated here as,

pgH (h; v) =
1√

2πσ2 (v)
e
− (h−μ(v))2

2σ2(v) , for h ∈ {0, 1, 2, . . . .}
(8)

in which the approximate values of μ(v) and σ2(v) are given

by,

μ (v) =
4vT

√
λ

π

σ2 (v) = 0.07 + 0.41vT
√
λ

The accuracy of Gamma and Gaussian approximated PMF

for handover count can be quantified by computing the MSE

between approximated and simulated PMFs. The MSE can be

expressed as,

MSE =
1

N

N∑
h=1

[pcH (h)− pH (h)]
2
, for c ∈ (G, g) (9)

where N is the number of points in PMF. By comparing the

MSE between approximated and simulated PMFs, it has been

found that approximated Gamma distributed PMF provides

nearly ten times smaller MSE than Gaussian distribution [7].

Hence, we consider Gamma distribution based approximation

for PMF of handover count in following analysis.

IV. ML VELOCITY ESTIMATOR

The ML estimator is based on principle of maximizing the

likelihood function. It is a suitable approach for obtaining

practical estimator, and can be used to solve complicated

estimation problems [9]. The performance of ML estimator

relies on the property that it is asymptotically efficient. In

order to find ML estimator, we consider the approximated

PMF using Gamma distribution as described in equation (5);

taking logarithm on both sides, we get,

ln
(
pGH (h; v)

)
= logeΓ (α, βh, β (h+ 1))− logeΓ (α) (10)

Differentiating equation (10) with respect to v, the

log-likelihood function can be expressed as,

∂

∂v
ln

(
pGH (h; v)

)
=

∂

∂v
logeΓ (α, βh, β (h+ 1))

− ∂

∂v
logeΓ (α)

(11)

Analyzing the first term in the right hand side (RHS) of

equation (11),

∂

∂v
logeΓ (α, βh, β (h+ 1)) =

1

Γ (α, βh, β (h+ 1))

× ∂

∂v
Γ (α, βh, β (h+ 1))

(12)

let m1 = βh and m2 = β (h+ 1); the modified Equation

(12) can be restated as,

∂

∂v
logeΓ (α,m1,m2) =

1

Γ (α,m1,m2)

× (
∂

∂α
Γ (α,m1,m2)

dα

dv
+

∂

∂m1
Γ (α,m1,m2)

dm1

dv
+

∂

∂m2
Γ (α,m1,m2)

dm2

dv
).

(13)
Each term of the equation (13 ) can be simplified as,

∂

∂α
Γ (α,m1,m2) =

2F2 (α, α;α+ 1, α+ 1;−m1)m
α
1

α2

− 2F2 (α, α;α+ 1, α+ 1;−m2)m
α
2

α2

− γ (α,m1) logm1 + γ (α,m2) logm2

∂

∂m1
Γ (α,m1,m2) = −e−m1m1

α−1

∂

∂m2
Γ (α,m1,m2) = −e−m2m2

α−1

dα

dv
= 4T

√
λ

dm1

dv
=

−0.8h̄T
√
λ(

0.38 + vT
√
λ
)2

dm2

dv
=

−0.8
(
h̄+ 1

)
T
√
λ(

0.38 + vT
√
λ
)2

where, γ (α,m1) =
m1∫
0

rα−1e−rdr is lower incomplete

Gamma function. The generalized hyper-geometric function

can be expressed as,

2F2 (a1, a2; b1, b2;m) =

∞∑
k=0

(a1)k(a2)k
(b1)k(b2)k

mk

k!
(14)

where, (a)k = a (a+ 1) (a+ 2) . . . (a+ k − 1) , for k ≥
1. Next, we analyze the second derivative term in the RHS of

equation (11),

∂

∂v
logeΓ (α) = ψ (α)

∂α

∂v
= 4T

√
λψ (α) . (15)

Substituting the values from equations (13)-(15) in (11), the

derivative of log-likelihood function can be expressed as,

∂

∂v
ln

(
pGH (h; v)

)
=

4T
√
λβα

α2Γ (α, βh, β (h+ 1))
(2F2 (α, α;α+ 1, α+ 1;−βh)hα

−2 F2 (α, α;α+ 1, α+ 1;−β (h+ 1)) (h+ 1)
α

− α2

βα
(γ (α, βh) log (βh)− γ (α, β (h+ 1)) log (β (h+ 1))))

+
0.8T

√
λβα−1e−βh

[
hα − e−β(h+ 1)

α]
Γ (α, βh, β (h+ 1))

(
0.38 + vT

√
λ
)2 − 4T

√
λψ (α) .

(16)



For finding ML estimator, we equate the derivative of

log-likelihood function to zero i.e. ∂
∂v ln

(
pGH (h; v)

)
= 0.

Thus, equating equation (16) to zero results in,

βα(2F2 (α, α;α+ 1, α+ 1;−βh)hα

−2 F2 (α, α;α+ 1, α+ 1;−β (h+ 1)) (h+ 1)
α
)

− α2(γ (α, βh) log (βh)− γ (α, β (h+ 1)) log (β (h+ 1)))

+
0.2α2βα−1e−βh

[
hα − e−β(h+ 1)

α](
0.38 + vT

√
λ
)2

− α2Γ (α, βh, β (h+ 1))ψ (α) = 0.
(17)

Due to complexity of expression in (17), we use numerical

approximation to gets the roots of v̂. Thus, the ML based

velocity estimator as a function of random handover count h
can be expressed as,

v̂ =
π

4T
√
λ

(
−0.3784 +

√
h2 +

8× 0.07

0.41π
h+ 0.0732

)
(18)

The proposed ML estimator v̂ is a nonlinear function of

handover count. Hence, to determine the mean and variance of

v̂, we use the statistical linearization argument. The efficiency

of estimator thus will be proved for linear approximation only;

however, if handover count samples are large enough then the

efficiency will also be applicable to nonlinear estimator [9].

Defining function g such that,

v̂ = g (w) (19)

where w = h2 + 8×0.07
0.41π h, then,

g (w) =
π

4T
√
λ

(−0.3784 +
√
w + 0.0732

)
(20)

Linearizing about,

w0 = E (w) = E
[
h2

]
+

8× 0.07

0.41π
E [h]

we get,

g (w) ≈ g (w0) +
dg (w)

dw

∣∣∣∣
w=w0

(w − w0) (21)

let h = [hn : n = 0, 1, 2 . . . . . . , N − 1] be a vector of N
handover count samples accumulated over a past service time;

then the sample mean and second moment of handover count

can be expressed as, E [h] = 1
N

N−1∑
n=0

E [hn] and E
[
h2

]
=

1
N

N−1∑
n=0

E
[
h2
n

]
respectively. Substituting sample mean and

second moment in equation (21), the linearized estimate of

velocity can be expressed as,

v̂ ≈ v +
π2

32T
√
λ
(
vT

√
λ+ 0.2971

)
(
h2 +

8× 0.07

0.41π
h−

(
1

N

N−1∑
n=0

E [hn] +
8× 0.07

0.41πN

N−1∑
n=0

E
[
h2
n

]))
(22)

To determine the biasness we take expectation of proposed

ML estimator i.e. E(v̂). The velocity estimator expressed in

equation (22) is an asymptotically unbiased as E [v̂] → v
for N → ∞. Additionally, the asymptotic variance of ML

estimator becomes,

varGML =
0.25291v

T
√
λ

(23)

V. CRLB FOR VELOCITY ESTIMATION

The Cramer-Rao lower bound (CRLB), is the lower bound

in the variance for an unbiased estimator. If the estimator gives

on an average the true value of an unknown parameter, then

it is termed as an unbiased estimator. The efficient estimators

are those whose variance achieves CRLB. However, if it is not

possible to calculate an efficient estimator than the estimator

which gives the lowest variance is called minimum variance

unbiased (MVU) estimator [9]. Consider the approximated

PMF for handover count using Gamma distribution expressed

in equation (16); the CRLB for velocity estimation can be

computed as,

varGCRLB (v̂) ≥ 1

E

[(
∂ ln pG

H(h;v)

∂v

)2
] (24)

Substituting the derivative term of equation (16) in (24), we

numerically evaluates the CRLB as,

varGCRLB (v̂) ≥ 1

T
√
λ

0.25291v +
(

0.28284T
√
λ

0.068+0.41vT
√
λ

)2 (25)
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Fig. 5: RMSE versus user velocity, (T = 10s)

VI. NUMERICAL RESULTS

In this section, we present the performance of proposed ML

estimator and compare its variance with the CRLB obtained

from approximated Gamma distributed PMF of handover

count. The performance metric is the square root of variance

which is equivalent to root mean square error (RMSE).

The CRLB plot is obtained using equation (25), while the
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variance plot for ML estimator is obtained through numerical

computation of equation (23). The RMSE plot of proposed

ML estimator with increase in user velocity for various BS

densities λ = 200, 500, 1000 is shown in Fig. 5. Here we

have assumed time span for handover count measurement to

be T = 10s, so that estimator can provide fast results. It can

be observed from the plot that with increase in user velocity,

CRLB increases. It can also be observed that the variance

of proposed ML estimator tight matches with CRLB with

increase in BS density. This validates our approach as our

estimator is asymptotic efficient.

The time period used for handover count measurement

depends on service provider strategy; therefore the variation

of RMSE for proposed ML estimator with time span is also

investigated and is shown in Fig. 6. Consider the scenario

when user is moving with velocity v = 50km/h and BS

density λ = 500BSs/km2. The service provider uses time

span T = 10s and T = 40s for handover count measurement.

The RMSE of ML based velocity estimator are 14 and 7

km/h respectively. Thus, we can note notice that the variance

of ML estimator decreases with increase in time span. Thus,

we can conclude that longer time span increases the accuracy

of ML velocity estimation. However, increase in time span

slow downs the response of the estimator. So, there exist

a the trade-off between accuracy and response time of the

proposed estimator. Finally, in Fig. 7, we plot RMSE against

BSs density λ. Once again consider the scenario when user is

moving with velocity v = 50km/h and time span T = 10s.

The RMSE of ML based velocity estimator for BS density

λ = 200BSs/km2 and λ = 1000BSs/km2 are observed

as 16 and 7 km/h, respectively. Thus, we can be conclude

that the variance of velocity estimator decreases with increase

in BS density λ, which facilitate more accurate velocity

estimation in the hyper-dense network.

VII. CONCLUSION

In this paper, we proposed a ML based velocity

estimator exploiting handover count samples for HetNets.

Since computation of exact PMF of handover count is

mathematically intractable, we consider an approximate PMF

of handover count using Gamma distribution. Next, we derived

an ML estimator for velocity estimation in HetNets and

compared it with the CRLB. The results show tight closeness

of ML estimator asymptotic variance with CRLB. Further, we

observed that variance of proposed ML estimator decreases

with increases in time span used for handover count samples.

Thus, there exists a trade-off between the accuracy and

response of estimator. Also, the variance of velocity estimator

decreases with increase in BS density, and hence facilitates

accurate velocity estimation in the hyper-dense network.
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