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Abstract—In today’s world of signal processing, nonlinear
systems have been attained a considerable importance in the
field of system identification and system control. The modeling
of many physical systems was introduced by a nonlinear Wiener
model consists of static nonlinear function followed by a linear
time invariant (LTI) dynamic system. The output of the nonlinear
function is considered to be continuous and invertible. This work
leads the identification of Wiener model parameters using least
mean square (LMS) algorithm and its two different variants
named leaky LMS and modified leaky LMS due to its simple and
effective adaptive nature. The simulation results for an example
supporting the deduced methodology are obtained to effectively
analyze the algorithm performance.

Index Terms—Signal processing, nonlinear, system identifica-
tion, Wiener model, LMS.

I. INTRODUCTION

Parameter estimation is a fundamentally important task for

controlling and identifying any system [1]. Nonlinear systems

have received much attention over the last ten years in the field

of fault detection [2], system control [3] and system identifi-

cation [4]. For nonlinear systems, the block-oriented models

are largely employed as their structures are quite simple and

are also capable of approximating a wide range of nonlinear

processes. These models consist of an interconnected linear

time-invariant (LTI) system and a nonlinear static element [5].

Based on the position of nonlinear element, these models are

classified as 1.) Wiener model, when a static nonlinear function

is positioned following an LTI system and 2.) Hammerstein

model, where a static nonlinear function is followed by an

LTI system.

Wiener models are widely engaged in many engineering

and science oriented practices. Some of the applications are

modeling of pH neutralization process, electrical control,

chemical processes and biological process. As far as the linear

structured model is concerned, they can be easily derived from

the block-structured nonlinear model. Hence, compared to

general nonlinear model, controlling and optimization problem

of Wiener model is much simpler [5], [6]. For several decades,

nonlinear Wiener systems have got much attention by the

researchers w.r.t. their properties of system identification.

Chen et al. in [7] explained two identification methods for

nonlinear output-error systems excited by dual-rate sampled

data. Hagen et al. in [8] proposed a method based on maxi-

mum likelihood estimation to get Wiener-model parameters

and has tested the effectiveness of the deduced algorithm.

An identification problem of Wiener models with invertible

nonlinear function has raised the concern in recent past [9]. For

example, in [10], a Hammerstein-Wiener model with invertible

nonlinear parts has been identified using a blind approach.

In the research paper [11], an identification method for FIR

Wiener systems has been investigated. This method considered

the polynomial nonlinearity to be non-invertible with unknown

parameters and has given three different methods for esti-

mating unknown non-linearity. Janczak in [12] has reviewed

many approaches to identify Wiener and Hammerstein models

applicable for the neural network and polynomial models.

There are certain uncertainties encountered during the

modeling of nonlinear systems. These uncertainties include

unknown parameters and undefined nonlinearity. In order to

overcome these uncertainties, data-based models are required

[5], [13]. In this article, LMS algorithm and its variants named

leaky LMS and modified leaky LMS algorithms are employed

to overcome the above-mentioned uncertainties. Since LMS

based algorithms are very much suitable for the real-time

applications, it can estimate parameters even when all the

data are not available but come at every instant. The favorable

features of LMS based algorithms are its simplicity and easy

to implement. The main difficulty with basic LMS algorithm

is the weight drift problem which may occur in non-ideal

situations [14], [15]. In order to combat the weight drifting

problem, a leaky LMS algorithm is derived where a leakage

factor is introduced to control the weight update [16]. In order

to enhance the rate of convergence of leaky LMS, modified

leaky LMS is taken into consideration. The static nonlinear

function is assumed to be invertible to justify intermediate

variables. The performance of the deduced methodology is

determined using the mean-square deviation (MSD), the ex-

cess mean-square error (EMSE) and mean square error (MSE)

plots.

The general notations used in this article are as follows: the

capital letter with the bold case is used for a matrix, small

letter with bar is used for column vector and the letter with

neither bar nor bold case is used to represent a scalar quantity.

(·)
T

denotes the transpose operation.

Following the introduction in Section I, Wiener system and

its corresponding model identification problem is formulated

in Section II. LMS algorithm, leaky LMS algorithm and

modified leaky LMS algorithm for identifying parameters of

Wiener nonlinear model are explained in Sections III, IV



and V respectively. In Section VI, an example supporting the

effectiveness of the deduced methodology is described and

simulation results are obtained. Finally, the conclusion of the

article is provided in Section VII.

II. WIENER SYSTEM DESCRIPTION AND MODEL

IDENTIFICATION FORMULATION

A Wiener nonlinear system comprises of an LTI system

in series with a static nonlinear function F (·). A Wiener

nonlinear system can be expressed as shown in Fig. 1.

( )
( )

z

z

β

α
( )F ⋅

( )u t ( )r t

( )v t

( )d t ( )y t

Fig. 1: Wiener nonlinear system [17]

β(z)
α(z) represents the traditional transfer function of the LTI

system, u (t) and y (t) denote the input and output of the

Wiener system respectively. The output of LTI system is

denoted by r (t) and can be expressed as

r (t) =
β (z)

α (z)
u (t) . (1)

The Wiener nonlinear system is indebted by a stochastic white

Gaussian noise v (t) with mean zero and variance σ2. From

Fig.1, the output of Wiener system can be expressed as

y (t) = F (d (t)) , (2)

where the intermediate variable d (t) can be written as

d (t) = r (t) + v (t) =
β (z)

α (z)
u (t) + v (t) . (3)

Let the LTI block have a rational transfer function with

numerator and denominator are represented by polynomials

having backward time shift operator z−1:

α (z) = 1 + α1z
−1 + α2z

−2 + ...+ αnα
z−nα

β (z) = β1z
−1 + β2z

−2 + ...+ βnβ
z−nβ .

(4)

The orders nα and nβ are supposed to be previously known,

and static nonlinear function F (·) is assumed to be invert-

ible. The relationship between intermediate variable d (t) and

output of the nonlinear system y (t) can be expressed as

d (t) = F−1 (y (t)) =
m
∑

k=1

ckfk (y (t)), (5)

where fk (·) are basis functions for nonlinearity of the system.

These basis functions can be polynomials, radials and splines.

The order of nonlinearity m is considered to be foreknown.

Using equation (4) in (3), d (t) can be explicitly written as

d (t) =

nα
∑

i=1

αi [v (t− i)− d (t− i)]

+

nβ
∑

j=1

βiu (t− j) + v (t) .

(6)

From equation (5) and (6), we get

m
∑

k=1

ckfk (y (t)) =

nα
∑

i=1

αi [v (t− i)− d (t− i)]

+

nβ
∑

j=1

βiu (t− j) + v (t) .

(7)

Without losing any generality, it can be assumed that c1 = 1.

Hence (7) can be rewritten as

f1 (y (t)) =

nα
∑

i=1

αi [v (t− i)− d (t− i)]

+

nβ
∑

j=1

βiu (t− j)−

m
∑

k=2

ckfk (y (t)) + v (t) .

(8)

Typically, the polynomial representation is chosen as the

nonlinear basis functions because of its simple implementation

and easy to analyze. Equation (8) is in the linear regression

form and can be written in a simplified way for polynomial

nonlinear basis functions as shown below:

y (t) = φ̄T (t) θ̄ + v (t) (9)

where

θ̄ =
[

θ̄T1 , c2, ..., cm
]T

∈ R
n=nα+nβ+m−1 (10)

with

θ̄1 =
[

α1, ..., αnα
, β1, ..., βnβ

]T
∈ R

n1=nα+nβ (11)

and

φ̄ (t) =
[

φ̄T
1 (t) ,−y2 (t), ...,−ym (t)

]

∈ R
n (12)

with

φ̄1 (t) =

[

v (t− 1)− d (t− 1) , .., v (t− nα)

− d (t− nα) , u (t− 1) , .., u (t− nβ)

]

∈ R
n1 .

(13)

From equation (6), (11) and (13), the intermediate unknown

variable d (t) can be expressed as

d (t) = φ̄T
1 (t) θ̄1 + v (t) . (14)

The aim of this paper is to estimate parameter vectors θ̄ and

θ̄1 using LMS algorithm.

III. LEAST MEAN SQUARE ALGORITHM

In this section, we design an LMS based Wiener identifica-

tion methodology to estimate model parameter vector θ̄. The



quadratic cost function for the Wiener model is defined as

J
(

θ̄
)

=
L
∑

t=1

∣

∣y (t)− φ̄T (t) θ̄
∣

∣

2
, (15)

here the data length is considered to very large than n i.e.,

L >> n.

Let us define the estimate of θ̄ at any time t as ˆ̄θ =
[

ˆ̄θT1 , ĉ2, ..., ĉm

]T

. The aim is to minimize cost function (15)

w.r.t. θ̄ and get the model parameter estimates. Using LMS

minimization, the update equation for estimating θ̄ is obtained

as
ˆ̄θ (t+ 1) = ˆ̄θ (t) + µφ̄ (t) e (t) , (16)

where µ > 0 is a small positive constant step-size involved

while minimizing the quadratic cost function (15) using LMS

algorithm,

e (t) = y (t)− φ̄T (t) ˆ̄θ (t) , (17)

φ̄ (t) =
[

φ̄T
1 (t) ,−y2 (t), ...,−ym (t)

]

, (18)

with

φ̄1 (t) =

[

v (t− 1)− d (t− 1) , .., v (t− nα)

− d (t− nα) , u (t− 1) , .., u (t− nβ)

]

. (19)

In this article, a constant step-size is considered. It is also

possible to use a step-size of decaying nature i.e., time

dependent step-size µ (t) > 0. The decaying step-size µ (t)
should satisfy the following two conditions,

∞
∑

t=0

µ (t) = ∞, lim
t→∞

µ (t) = 0. (20)

However, the rate of convergence will be slower and as

t → ∞, the step-size will die out and turns off the adaptation

[18]. Due to these reasons, we have considered a constant step-

size in this article. The stability bound for step-size is given

as

0 < µ <
2

Tr
[

R ˆ̄φ

] (21)

i.e., the step-size should be chosen within the bound otherwise

algorithm may diverge and becomes unstable. where R ˆ̄φ
is the

covariance matrix of ˆ̄φ (t) [19].

Notice that φ̄1 (t) in (19) contains unmeasured terms

v (t− i) and d (t− i), which makes the algorithm infeasible to

estimate ˆ̄θ (t+ 1). To overcome this situation, auxiliary model

identification based approach is implied.

Let v̂ (t) and d̂ (t) are the estimates of v (t) and d (t)
respectively. Then, define

ˆ̄φ1 (t) =

[

v̂ (t− 1)− d̂ (t− 1) , ..., v̂ (t− nα)

−d̂ (t− nα) , u (t− 1) , ..., u (t− nβ)

]

∈ R
n1 ,

(22)

ˆ̄φ (t) =

[

ˆ̄φ1

T

(t) ,−f2 (y (t)) , ...,−fm (y (t))

]

∈ R
n. (23)

Replacing φ̄1 (t) , φ̄ (t) , θ̄1 (t) and θ̄ (t) in equation (9) and
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Fig. 2: Flowchart for estimating θ̄ using LMS algorithm

(14) with ˆ̄φ1 (t) ,
ˆ̄φ (t) , ˆ̄θ1 (t) and ˆ̄θ (t), we get

v̂ (t) = y (t)− ˆ̄φT (t) ˆ̄θ (t)

d̂ (t) = ˆ̄φT
1 (t)

ˆ̄θ1 (t) + v̂ (t) .
(24)

Now the update equation for ˆ̄θ(t) can be written as

ˆ̄θ (t+ 1) = ˆ̄θ (t) + µ ˆ̄φ (t) ê (t) , (25)

where

ê (t) = y (t)− ˆ̄φT (t) ˆ̄θ (t) (26)

Wiener-LMS algorithm steps to estimate model parameter ˆ̄θ (t)
are listed as following:

1) Initialize the values ˆ̄θ (t) = 0, u (t) = 0, y (t) =
0, d̂ (t) = 0, v̂ (t) = 0 for t 6 0. For t > 0

2) Input data u (t) and output data y (t) are collected.

3) Using (22) and (23), form ˆ̄φ1 (t) and ˆ̄φ (t).

4) The estimation of the Wiener modeling parameter ˆ̄θ (t)
is updated using (25).

5) Find ˆ̄θ1 (t) from ˆ̄θ (t) using ˆ̄θ =
[

ˆ̄θT1 , ĉ2, ..., ĉm

]T

.

6) The value of v̂ (t) and d̂ (t) are calculated using (24).

7) If t < L, then repeat steps 2-6. If t = L reaches, stop

the process and get the estimates of model parameter

using (10).

The flowchart presenting the steps involved in Wiener-LMS

algorithm for the estimation of parameter vector ˆ̄θ(t) is

depicted in Fig. 2.



IV. LEAKY LEAST MEAN SQUARE ALGORITHM

One of the drawback concerning LMS algorithm is the

drifting problem which has been analyzed in [15], [16].

This situation made LMS algorithm to generate unbounded

estimates for bounded input with large eigen spread. The

solution of this problem is to include leakage factor in the

cost function which bounds the parameter estimates.

Consider the new instantaneous cost function for leaky-LMS

as [14]

J (t) = ê2 (t) + γ ˆ̄θ
T

(t) ˆ̄θ (t) , (27)

where (0 < γ < 1) is the leakage factor which is user selec-

tive. The term γ ˆ̄θ
T

(t) ˆ̄θ (t) can be viewed as the regularization

term. Using the fundamentals of LMS algorithm, the recursive

update equation for leaky LMS can be written as

ˆ̄θ (t+ 1) = (1− µγ) ˆ̄θ (t) + µ ˆ̄φ (t) ê (t) . (28)

The stability bound of the step size µ is given by

0 < µ <
2

γ + λmax

(

R ˆ̄φ

)

or 0 < µ <
2

γ + Tr
[

R ˆ̄φ

]

(29)

V. MODIFIED LEAKY LMS

The drawback concerning leaky LMS is its low convergence

rate. To enhance the converging rate of leaky LMS, a modified

leaky LMS is proposed in [14]. A new cost function is

defined where the sum of exponentials are employed in the

cost function of leaky LMS. The modified instantaneous cost

function is given as [14]

J (t) = (exp (ê (t)) + exp (−ê (t)))2 + γ ˆ̄θ
T

(t) ˆ̄θ (t) . (30)

The recursive update equation for modified leaky LMS is given

by

ˆ̄θ (t+ 1) = (1− µγ) ˆ̄θ (t) + 2µ ˆ̄φ (t) sinh (ê (t)) (31)

VI. EXAMPLE FOR NUMERICAL TEST

Let us consider a Wiener nonlinear system with finite

impulse response as the transfer function of LTI system

d (t) =
β (z)

α (z)
u (t) + v (t) ,

α (z) = 1,

β (z) = β1z
−1 + β2z

−2 = 0.8z−1 + 0.33z−2,

and the inverse of the nonlinear function

d (t) = y (t)− 0.5y3 (t) .

Persistently excited signal is taken as the input to the system

under consideration. The input considered is of zero mean

and unit variance. The noise affecting the system is con-

sidered to be the white Gaussian noise having mean zero

and standard deviation 0.01. Initialization for the variables to

estimate parameter of interest are taken as ˆ̄θ (t) = 0, u (t) =
0, y (t) = 0, d̂ (t) = 0, v̂ (t) = 0 for t = 0. Applying

the different variants of LMS algorithm to obtain the Wiener

model parameter vector ˆ̄θ (t).

Let us define some performance indexes to measure the ef-

fectiveness of the proposed algorithm; mean-square deviation

(MSD) at time iteration t as:

MSDt = E

∥

∥

∥

ˆ̄θ (t)− θ̄

∥

∥

∥

2

= E

∥

∥

∥

˜̄θ (t)
∥

∥

∥

2

, (32)

where ˜̄θ = ˆ̄θ (t) − θ̄. Excess-mean square error (EMSE) at

time iteration t

EMSEt = E

∣

∣

∣

ˆ̄φT (t) ˜̄θ (t)
∣

∣

∣

2

. (33)

Mean square error (MSE) at time iteration t

MSEt = E|e (t)|
2
, (34)

where ê (t) is calculated from (26). Here the expectation

operator is introduced for taking the average of the estimates

while a number of times the algorithm runs.

The steady-state values for these performance indexes can

be calculated as:

MSD = lim
t→∞

E
∥

∥

∥

ˆ̄θ (t)− θ
∥

∥

∥

2

= lim
t→∞

E
∥

∥

∥

˜̄θ(t)
∥

∥

∥

EMSE = lim
t→∞

E
∣

∣

∣

ˆ̄φT (t) ˜̄θ(t− 1)
∣

∣

∣

2

MSE = lim
t→∞

E|ê (t)|
2

(35)

The performance of the deduced algorithm is analyzed with

the help of learning curves; Mean Square Deviation (MSD),

Excess Mean Square Error (EMSE) and Mean Square Error

(MSE) plots with noise variance σ2 = 0.012. A constant step-

size of 0.01 and leakage factor γ = 0.0001 is considered for

updating model parameter vector. A total of 250 experiments is
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Fig. 3: MSD for estimating θ̄ using LMS and its different

variant algorithms



0 0.5 1 1.5 2

x 10
4

−60

−50

−40

−30

−20

−10

0

time ieration ’t’

E
M

S
E

 (
d

B
)

 

 

Leaky LMS

Modified Leaky LMS

LMS

Fig. 4: EMSE for estimating θ̄ using LMS and its different

variant algorithms
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Fig. 5: MSE for estimating θ̄ using LMS and its different

variant algorithms

considered and each experiment runs for 20000 time iterations.

The curves are plotted by taking the performance average of

all the experiments. The learning curves obtained are shown in

Fig. (3), Fig. (4) and Fig. (5). Plots show that modified leaky

LMS have good convergence rate when compared to other two

variants as explained in Section V. The learning curves also

called performance plots, have very low steady state values,

hence the algorithms designed are very efficient in estimating

Wiener model parameters.

VII. CONCLUSION

This article presented the Wiener model parameter esti-

mation using LMS algorithm with its two modified variants.

The methodology is assumed to pursue the invertible nonlin-

ear function which is justified theoretically. The simulation

results obtained using MATLAB software demonstrate that

the proposed methodologies are very efficient and work well

in presence of noise. The recommended algorithms can be

broadened to identify the parameters of other nonlinearity

based systems with different types of noise in them.
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