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Abstract

In this article, we present a Neuromorphic Person Re-Identification (NPReId) framework to establish the
correspondence among individuals observed across two disjoint camera views. The framework comprises three modules
(observation, cognition, and contemplation), inspired by the Form-and-Color-and-Depth (FACADE) theory model
of object recognition system. In observation module, a semantic partitioning scheme is introduced to segment a
pedestrian into several logical parts, and an exhaustive set of experiments have been carried out to select the best
possible complementary feature cues. In cognition module, an unsupervised procedure is suggested to partition the
gallery candidates into multiple consensus clusters with high intra-cluster and low inter-cluster similarity. A supervised
classifier is then deployed to learn the relationship between each gallery candidate and its associated cluster, which
is subsequently used to identify a set of inlier consensus clusters. This module also includes weighing of contribution
of each feature channel towards defining a consensus cluster. Finally, in contemplation module, the contributory
weights are employed in a correlation-based similarity measure to find the corresponding match within the inlier set.
The proposed framework is compared with several state-of-the-art methods on three challenging datasets: VIPeR,
iLIDS-VID, and CUHK01. The tabular results alongside the performance curves demonstrate the superiority of
NPReId over the counterparts.
Index Terms: Surveillance; Person re-identification; Recognition; Consensus clustering; Similarity measure; Feature
extraction; Information gain; CMC.

1 Introduction

In the last two decades, there has been a tremendous growth in the use of visual surveillance systems. The research
community in academia, as well as R&D organizations, are actively involved in making the video surveillance automated
and intelligent. Object detection, tracking, recognizing objects of interest, understanding and analyzing their activities
are some of the key ingredients of a smart surveillance system. With the advent of the multi-camera networks, newer
issues have surfaced that demand deeper understanding and significant research. Person re-identification is one such
issue, which is about re-identifying a previously observed person that leaves the field of view (FoV) of one camera and
enters the FoV of another camera, or re-enters the FoV of the same camera after a period of time. In particular, a given
probe image is searched in the set of available gallery images, and the least distant image (with maximum similarity)
becomes the potential match; an abstraction of the same is depicted in Figure 1. Use of biometric traits such as face,
gait, periocular, fingerprint, etc. seem to be good candidates to solve the person re-identification problem. However,
surveillance systems do not have the luxury of constrained environment where the images could be recorded as desired.
The images are usually of very poor resolution that limits the efficacy of biometric systems considerably. In addition,
person re-identification suffers from few severe challenges, such as, indistinguishable attire, unalike appearance, pose
variations, varying background, partial occlusion etc; images in Figure 2 show some of the typical scenarios where the
above challenges can be well observed.

Quite a significant amount of work on person re-identification have been reported in the recent pasts. Prosser et al.
formulate a bidirectional brightness transfer function to compute a chromatic based mapping across the disjoint camera
views [1]. Farenzena et al. segment a human silhouette with horizontal-vertical symmetry followed by chromatic feature
extraction from each segmented body part [2]. Cheng et al., in their work, apply the pictorial structure to locate different
body parts [3]. Kviatkovsky et al. propose an invariant color signature in the log-chromaticity space by considering the
color distribution under different lighting conditions [4]. Ma et al. suggest a biological covariance (BiCov) descriptor to
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Figure 1: An abstraction of person re-identification — A probe is compared with all gallery candidates to find the exact
match.

address the problem with illumination change [5]. Shi et al. formulate a multi-level adaptive correspondence method for
handling the misalignment of body parts [6]. In another work, a part based segmentation approach is suggested to solve
the problem with pose misalignments [7]. Liao et al. model a stable feature representation based on the idea of maximizing
the horizontal occurrence of local features to counter the problems with varying viewpoints across the camera views [8].
Zheng et al. [9] introduce a probabilistic relative distance comparison (PRDC) model to formulate the re-identification
task as a distance learning problem. Koestinger et al. model the re-identification problem as a task of metric learning
with equivalence constraints [10]. Li et al. model a quadratic decision function for metric learning [11]. In another work,
a kernel-based distance learning approach is presented to improve the re-identification accuracy [12]. Subsequently, the
discriminative and representative patches are collected for feature learning [13]. Zaho et al. propose an unsupervised
salience learning model to learn the salience regions of human appearance [14], [15]. Wang et al. design a video ranking
model by simultaneously selecting and matching the reliable space-time features from the image sequence [16]. Zheng et
al. propose a score-level fusion scheme that automatically selects an appropriate set of features from the unlabeled
data [17]. An et al. formulate a robust canonical correlation analysis to map the samples from two disjoint views into a
subspace followed by similarity matching [18], [19].

Most of the existing literature focus on the following two areas — (i) a robust pedestrian signature in terms of
invariant feature representation, and (ii) an efficient similarity measure to find the potential match. It has been observed
that pedestrian signature with single feature is not adequate to counter the challenges posed by person re-identification.
Therefore, existing models prefer the use of a set of features to strengthen the ability of the signature. The set should be so
chosen that the individual features complement each other and also enough care should be given so that the combination
do not lead to overfitting. The second issue under focus is on the similarity measure, where exhaustive search of probe
with all the gallery candidates seems to be the most intuitive approach. However, this process is not only time consuming
but also tend to produce inaccurate match owing to the feature space limitations. Our proposition, in this article, thrusts
upon — (i) selection of complementary features combination, (ii) looking for an inlier subset of gallery candidates for a
given probe, where the probability of finding the match is very high.

FACADE (Form-And-Color-And-Depth) [20], a neural network theory, supports the biological cogency of an
object-based model, and presents a framework that combines the observation of visual perception with the recognition
system. The left hand side diagram of Figure 3 illustrates the FACADE theory with three modules. Boundary contour
system (BCS) performs the segmentation of foreground from its underlying background in the visual cortex. Feature
contour system (FCS), on the other hand, extracts the feature details of the object boundary in terms of color and
orientation. The object recognition system (ORS), based on the adaptive resonance theory, reinforces both BCS
and FCS on the correct recognition of the object. In this paper, we present a neuromorphic person re-identification
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Figure 2: Different appearances of the same person captured from two disjoint camera views. Images in a specific column
denote the same person. (a) images with similar color attire, (b) images with variation in appearances, (c) image-pairs
with variations in pose and viewpoint, (d) image-pairs with illumination and background variations, and (e) partially
occluded image-pairs.

system (NPReId) following the FACADE theory that comprises three interactive modules – observation, cognition,
and contemplation as shown in the right hand side of Figure 3. The observation module suppresses the background
and extracts the chromatic and texture details from the segmented pedestrian. The cognition module projects the
psychological result of observation to learn the underlying pedestrian signature. The results of observation and cognition
modules are forwarded to the contemplation module that recognizes the correct match for any individual.

Object Recognition
System (ORS)

Boundary Contour
System (BCS)

Feature Contour
System (FCS)

Visual Input

Observation

Cognition Contemplation

Visual Input

Figure 3: The FACADE modules. Left: the BCS-FCS includes the background segmentation, foreground feature
extraction, which are further recognized by the ORS. Right: the interactive modules of proposed re-identification system
(NPReId) based on FACADE theory.

The rest of this article is organized as follows. The proposed NPReId system is elaborated in Section 2. Simulation
results on standard datasets along with other state-of-the-art methods are presented in Section 3. Finally, concluding
remarks are given in Section 4.

2 The Proposed NPReId Framework

In this paper, we present a NPReId framework, in line with the FACADE theory, to establish the correspondence between
a probe and a subset of gallery images. Figure 4 depicts the overview of the proposed framework. In observation module,
we introduce a part-based segmentation, where the entire body is semantically partitioned into seven segments. A
comparative analysis has been carried out to select an appropriate feature set to represent a pedestrian signature. Then,
in cognition module the gallery set is partitioned into a number of consensus clusters following the K-means method
and a cluster ensemble approach. The principle of information gain is suitably formulated to compute the contribution
of each feature channel towards defining its associated cluster. The relationship of each gallery feature vector with the
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Figure 4: Overview of the proposed NPReId framework with three interactive modules — Observation, Cognition, and
Contemplation along with the steps in each module.

corresponding cluster is learned using a classification model. During the contemplation stage, the learned model selects
a set of inlier clusters for a given probe. A correlation based similarity measure is then applied to find the exact match
within the filtered set.

2.1 Observation

The observation module includes some preprocessing tasks like background suppression, semantic partitioning, followed
by feature representation.

2.1.1 Semantic partitioning of body structure

The cluttered background around a pedestrian image within the bounding box often leads to an erroneous feature
representation. Therefore, we apply the STEL generative model [21], a preprocessing operation, to suppress the
background content prior to semantic partitioning.

4



Person

Leg
Lower Leg

Upper Leg

Torso
Lower Torso

Upper Torso

Head Not Considered

(a)

h

14.58%

23.61%

61.81%

1 2

3
6

5

7

4

(b)

Figure 5: Semantic partitioning of the body structure

A holistic feature representation often leads to false match in case of partial occlusion. Moreover, various clothing
fashion together with numerous pose yield a number of possible instances in pedestrian appearance. Therefore, the entire
body needs to be semantically partitioned into various local segments prior to feature extraction.

In our work, we follow the Golden ratio (1.6180339887) principle of human body that partitions the entire body
into three semantic segments: the head, the torso, and the leg at 14.58%, 23.61%, and 61.81% of the total height of a
pedestrian. Person re-identification primarily relies on the appearance cues (attire similarity), and thereby we exclude
the head portion that lacks any information because of poor resolution. Both torso and leg portions are encoded together
as well as individually to take the advantages of holistic and part based representation. The torso and leg portions are
further subdivided into two equal sized horizontal strips to extract information at a finer level. In this way, we partition
a human body into seven logical segments, need to be encoded during feature representation, as shown in Figure 5.

2.1.2 Feature extraction

In person re-identification, complementary appearance cues need to be integrated to generate a robust feature
representation. Usually, the invariant chromatic details along with the texture patterns are incorporated for feature
encoding.

We consider multiple feature channels across the seven semantic segments, as discussed earlier, to create a robust
feature signature for a pedestrian. The color channel includes Hue-weighted-Saturation1 (HwS) [22] and CbCr, the
intensity channel includes Y, and the texture channel, adapted from [23], comprises a set of eight Gabor and thirteen
Schmid filters. RGB has also been considered for both color and intensity representation. All the feature channels,
stated above, are quantized into 16-bin histogram. We conducted two experiments with the hypothesis that the most
suitable features combination would produce highest result under any mediocre distance measure; accordingly, we choose
the L1-norm as the similarity metric. The datasets VIPeR [24], iLIDS-VID [16], and CUHK01 [25] are taken into
consideration for this experimental purpose. The details of these datasets are given in Section 3.1.

In the first experiment, the performance of individual feature channel, for VIPeR dataset, is compared in terms of
cumulative matching characteristics (CMC) curve as shown in Figure 6. It can be observed that HwS produces superior
result over its counterparts with an early convergence at rank 180. The performances of CbCr and texture channels
are also comparable to HwS. However, both RGB and Y channels fail to yield satisfactory result; the failure of which
may be attributed to the intensity based features that suffers from the problem of shadow and light illumination change.
The second experiment combines the above channels, for the same VIPeR dataset, to find the best possible features
combination as shown in Figure 6. The other two datasets also result in similar observations as shown in Figures 6 and 6.

It can be seen that HwS + CbCr + Texture produces better result in comparison to other combinations. Therefore,
we consider the 24 feature channels (1 HwS + 1 Cb + 1 Cr + 8 Gabor + 13 Schmid) across the seven semantic segments.
More precisely, each pedestrian image is represented with d-dimensional feature vector, where d = f × b, f denotes the
number of feature channels and b denotes the dimension of each channel. In our case, f = 24 channels × 7 segments =
168 , b = 16, and d = 2688.

2.2 Cognition

The cognition module includes consensus cluster formation, classifier learning, and weight assignment.

1Hue-weighted-Saturation: Hue histogram where each hue sample is weighted by its corresponding saturation value.
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Figure 6: Comparative analysis of CMC curve: (a) across each individual feature channel for VIPeR, (b) across various
features combination for VIPeR, (c) across various features combination for iLIDS-VID, (d) across various features
combination for CUHK01.

2.2.1 Consensus clusters formation followed by classifier learning

In this section, we first apply an unsupervised procedure to partition the gallery set into a number of consensus clusters
with high intra-cluster similarity and high inter-cluster deviation, where each cluster comprises a subset of look-alike
gallery candidates having similar attributes. A classifier is then employed to learn the supervised relationship between
each gallery image and its associated cluster. The procedure of consensus cluster formation and classifier learning is
enumerated below.

(a) We first apply the K-means clustering to partition the gallery set into K disjoint sets. It can be realized that
the choice of initial cluster centers, in K-means, greatly influences the resultant clusters. This issue is alleviated
following the principle of Central Limit Theorem (CLT), wherein the K-means clustering is performed sufficiently
large number of times (say T ) with random initialization of cluster centers. This operation yields a total of T ×K

clusters.

(b) We then apply the consensus based meta-graph clustering algorithm (MCLA) [26], an approach to re-cluster the
clusters, to merge the T ×K clusters into K consensus clusters {C1, C2, · · · , CK}.

(c) A classifier model is then built using support vector machine (SVM) of Gaussian kernel to learn the
relationship between the gallery feature vectors I = {I1, I2, · · · , IN} and their corresponding cluster labels
C = {C1, C2, · · · , CK}. This learned model has latter been used in the contemplation stage of the framework.

6



2.2.2 Weight assignment to each of the consensus cluster

This section analyses each feature channel relative to their contribution towards defining a cluster. We first apply
information gain principle to quantify each feature bin and subsequently modify with suitable aggregation for each
feature channel.

Let φ = (I, O) denotes the training pair with I as the gallery feature set (I = {I1, I2, · · · , IN}) and O as the
corresponding cluster labels. The label Oi for a consensus cluster Cj (j = 1, 2, · · · ,K) is made in congruent with the
following equation —

Oi =

{

1 if Ii ∈ Cj

0 otherwise
(1)

Each feature vector Ii is represented with d-attributes (Ii = {Iαi }, α = 1, 2, · · · , d). According to the principle of
information gain, the contribution of an attribute α with respect to a training pair φ can be expressed as —

l (φ, α) = H(φ)−
∑

e∈E(α)

(

|{Ii ∈ φ|Iαi = e}|

|φ|
·H (|{Ii ∈ φ|Iαi = e}|)

)

(2)

where H(φ) measures the entropy of the training set; E(α) denotes the set of all possible values of an attribute α.
The above expression yields a d-dimensional vector L = {l1, l2, · · · , ld} that signifies the relative contribution of each
feature attribute towards defining a consensus cluster. It can be observed that larger-contributory attributes highlight
the commonality among the images within a consensus cluster. In other words, the low contributory attributes are
more informative in distinguishing the images within the same cluster. Accordingly, while searching a probe within the
look-alikes of a consensus cluster, assignment of higher priority to attributes with low contribution becomes an obvious
choice. Hence the above vector L is complimented to represent the required weight vector W = {w1, w2, · · · , wd} as —

W = 1− L
/

d
∑

i=1

li (3)

The dense weight vector W of d-dimension needs to be further modified to quantify the contribution across feature
channels with f -dimension. This dense to coarse transformation is essential as the similarity measure, employed in
the Contemplation module, takes the cumulative result of correspondence across each feature channel. Accordingly, a
modified weight vector Q = {q1, q2, · · · , qf} of f -dimension is prepared by using the disjunctive aggregation (maximum)
over each of the corresponding b weights of the existing vector W . Mathematically,

qi = max({wt}) (4)

where t = {((i− 1)× b) + 1, ((i− 1)× b) + 2, · · · , ((i− 1)× b) + b}. Use of max operation to evaluate the disjunction of
properties means that the grading of the most satisfied property will reflect the global level of satisfaction.

2.3 Contemplation

In this module, the learned classification model, as discussed in Section 2.2.1, is employed to find a set of inlier consensus
clusters for a given probe. Then, a correlation based weighted similarity measure is applied to find the exact match
within the set of inlier clusters. The subsequent paragraphs detail both steps in sequel.

A probe feature vector is first subjected to the learned model that assigns a classification score to each of the K

consensus clusters; the probability of belongingness becomes higher as the classification score increases. Accordingly, the
probe is associated with the closest consensus cluster that yields the maximum score. However, the learned model may
not be 100% accurate. It may so happen that the desired gallery image may be available in another cluster which may
not yield the maximum score, however, comparable to it. Therefore, we need to select a set of inlier consensus clusters
with high classification scores, rather than only the closest one, where the probability of finding the match is very high.
We suggest an algorithm, based on the application of Z-Score labeling, to find the set of inlier clusters for a given probe,
enumerated in Algorithm 1.

The last step of our framework compares a given probe within the set of inlier clusters to find the best possible match.
We adapt the Quadratic-Chi histogram distance measure (χquad) [27] where the correlation of relative bin distribution
of a feature channel along with the bin-wise similarity is taken into consideration. In addition, the contribution of each
feature channel, in terms of weight, is incorporated in χquad to strengthen its ability in distinguishing look-alike gallery
candidates within the inlier clusters. Mathematically, the distance between a probe feature vector Ip = {U1, U2, · · · , Uf}
and gallery feature vector Ig = {V1, V2, · · · , Vf} is given by —

D (Ip, Ig) =

f
∑

i=1

qi · χquad (Ui, Vi) (5)
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Algorithm 1: Computation of inlier clusters

input : Set of K consensus clusters: C = {C1, C2, · · · , CK},
A probe feature vector Ip, and Classification model M.

output : A set of inlier consensus clusters C̃, where C̃ ⊂ C
1 C̃ ← φ; // Initialize C̃ with empty set

2 Apply probe feature vector Ip on classification model M that results in K classification scores S = {s1, s2, · · · , sK} with
respect to the set of consensus clusters C = {C1, C2, · · · , CK};

3 smax ← max (S); // Extract the maximum score from S

4 C̃ ← C̃ ∪ {Cj}, where sj == smax;

// include the cluster with maximum classification score in C̃
5 S ← S − {smax}; // Exclude smax from S
6 Create a vector A to store m random numbers (m ≥ 10) following a normal distribution with mean µ = Cj and standard

deviation σ = 1;
// A is a vector with no outlier samples

7 for i ← 2 to K, do

8 smax ← max (S); // Extract the next maximum score from S
9 Zµ,σ ← (smax − µ)/σ;

10 if |Zµ,σ| ≤ 2.5 then

// an empirical threshold of belongingness in Z-Score labeling

11 C̃ ← C̃ ∪ {Cj}, where sj == smax;
12 A← A ∪ {smax}; // include smax in A
13 S ← S − {smax};

14 else

15 break;

The probe that has the least distance D in the inlier gallery set is considered as the corresponding match.

3 Experiments and Analysis

The effectiveness of neuromorphic person re-identification framework (NPReId) is validated through an exhaustive set
of experiments on three standard datasets. The results are also compared with some of the state-of-the-art methods.
We also analyze the cases where our method does not produce satisfactory results. Prior to all these, we present a brief
overview on the datasets used in the experiments.

3.1 Datasets and state-of-the-art methods

Three benchmark datasets namely, Viewpoint Invariant Pedestrian Recognition (VIPeR, [24]), iLIDS Video
re-IDentification Dataset (iLIDS-VID, [16]), and Campus dataset (CUHK01, [25]), are used for the experimental
evaluation. The details of the datasets, including the number of images and the kind of challenges they pose, are
enumerated in Table 1. In addition, we compare the proposed NPReId framework with different sets of existing
methods across three different datasets; for each dataset, we select few state-of-the-art methods where the respective
articles implement the underlying dataset. The methods that we select for VIPeR dataset include LOMO+XQDA [8],
MLACM [6], eBiCov [5], CLSVM [7], MidLevel [13], LADF [11], ColorInv [4], SalMatch [15], Salience [14], KISSME [10],
PCCA [28], PRDC [9], CPS [3], SDALF [2], ELF [23], and PRSVM [29]. We have chosen the following methods
for the iLIDS-VID dataset: the supervised approach (MidLevel [13], PRDC [9]), unsupervised approach (Salience [14],
SalMatch [15], CPS [3])and multi-shot approaches (MS-SDALF [2], MS-Color+RSVM [16], MS-Color+LBP+RSVM [16]).
Similarly, the simulated methods chosen for CUHK01 dataset are: Semantic [17], ROCCA [18], PRRD [19], KML [12],
FUSIA [30], MidLevel [13], SalMatch [15], Salience [14], KISSME [10], PRDC [9], CPS [3], SDALF [2], LMNN [31], and
ITML [32].

The earmarked gallery images of each dataset is first split into K number of clusters using the K-means algorithm;
the biasness with the choice of cluster centers are alleviated by clustering sufficiently large number of times (T=200) with
random initialization of cluster centers. Then, the meta-graph clustering algorithm (MCLA) is applied to re-cluster the
T ×K clusters to a set of K consensus clusters. We experimentally set K = 10, 12, 13 for the VIPeR, iLIDS-VID, and
CUHK-01 datasets respectively. Few samples of consensus clusters across the three datasets are reflected in Figure 7, 8,
and 9; the appearance similarity among the members of each consensus cluster is very much apparent in these figures.
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Table 1: Simulated datasets including the number of images and underlying challenges

Name # images Resolution Challenges

VIPeR, [24]
1264

(632 image pairs)
128 × 48

Viewpoint variation
Illumination change

iLIDS-VID, [16]
600

(300 image pairs)
128 × 64

Illumination change
Similarity in clothing
cluttered background

Partial occlusion

CUHK01, [25]
1942

(971 image pairs)
160 × 60

Pose variations
Illumination change

1

2

3

4

5

C
lu

st
er

 in
de

x

Image instances 

6

7

8

9

10

Image instances 

C
lu

st
er

 in
de

x

Figure 7: Sample consensus clusters in VIPeR dataset with unlabeled pedestrians
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Figure 8: Sample consensus clusters in iLIDS-VID dataset with unlabeled pedestrians
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Figure 9: Sample consensus clusters in CUHK01 dataset with unlabeled pedestrians

3.2 Results analysis

Our experiments on the three datasets follow the evaluation protocol in [23]. We partition the dataset into two even
parts: 50% as the gallery set for training and 50% as the probe set for testing. We conduct a set of ten trials to create
ten different gallery sets and probe sets. In each trail, One of each image pair is randomly picked into the gallery set G
and the other to the probe set P . The average recognition rate over these ten trials is justified through the cumulative
matching characteristics (CMC) curve. CMC plots the recognition rate versus the rank; for example: Rank-r recognition
rate signifies the cumulative expectation of recognition rate of all ranks upto r. The CMC curves for VIPeR, iLIDS-VID,
and CUHK01 are plotted in Figures 10, 11, and 12 respectively. The tabular results of the proposed NPReId framework
along with the existing schemes are compared in Tables 2, 3, and 4.

Table 2: Recognition rates (%) on the VIPeR dataset with 316 image-pairs

Method r = 1 r = 5 r = 10 r = 20
NPReId 43.36 72.12 85.21 94.05
LOMO+XQDA [8] 40.00 68.90 81.50 91.10
MLACM [6] 34.87 59.27 70.19 81.77
eBiCov [5] 24.34 46.75 58.48 71.17
CLSVM [7] 17.09 38.61 52.53 68.35
MidLevel [13] 29.10 52.30 65.90 79.90
LADF [11] 29.30 61.00 76.00 88.10
ColorInv [4] 23.51 43.04 55.16 69.59
Salience [14] 26.31 46.60 58.86 72.77
SalMatch [15] 30.16 52.31 65.54 79.15
PCCA [28] 19.27 47.00 65.00 79.00
KISSME [10] 19.60 47.00 62.60 78.00
PRDC [9] 15.66 38.42 53.86 70.09
CPS [3] 21.84 44.00 57.21 71.00
SDALF [2] 19.87 38.90 49.37 65.73

It can be observed that the proposed NPReId framework, at rank-01 possesses atleast 43% recognition rate in case
of VIPeR and CUHK01 dataset, however limits to 35% only in iLIDS-VID dataset. The reduced performance rate is
attributed to more challenges in the latter case.

We further conduct a failure analysis to enumerate potential causes of false match.

(i) There could be some scenarios where human intelligence even fail to recognize a matched pair. An illustration of
such instances are well depicted in Figure 13. It may be observed that the appearance of an individual across the
disjoint camera views look completely different due to acute variation in pose and viewpoints.
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Table 3: Recognition rates (%) on the iLIDS-VID dataset with 150 image-pairs

Method r = 1 r = 5 r = 10 r = 20
NPReId 35.87 46.52 59.50 72.38
MS-color+RSVM [16] 16.40 37.30 48.50 62.60
MS-color+LBP+RSVM [16] 20.00 44.00 52.70 68.00
MS-SDALF [2] 5.10 19.00 27.10 37.90
MidLevel [13] 11.70 29.00 40.30 53.40
SalMatch [15] 8.01 24.80 35.40 52.90
Salience [14] 10.12 24.82 35.45 52.92
PRDC [9] 7.44 16.21 23.44 34.17
CPS [3] 7.32 15.31 21.52 30.20

(ii) Cluttered background in the bounding box of a pedestrian may lead to over-fitting. Therefore, a segmentation task
is often preferred to suppress the background content prior to feature encoding. In some extreme cases, where the
background and foreground are scarcely differentiable, the segmentation algorithm fails to extract the pedestrian
neatly as shown in Figure 13.

Our future work concentrates on addressing the above challenges. The issues of pose and viewpoint variation are inherent
to the single-shot domain. This can possibly be alleviated in the multi-shot environment, where the availability of
multiple images of each individual shall lead to a robust feature representation. Effectiveness of background suppression
is often limited by the poor resolution of the still images. Exploiting the motion cues in video frames may lead to better
segmentation of pedestrian images and thereby reducing the false match.

4 Conclusion

In this article, we present a neuromorphic framework, inspired by FACADE theory, to re-identify persons across disjoint
camera views. Our contribution concentrates on two major aspects — (i) discovering a set of complimentary cues
that strengthen the resulting feature descriptor, (ii) recovering a subset of gallery candidates with high probability
of retrieving the corresponding match. The proposed NPReID framework operates the above steps in sequel. The
Golden ratio principle of human analogy is applied to counter the problem with pose variation and partial occlusion,
where a pedestrian is partitioned into seven logical segments in a coarse to fine-manner. The efficacy of various feature
channels are first analyzed individually, and subsequently a complementary features combination is decided through an
exhaustive simulation across three benchmark datasets. An unsupervised procedure is suggested to partition the large
gallery set into a number of consensus clusters with high intra-cluster and low inter-cluster similarity. A classifier is
then employed to learn the association between each gallery feature vector and its corresponding consensus cluster. The

5 10 15 20 25

10

20

30

40

50

60

70

80

90

100
VIPeR Dataset

Rank

M
at

ch
in

g
 R

at
e

NPReId

SDALF

CPS

PRDC

Salience

SalMatch

KISSME

PCCA

LADF

ColorInv

MidLevel

eBiCov

CLSVM

MLACM

LOMO+XQDA

ELF

PRSVM

Figure 10: CMC curves for VIPeR dataset
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Table 4: Recognition rates (%) on the CUHK01 dataset with 485 image-pairs

Method r = 1 r = 5 r = 10 r = 20
NPReId 44.52 68.31 80.31 92.35
Semantic [17] 32.70 51.20 64.40 76.30
ROCCA [18] 29.77 51.22 66.02 76.70
PRRD [19] 31.10 51.00 68.55 79.18
KML [12] 24.00 38.90 46.70 55.40
FUSIA [30] 9.80 32.40 49.80 60.10
MidLevel [13] 34.30 50.00 64.96 74.94
SalMatch [15] 28.45 42.50 55.68 67.95
Salience [14] 15.10 25.40 31.80 40.90
KISSME [10] 8.40 25.10 38.70 50.20
PRDC [9] 12.53 23.40 32.50 42.55
CPS [3] 11.35 25.56 33.23 43.35
SDALF [2] 9.90 22.60 30.30 41.00
LMNN [31] 13.45 28.50 42.25 54.11
ITML [32] 15.98 32.50 45.60 59.81

(a) (b)

Figure 13: (a) Image-pairs with drastic pose and viewpoint variations, (b) Image-pairs with improper background removal

learned model together with Z-score labelling is utilized to assign a reduced subspace of inlier clusters for a given probe.
The principle of information gain is then suitably formulated to quantify each feature channel. The informative attributes
are then incorporated in a correlation based distance measure to re-identify a probe within the look-alike inlier clusters.
The tabular results alongside the performance curves on three benchmark datasets demonstrate the superiority of the
proposed method over its counterparts.
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