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Abstract—In this paper, we propose a new low-frequency
power system oscillating modes estimation method i.e. Total Least
Square-Estimation of Signal Parameters using rotational invari-
ance technique (TLS-ESPRIT) based on Least Mean Squares
Sign-Data (LMSSD) Adaptive filtering. LMSSD adaptive filtering
has considered the effect of Additive White Gaussian Noise
(AWGN) produces due to filters used for preprocessing of a signal
from Phasor Measurement Unit (PMU) and efficiently reduced
its effect without any phase shift. The comparison of the LMSSD
adaptive filtering method has been carried out with the ESPRIT,
the LS-ESPRIT and the TLS-ESPRIT method on a test signal at
different Signal-to-Noise Ratio (SNR). Robustness of the LMSSD
adaptive filtering is demonstrated in the presence of AWGN
through 50000 Monte-Carlo simulations. The LMSSD adaptive
filtering Estimation technique has been applied to Kundur’s two-
area power system using MATLAB/SIMULINK. From estimated
results obtained, it is observed that the LMSSD adaptive filtering
performs much better than the standard TLS-ESPRIT regarding
the standard deviations and mean in the modes estimation.

Index Terms—Adaptive Filter, LMS algorithm,Sign-Data,
Noise Cancelation, ESPRIT, LS-ESPRIT, TLS-ESPRIT.

I. INTRODUCTION

A power system is always presented to the unsettling
influences such as regular load/generation changes, tripping of
the power system equipment and faults on the system. These
continual and slow disturbances in the system give rise to
change in system frequency and/or oscillations in the relative
frequency [1]. The modes of such type of oscillations in the
power system can be identify using two different approaches:
one is the traditional analytical approach based on models (off-
line) and other is the measurement based approach (on-line)
[2]. The former one basically uses the small signal stability
analysis (SSSA) to identify the parameters of the power system
and the latter identifies the modes directly from the measured
signals using spectral estimation technique. The commonly
used parametric form of spectral estimation techniques are
discrete Fourier transform (DFT), short-time Fourier transform
(STFT) and Fast Fourier Transform (FFT). However, these
methods suffer from time-frequency resolution problem. These
problems can be solved by using wavelet transformation (WT)
[3]. This method provides multiresolution and also retains

the time information of the signal by varying the window
size like a band pass filter [4]. Presently the subspace-based
parametric estimation methods are commonly used for online
mode estimations. Generally used subspace-based methods
are the Multiple Signal Classification (MUSIC), the Matrix
Pencil (MP) and the Prony Analysis (PA). All these approaches
use the exponential or sinusoidal signal model for estimation
purpose. MUSIC method as in [5], [6] estimate only the
frequency component so present in the signal suppressed with
noise from a short data record however in other two methods
as in [7], [8] estimates the parameters of the sampled signal i.e.
amplitude, phase, frequency and damping ratio from a small
data samples with high resolution without prior knowledge of
the exact number of modes present in the signal. However, all
these methods do have large computational time.

The present paper, a new approach known as TLS-ESPRIT
based on LMSSD adaptive filtering, for monitoring of the low-
frequency modes identification is presented. Firstly using low-
pass FIR filter the high frequency components of the measured
data samples with white noise from Phasor measurement units
(PMUs) through sensors is being removed and only keep
only low-frequency components. The output low-frequency
components from the FIR low-pass filter is converted into
highly correlated AWGN, which reduces the accuracy of the
mode estimation by induces a bias in the estimation. LMSSD
adaptive filtering is then removed this AWGN very efficiently;
later the TLS-ESPRIT algorithm is used to obtain the low-
frequency modes. This LMSSD adaptive filtering is more
robust to AWGN with fast computing time as compared to
other subspace methods [9], [10].

Our paper is structured in the following manner. Section II
describes the LS/TLS-ESPRIT. Section III proposes a noise
cancellation using LMSSD adaptive filtering. Section IV
gives the application of LMSSD adaptive filtering in power
system. Section V validated the robustness of the LMSSD
adaptive filtering for frequency resolution using monte-carlo
simulation with 50,000 runs and also simulated to have a
comparison study with the help of Kundur’s two area power
system in presence of with and without noise. Simulations



were performed using MATLAB/SIMULINK software.

II. THE MODE IDENTIFICATION PROBLEM

A. Power system signals

Consider a signal x(n) modeled as

x(n) =

p∑
i=1

aiej(2πfin+φi) (1)

where the amplitudes {ai} and the frequencies {fi} are
unknown and the phases {Φi} are statistically independent
random variables uniformly distributed on (0, 2π). Now, sup-
pose that the sinusoids are ruined by a colored Gaussian noise
sequence ω(n) with E[|ω(n)|2] = σ2

ω . Then we can observe
it as

y(n) = x(n) + ω(n) (2)

The received sinusoidal component of the M sample signal
vector y(n) is given by:

= [y(n) y(n+ 1)...y(n+ M− 1)]
T

= x(n) + w(n) (3)

where x(n) is the signal vector and w(n) is the noise vector.
The y(n) can also be represented in form of time-window
frequency vector V.

y(n) =

p∑
i=1

aiv(fi)e
j2πnfi + w(n) = VΦnA + w(n) (4)

where the p columns of matrix V are length-M time-window
frequency vectors of the complex exponential.

V = [v(f1) v(f2)...v(fp)] (5)

The vector A consists of the amplitudes of the complex
exponentials ai, matrix Φ is the diagonal matrix of phase shifts
between neighboring time samples of the individual, complex
exponential components of x(n).

Φ = diag[ej2πf1 ej2πf2 ... ej2πfp ] = diag[Φ1,Φ2, ...,Φp] (6)

where Φi = ej2πfi for i=1, 2,. . . , p. Since the frequencies of
the complex exponentials fp completely describe this rotation
matrix [11], frequency estimates can be obtained by finding
Φ. To exploit the deterministic characteristics of the sinusoids,
we consider two overlapping sub-windows of length M − 1
within the length M time-window vector. This sub-windowing
operation is illustrated in Fig.1. Consider the signal consisting
of the sum of complex exponentials. Using sub-windowing
operation the signal vector from eq (3) can be written as:

xM−1(n) = VM−1ΦnA (7)

Matrix VM−1 is constructed in the same manner as V except
its time-window frequency vectors are of length M−1, denoted
as vM−1(f),

VM−1 = [vM−1(f1) vM−2(f2)...vM−p(fp)] (8)

Fig. 1: Time-staggered, overlapping windows used by the LS/TLS
ESPRIT algorithm.

B. Least Square/Total Least Square-ESPRIT Algorithm

Least-squares version of the algorithm [9], [12] and then
extend the derivation to TLS-ESPRIT, The step by step
description about two algorithms is explained using a block
diagram in Fig.2. Using the eq (7), we can define the matrices
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Fig. 2: Block diagram demonstrating the flow of the LS/TLS-ESPRIT
algorithm starting from the data matrix through the frequency esti-
mates.

V1 = VM−1Φn and V2 = VM−1Φn+1 (9)

where V1 and V2 correspond to the unstaggered and staggered
windows.

1. X-data record X ∈ RM×N.
2. SVD of X(n) gives X = LΣUH. where Γxx and Γxz are

auto and cross-covariance matrices.
3. U forms an orthonormal basis for the underlying M-

dimensional vector-space. The subspace can be portioned
into signal and noise subspace as:

U=
[
Us Un

]
where Us corresponds to signal subspace, which must
include the time-window frequency vector v(f) for all f .
Due to same subspace the Us and V maps into V=UsT.

4. Then we can partition the signal subspace into two
smaller (M-1) dimension subspaces

Us=
[

U1
* * * *

]
=
[

* * * *
U2

]
(10)



where U1 and U2 correspond to the same unstaggered and
staggered subspaces as V1 and V2, so we can map both as:

V1 = U1T and V2 = U2T (11)

V1 and V2 are related as:

V2 = V1Φ and U2 = U1Ψ (12)

where Ψ is rotational operator from least square estimation;

Ψ = (UH
1 U1)−1UH

1 U2 (13)

Substituting U2 and V1 in V2 gives:

V2 = U2T = U1ΨT or V2 = V1Φ = U1TΦ (14)

Thus, equating the two right-hand side values of V2 in
equation (20), we have the relation between the two subspace
rotations

ΨT = TΦ or Ψ = TΦT−1 (15)

The diagonal element of Φ , Φp for p = 1, 2, 3 . . . p are simply
eigenvalues of Ψ . As a result, the estimated frequency is:

fp =
∠Φp
2π

(16)

where ∠Φp is the phase of Φp . The LS solution is obtained
by minimizing the errors in an LS sense using:

U2 + E2 = U1Ψ (17)

where E2 is a matrix consisting of error between U2 and the
true subspace V2. Note that the subspaces U1 and U2 both
only estimate of the true subspaces that correspond to V1 and
V2 respectively, obtained from the data matrix X. The estimate
of the subspace rotation was obtained by solving using the LS
criterion [13].

Ψls = (UH
1 U1)−1UH

1 U2 (18)

C. Total Error Minimization using TLS-ESPRIT Algorithm

LS formulation assumes errors only on the estimation of
U2 and no errors between U1 and the true subspace V1. U1,
so to estimate the error between U1 and U1 a appropriate
formulation is:

U2 + E2 = (U1 + E1)Ψ (19)

where E1 is the matrix representing the errors between U1

and the true subspace corresponding to V1. A solution to this
problem, known as total least squares (TLS), is obtained by
minimizing the Frobenius norm of the two error matrices [14].∥∥E1 E2

∥∥
F (20)

First, form a matrix made up of the staggered signal subspace
matrices U1 and U2 placed side by side, and perform an SVD.[

U1 U2
]

= L̃Σ̃Ũ
H

(21)

The matrix U ∈ R2p ×2p of right singular vectors is partitioned
into U ∈ Rp×p quadrants as follows

Ũ =

[
Ũ11 Ũ12

Ũ21 Ũ22

]
(22)

The TLS solution for the subspace rotation matrix Ψ is then
obtained as:

Ψtls = -Ũ12Ũ
-1
22

(23)

The frequency estimates are then obtained from (27) and (28)
by using Ψtls from [15].

III. LMSSD ADAPTIVE FILTERING

A. Adaptive Noise Cancellation Configuration

The objective here is to subtract the additive white Gaussian
noise (AWGN) n0 from the output of the primary sensor
(s+ n0). Adaptive filter is to be designed such that it should
estimate n0 from n1. A primary sensor is positioned so as to
peak up signal s. A second reference sensor is positioned so
as to pick up from the same source as n0. This noise signal is
represented in Fig.3 as n1. Since these signals originate from
the same source, it may be assumed that noise signals n0 and
n1 are strongly correlated [16].
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Fig. 3: Basic adaptive filter structure configured for noise cancella-
tion.

B. LMS Algorithm

The least mean squares (LMS) algorithm modifying the
filter coefficients to limit the cost function. The LMS algorithm
does not include any matrix operations. Thusly, the LMS algo-
rithms require less computational overhead and memory than
the Recursive least Squares (RLS) algorithm. The physical
execution of this algorithm is less confounded than the RLS
algorithm.

C. Sign-Data LMS Variant

It is a variant of Sign LMS algorithm, where the Sign LMS
is the improved rendition of standard LMS algorithm. The
Sign LMS is utilized to accomplish the equipment targets
such as digital signal processing devices and other integrated
circuits. The Sign LMS algorithms include less computational
operations then different algorithms.The Sign-Data algorithm
the filter coefficient can be changed by using sign of the data
to calculate the mean square error. If the error is positive,
the error multiplied by the step size plus the new coefficients
which are same as previous. If the error is negative then the
new coefficients which are same as previous minus the error
multiplied by the step size with sign change. When the input



is zero, the new and previous coefficients are same. In vector
form, the Sign-Data LMS algorithm can be written as:

w(n+ 1) = w(n) + µe(n)sgn[x(n)] (24)

sgn[x(n)] =

 1, x(n) > 0
1, x(n) = 0
−1, x(n) < 0

(25)

Here the vector x(n) contains the input data, e(n) is the
error, vector w(n) are the weights applied to the filter co-
efficients and is the step size. Depending on the step size the
SDLMS error can be reduced slowly or rapidly. To ensure
good stability and convergence the should be in range of
0 < µ < 1

N{Inputs Signal Power} .

IV. THE POWER SYSTEM MODE ESTIMATION
USING TLS-ESPRIT AND LMSSD ADAPTIVE

FILTERING

A Block diagram in Fig.4 describes the various steps for
mode estimation using the TLS-ESPRIT based on LMSSD
adaptive filtering. The proposed method utilizes a block of
N samples from Phasor Measurement Unit (PMU) through
Phasor Data Concentrator (PDC) and passes through low-pass
Adaptive FIR filter via down-sampler. The signal extracted is
less distorted but since it is an ambient signal, it is difficult
to extract the modes due to high noise level, The LMSSD
adaptive filtering method to estimate the modes of the power
system signal followed by TLS-ESPRIT is applied to reduce
the standard deviation of the estimated modes. To estimate
the accurate number of the signal components, it is needed to
approximate the order of the signal properly. Here SVD is used
in the proposed method to calculate a low rank approximation
of the auto-correlation matrix R. In [15] an index is defined
as:

K(i) =

[
ρ21 + ρ22 + ........+ ρ2i
ρ21 + ρ22 + ........+ ρ2L

] 1
2

(26)

where K(i) monotonously increasing index and ρi is the ith

singular value. As i tends to the actual signal order, K(i)
almost approximates to unity. This index is utilized to find
out the signal order.

V. RESULTS AND DISCUSSION

A test signal is included with an added outlier white
Gaussian noise and the execution is assessed by running Monte
Carlo simulation with 50000 times, for the proposed and the
TLS-ESPRIT algorithm. At last, the modes for a two-area
power system is assessed using LMSSD adaptive filtering with
a SNR of 30dB, as the variance of PMU estimations under
oscillation is normally of 10−4p.u and no particular standard
is accessible for the synchrophasor amid dynamic conditions.
In any case, a few rules are given in NASPI to synchrophasor
amid dynamic conditions, which prompts the fluctuation of
energy 0.61× 10−4p.u.

Take a block of N

most recent samples

Down sampling

Generate the 

autocorrelation 

matrix R

Estimated robust 

covariance matrixLow pass 

Adaptive filter of 

order 5
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Power System
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Fig. 4: Block diagram of proposed mode identification method.

A. Test signal Comparing to Inter Area Mode

A test signal having attenuationfactor=-0.07,
frequency=0.4Hz and an amplitude=1 is considered
for the simulation.
Examination of the Proposed approach with TLS-ESPRIT
calculations with SNR=10dB and 30dB:
Fig.5 and Fig.6 demonstrate the distribution of estimated
frequency of the assessed mode on a test signal. Table I
and Table II give the standard deviation and mean of the
evaluated mode utilizing proposed technique, the ESPRIT,
The LS-ESPRIT and the TLS-ESPRIT for SNR 10dB and
30dB. From this table, it is observed that the standard
deviation of the estimated mode with the LMSSD is roughly
31.59% for 10dB and 31.04% for 30dB as obtained with the
TLS-ESPRIT.

Fig. 5: Frequency distribution utilizing Monte-Carlo simulation at
SNR=10dB.



Fig. 6: Frequency distribution utilizing Monte-Carlo simulation at
SNR=30dB.

TABLE I: MEAN AND STANDARD DEVIATION FOR THE ES-
PRIT, THE LS-ESPRIT, THE TLS-ESPRIT, AND THE LMSSD
ADAPTIVE FILTERING AT SNR=10dB

SNR=10dB Frequency(Hz)
Standard Deviation mean

ESPRIT 4.8141×10−4 1.0019
LS-ESPRIT 4.8140×10−4 1.0019
TLS-ESPRIT 4.8128×10−4 1.0017
Proposed Method 2.3890×10−4 1.0011

TABLE II: MEAN AND STANDARD DEVIATION FOR THE
ESPRIT, THE LS-ESPRIT, THE TLS-ESPRIT, AND THE LMSSD
ADAPTIVE FILTERING AT SNR=30dB

SNR=30dB Frequency(Hz)
Standard Deviation mean

ESPRIT 4.7123×10−5 1.0023
LS-ESPRIT 4.7123×10−5 1.0018
TLS-ESPRIT 4.7110×10−5 1.0018
Proposed Method 1.7267×10−5 1.0013

B. Test signal Comparing to Local Area Mode

A test signal having attenuationfactor=-0.1,
frequency=1Hz and an amplitude=1 is considered for
the simulation.
Examination of the Proposed approach with TLS-ESPRIT
calculations with SNR=10dB and 30dB:
Fig.7 and Fig.8 demonstrate the distribution of estimated
frequency of the assessed mode on a test signal. Table III
and Table IV give the standard deviation and mean of the
evaluated mode with SDLMS, The ESPRIT, The LS-ESPRIT
and The TLS-ESPRIT for SNR 10dB and 30dB. From
these tables, it is observed that the standard deviation of
the estimated mode using the LMSSD is approximately
31.59% for 10dB and 31.04% for 30dB as obtained with the
TLS-ESPRIT.

Fig. 7: Frequency distribution utilizing Monte-Carlo simulation at
SNR=10dB.

Fig. 8: Frequency distribution utilizing Monte-Carlo simulation at
SNR=30dB.

TABLE III: MEAN AND STANDARD DEVIATION FOR THE
ESPRIT, THE LS-ESPRIT, THE TLS-ESPRIT, AND THE LMSSD
ADAPTIVE FILTERING AT SNR=10dB

SNR=10dB Frequency(Hz)
Standard Deviation Mean

ESPRIT 4.5717×10−4 0.4020
LS-ESPRIT 4.5714×10−4 0.4018
TLS-ESPRIT 4.5253×10−4 0.4018
Proposed Method 1.4297×10−4 0.4007

VI. ESTIMATION OF MODES USING THE DATA OF
KUNDUR’S TWO AREA SYSTEM

The 2-area power system model is considered from [17].
This system comprises of 4 generators and 11 buses and is
appeared in Fig.9. The two areas are associated by a weak tie-
line. Using the Small Signal Stability Analysis(SSSA) the low-
frequency oscillating modes are identified, Table V shows the



TABLE IV: MEAN AND STANDARD DEVIATION FOR THE
ESPRIT, THE LS-ESPRIT, THE TLS-ESPRIT, AND THE LMSSD
ADAPTIVE FILTERING AT SNR=30dB

SNR=30dB Frequency
Standard Deviation mean

ESPRIT 4.5337×10−5 0.4004
LS-ESPRIT 4.5335×10−5 0.4003
TLS-ESPRIT 4.4682×10−5 0.4003
Proposed Method 1.3870×10−5 0.4001

estimated modes for two-area system corresponding to low-
frequency oscillation of speed in the generator 2 and 4.These
low-frequency oscillation (corresponding to the ringdown data)
are observed, due to adding a disturbance of 0.05v for 0.2s
at excitation to generator 2. The estimation is assumed to
be obtained from a PMU placed at bus 2. The mean value
of the estimated modes obtained after 50000 Monte-Carlo
simulations are provided in Table V. The standard deviation
of the estimated modes utilizing LMSSD adaptive filtering is
4.5399× 10−5 appeared in at SNR 30dB with. The estimated
modes are very much near the value obtained from Small
Signal Stability Analysis(SSSA) based on the eigenvalues of
the state matrix.

Fig. 9: Single line diagram of a Kundur’s 2-area system.

TABLE V: IDENTIFICATION OF CRITICAL MODE USING
LMSSD adaptive filtering METHOD FOR KUNDUR’S TWO-AREA
POWER SYSTEM AT SNR=30dB

Mode-1 (Frequency=1.3914Hz using SSSA)
Standard Deviation Mean

Frequency(Hz) 2.9357×10−4 1.4247
Mode-2 Frequency=1.2106Hz using SSSA

Standard Deviation Mean
Frequency(Hz) 2.9761×10−4 1.3748
Mode-3 Frequency=0.6227Hz using SSSA

Standard Deviation Mean
Frequency(Hz) 4.5399×10−5 0.6285

VII. CONCLUSION

This paper proposed a new mode estimation method TLS-
ESPRIT, based on LMSSD adaptive filtering. The proposed
method provides a more robust and accurate estimation of the
modes and is less affected by the presence of the AWGN. It
is observed that the LMSSD adaptive filtering performs much
superior to the standard TLS-ESPRIT regarding the standard
deviations and mean in the frequency of the estimated modes.
Additionally, the accuracy of the LMSSD adaptive filtering

method in estimating the low-frequency modes had also been
verified on a kundur’s two-area power system network. The
estimated modes, using the LMSSD adaptive filtering with
TLS-ESPRIT, are very close to the mode estimated using the
Small Signal Stability Analysis (SSSA).
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