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Abstract—This paper presents the application of higher order
eigenvalue moment ratio based blind spectrum sensing to the
cognitive radio. It starts with an investigation on recently pro-
posed eigenvalue based blind spectrum sensing techniques, that
work under sample starving environment. A modified version
of eigenvalue moment ratio (EMR) spectrum sensing based on
random matrix theory (RMT) is proposed. EMR technique is
considered to provide superior performance in small sample
environment, where the number of samples received by secondary
is comparable to number of antennas. Previous works on EMR
has been limited to second order moment, where as proposed
technique is extended to fourth order moment. The asymptotic
test statistic distribution of received signal is derived and an an-
alytical expression for detection probability is presented. Results
are validated using receiver operating characteristic curves and
are compared with state-of-art techniques like AGM, SLE and
EMR.

Index terms— Cognitive radio (CR), Random Matrix The-
ory (RMT), Eigenvalue, Blind Spectrum sensing, AGM, SLE,
EMR, ROC

I. INTRODUCTION

The radio spectrum is a most precious natural resource in
current era of development in wireless technologies. However
on observing radio spectrum, it is observed that there is
inefficient utilization of the radio spectrum. Some of the
bands are heavily used most of the time, whereas some
are underutilized most of the time. The current spectrum
utilization varies between 10%-90% [1, 2]. This brings in the
requirement of the improved spectrum utilization. Spectrum
sensing is a technique to determine underutilized spectrum,
which is termed as Spectrum Holes[3].
In conventional spectrum sensing techniques such as
energy detector and matched filter detection, full or partial
information of the primary user (PU) signal characteristics and
noise variance information are required at the cognitive radio
receiver [4]. But often such information is not available in
real time environment. Under such condition, blind spectrum
sensing technique which does not require primary signal
knowledge or noise variance are useful. This method usually
utilizes the correlation structure present in the received signal.
Some of the blind detection techniques include eigenvalue
arithmetic to geometric mean(AGM)[9, 10, 16], Scaled
largest Eigenvalue(SLE)[11, 15, 17], Eigenvalue Moment
Ratio (EMR)[12–14] .

Eigenvalue Moment Ratio (EMR) method proposed by
Huang et al. in [14] have shown that it provides superior
performance comparison to other maximum likelihood (ML)
estimation theory dependent blind algorithms like AGM, GLR
and SLE. Second-order EMR algorithm is considered to be
equivalent to Johan’s detector, one of the powerful test that
performs under small sample[19]. Previous work on EMR
suggest that moving towards higher order has potential to im-
prove performance in terms of detection quality. Performance
improvement have been generally shown by simulation.
In this paper a fourth order eigenvalue moment ratio based
on random matrix theory(RMT) detector is considered. The
Asymptotic distribution test statistic for the higher order EMR
is derived in presence of primary signal. The theoretical
probability of detection is also derived. Theoretical and Monte-
Carlo simulation of receiver operating characteristic (ROC)
shows close similarity between them. Computation of deci-
sion statistic of the proposed method is obtained by using
matrix trace and internal Frobenius product operation, instead
of eigenvalue decomposition(EVD) technique. This in turn
offers superior computational efficiency. Fourth order EMR
performs better in terms probability of detection in comparison
to second order EMR and other techniques such as AGM,
SLE, when number of samples are small. This has been
validated using simulation. The relative error of asymptotically
derived threshold and simulated threshold of higher oder EMR
detection smaller compared to other techniques. The results
of relative error show superior performance for IEEE 802.22
cognitive radio standard false alarm settings.
Following this introduction, paper is organized as follows: In
section II, System model based on binary hypothesis test is
described and widely considered conventional blind sensing
algorithms are also analyzed. In section III, Fourth order EMR
is proposed, expression for test statistic and decision threshold
are derived. Following this section IV presents, simulation
results to validate proposed method.This section also provides
analysis of results . Finally section V providing concluding
remarks.



II. PROBLEM FORMULATION AND EIGENVALUE BASED
BLIND SPECTRUM SENSING TECHNIQUES

A. System Model

The scenario considered here is a single-input-multiple-
output (SIMO) cognitive radio model, in which secondary
user (SU) has n receive antennas. Receiver signal at the front
end of SU can be given as, yk(k ∈ {1, 2, ...,m}). Primary
detection by SU is formulated as binary hypothesis problem.
Hypothesis H0 denotes absence of PU and hypothesis H1

denotes presence of PU. Two hypotheses can be written as[14]:

H0 : yk = wk (1)
H1 : yk = Hsk + wk (2)

where H ∈ Cn×1 denotes the SIMO channel coefficients
between the primary user and secondary user. The value
of yk = [y1(k), ..., yn(k)]

T represent observation vector,
sk = [s1(k), ..., sn(k)]

T represent the signal vector and
wk = [w1(k), ..., wn(k)]

T represent noise vectors at the kth
sampling instant. Here, (.)T denotes the matrix transpose
and yi(k)(i = 1, ....., n) represent the output of the ith
antenna and sk primary signal which has complex Gaussian
distribution having zero mean and unknown variance σ2

s ,
wi(k)(i = 1, ....., n) represent additive noise at the ith antenna
with i.i.d. complex Gaussian random process with mean zero
and unknown variance τ [14]. In this system model noise is
assumed to be uncorrelated to signal. Since received signal
at secondary front end yk assumed to be Gaussian distributed
with mean zero, covariance matrix is sufficient to extract the
statistical properties. R = E[yky

H
k ] represents the population

covariance matrix, which under the two hypothesis, can be
written as [14]

H0 : R = τIn (3)

H1 : R = HRsH
H + τIn (4)

Where the Hermition of matrix is denoted by (·)H , In is
the n × n identity matrix, the primary signal covariance
matrix is represented by Rs = E[sksHk ], and the mathematical
expectation is represented as E[·].

B. Eigenvalue based blind Spectrum Sensing Techniques

This subsection presents some of recently proposed
eigenvalue (EV) based blind sensing techniques. These EV
based techniques which work better under small sample
environment have comparable performance to higher oder
EMR are considered. These include arithmetic to geometric
mean (AGM) of eigenvalue, Scaled Largest Eigenvalue (SLE)
and Eigenvalue Moment Ratio (EMR). Previous work on
EMR considers multiple primary user model and estimating
the number of primary user. But in this work, single primary
user is considered to give larger emphasize on higher oder
EMR.

1) Arithmetic to Geometric Mean (AGM): AGM is blind
EV techniques that is derived in framework of generalized
likelihood ratio (GLR) test, that depend on maximum likeli-
hood estimation theory. It is based on estimation of arithmetic
to geometric mean of EV of sample covariance matrix (SCM).
The Test statistic for AGM is given as[14]:

ξAGM = 2(m− 1)log

�
1
n

�n
i=1 li

(
�n

i=1 li)
1/n

�n

(5)

where l1 ≥ l2 ≥ ... ≥ ln are sample eigen values in decreasing
order of R̂.
The threshold value for AGM is given as:

γAGM =
2

c1
Γ̄−1(1− �, n2 − 1) (6)

where c1 = 1−(2n2+1)
6mn and the inverse of incomplete gamma

function is represented by Γ̄−1.
Threshold formula for AGM is derived by assuming fixed
number of antennas n and number samples m → ∞, though
threshold obtained is optimal but it suffer from an error for
finite number of samples and antennas. So method works better
in large sample size [9, 10, 14, 15].

2) Scaled Largest Eigenvalue(SLE): SLE detector is
insensitive to the noise estimation error [10, 11]. SLE is
formulated as ratio of largest EV of SCM to the trace of
SCM obtained at the secondary. The Test statistic for SLE is
given as[11, 14]:

ξSLE =
l1

1
n

�n
i=1 li

(7)

where l1 ≥ l2 ≥ ... ≥ ln are the decreasing sample eigen
values of R̂.
The threshold value for SLE is given as:

γSLE =
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where F2(.) is the CDF of the Tracy-Widom distribution of
order two. This method has exact analytical CDF and threshold
for finite number of samples and antennas as threshold is
derived in the regime where n,m → ∞ and n/m → c.
Though its performance with large number of sample size
compared to antennas is comparable to EMR. But threshold
and CDF calculation are computationally intensive. Its perfor-
mance deteriorates as the number samples size equates small
number of antennas at the secondary [14].

3) Eigenvalue Moment Ratio(EMR): EMR is defined as
the ratio of the jth moment of the sample EVs calculated
from an n × m signal-free observation matrix to the j th
power of the first moment of sample eigenvalues almost
surely (a.s) converges to a deterministic value as n,m → ∞
and n/m → c ∈ (0,∞) [14]. Here, j is an integer larger



than or equal to 2. Derivation of EMR algorithm is done with
perspective of random matrix theory, analyzed thoroughly in
[14]. The Test Statistic is given as[12–14]:

ξEMR = M̂2/(M̂1)
2. (9)

where the first moment is

M̂1 =
1

n
tr(R̂),

and the second moment is:

M̂2 =
1

n
�R̂�2F

where R̂ is the estimated SCM of signal free observation
matrix. The threshold value for EMR is given as:

γEMR = 1 + c+

√
2cQ−1(�)

n
(10)

Where n/m → c ∈ (0,∞) and � is the probability of false
alarm, where Q1(·) is inverse of the Gaussian complementary
distribution function. Theoretical decision threshold calculated
for EMR is is very accurate for finite small number samples
and finite antennas. And EMR technique reformulated in [14]
by using Frobenius inner product and matrix trace operations
so it reduces the computational cost and indirectly it works
better with small sample environment. In previous work of
Huang et al. [14] restricts there analyses to j = 2 and
they only provide the numerical analyses for j > 2. So our
proposed work extends analysis of EMR to j = 4. And show
that theoretical and numerical detection of higher-order EMR
is superior than previously proposed algorithms.

III. HIGHER ORDER EIGENVALUE MOMENT RATIO:
HO-EMR

In this paper we propose the modified version of EMR,
in which jth power is enhanced to four. Analysis is done
using random matrix theory (RMT) concept as similar to
EMR[14]. Here theoretical asymptotic test statistic distribution
of proposed technique is obtained in presence of primary
signal.The theoretical probability of detection is also derived.

A. The Test Statistic Expression

The expression for jth moment of eigenvalue of sample
covariance matrix is given as[14]:

M̂j = τ j
j−1�

k=0

ck

k + 1
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where η(j) =
�j−1
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�
ck/(k + 1)
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j denotes

the total number of k combinations of j numbers.

Suppose if we take the value of j = 2 the above expression
can be given as below
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M̂j asymptotically converges to the jth moment of the pop-
ulation eigenvalues associated with R[14, 18].

M̂j
a.s.−→ Mj

Δ
=

�
tjdFR(t) (13)

where dFR(t) is the Marcenko-Pastur density.
Now Mj is calculated as:

Mj = τ jη(j)
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Now the test statistic can be given as the ratio of square of
the second moment to the first moment raised to the power
of 4. As this ratio yield a constant value independent of noise
variance. Hence from equation (14) and ()15) the test statistic
is given as:

Test Statistic (ξp) =

�
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So, test statistic is independent of τ (noise variance) and
converges to a constant, hence called blind detection.

B. Theoretical Decision Threshold

In order to obtain constant false alarm value we must find
a threshold value which should be independent of τ [22]. The
expression for sample covariance matrix is obtained as:

SCM R̂ =

�
1

m

� m�

k=1

yky
H
k (17)



R̂ satisfies the hypothesis of ξp. The statistic

ζ
Δ
= n[ξp − (1 + c)2] (18)

converges in distribution to a Gaussian process with mean zero
and variance 2c2 as m,n → ∞, n/m → c ∈ (0,∞), i.e.,

ζ
D→ N (0, 2c2) (19)

The false alarm probability for the new proposed method is
calculated as

Pfa = P (ξp > γp | H0)

= P
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where Q(x) = 1√
2π
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x

exp
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− t2

2

�

For a particular false alarm value �, the threshold can be
calculated as
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C. The Theoretical Detection Probability:

In order to find the expression for detection probability[22],
we must know the distribution of ξp under H1 hypothesis. An
approximate analytical expression for the distribution of ξp
based on RMT is derived below[14]. First we assume that for
distribution of ξp in presence of p ”asymptotically identifiable”
signals whose population eigenvalues are above the asymptotic
limit of detection.The signal eigenvalues of ψ = HRsH

H is
given by λ1 ≥ λ2 ≥ ... ≥ λp. Assume

λp > λDET
Δ
=

√
cτ (22)

where λDET is the asymptotic limit of detection. As
n,m → ∞ and n/m → c ∈ (0,∞), we have

ξp
D−→ N (µ�,σ

2
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∴ The detection probability is given as
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D. The Proposed Detection Algorithm:

The Higher order based eigenvalue moment ratio method
algorithm can be given as below:

Step 1 : Compute the SCM by: R̂ = (1/m)
�m

k=1 yky
H
k

Step 2 : Calculate the Test Statistic ξp.
Step 3 : Determine the presence of primary signals by comparing

ξp with the predetermined threshold γp. If ξp > γp, the
signal is present; otherwise, the signal does not exist.

E. Advantages

a) Suitable in low SNR environment.
b) Prior knowledge regarding PU and noise variance is not

required.
c) Noise uncertainty does not effect.
d) Computational complexity is less.

F. Disdvantages

a) Hardware complexity.

IV. SIMULATION RESULTS

Simulation was conducted to evaluate the performance of
the proposed method with other detectors such as AGM,
SLE and EMR. The simulation result represents an average
of 50000 Monte Carlo trials. The cognitive radio network
consists of primary user having a single antenna.The primary
message signal used is a DSB-SC modulated signal, with
message signal frequency fm = 16Hz, carrier frequency used
is fc = 1KHz and the sampling frequency is fs = 4KHz.
The PU data set scenario is similar to the once considered
by Bhargavi et al. [7]. The Rayleigh channel coefficient is
randomly generated at each run. Figure-1 show the Pd versus
SNR plot for the new proposed method and it can be observed
that the simulated results matches exactly with the theoretical
value.



Fig. 1. Pd Versus SNR plot for New Proposed method

Fig. 2. Pd Versus SNR plot for n=7,m=8,Pfa = 0.01 and p = 1

Fig. 3. Pd Versus SNR plot for n=12,m=15,Pfa = 0.01 and p = 1

A CR network which has n antennas to receive the signal at
secondary user side and m is the number of samples collected
at each antenna is used. Figure-2 shows the Pd versus SNR
plot for cognitive radio network for n = 7 and m = 8
and it can be observed that the proposed method has better
performance than existing blind detectors such as AGM, SLE
and EMR detectors. Figure-3 presents the performance for
n = 12 and m = 15 and here also the proposed technique
shows better performance than existing blind detectors in
low SNR and in data limited environment. Relative error of
asymptotically derived threshold and simulated threshold of
EMR and higher oder EMR detection is presented in Figure-4.
Relative error formula and comparative analysis with other
detection techniques have been analyzed by Huang et al. [14].
Plot shows that with low number of samples fourth-order
EMR has small threshold error compared to EMR detection
at low false alarm rate of 0.01. So fourth-order EMR is
suitable candidate for IEEE 802.22 cognitive radio standard

Fig. 4. Relative error of asymptotic theoretical threshold vesus number of
samples for both methods. m/n=0.08 and Pfa = 0.01

that expects false alarm rate to be 0.1

V. CONCLUSION

In this paper a higer order EMR spectrum sensing is
proposed, which provides desired performance in small sample
environment. As the proposed method utilizes all the signal
eigenvalues for detection, it can be considered superior to
other blind detection techniques such as AGM, SLE and EMR.
Asymptotic test statistic distribution of proposed technique
is obtained in presence of primary signal. The theoretical
probability of detection is also derived. It is shown that
as order of EMR increases performance detection improves.
Results presented are for the single primary user and fourth
order moment show the superiority of result. In future work,
limits on order of EMR and computational complexity issues
will be discussed.
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