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Abstract

We propose a novel dynamic slicing technique for distributed Java programs. We
first construct the intermediate representation of a distributed Java program in the form
of a set of Distributed Program Dependence Graphs (DPDG). We mark and unmark the
edges of the DPDG appropriately as and when dependencies arise and cease during run-
time. Our algorithm can run parallely on a network of computers, with each node in the
network contributing to the dynamic slice in a fully distributed fashion. Our approach
does not require any trace files to be maintained. Another advantage of our approach
is that a slice is available even before a request for a slice is made. This appreciably
reduces the response time of slicing commands. We have implemented the algorithm in
a distributed environment. The results obtained from our experiments show promise.
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object-oriented program, multithreading, Java, distributed programming,.

1 Introduction

As software applications grow larger and become more complex, program maintenance activi-
ties such as adding new functionalities, porting to new platforms, and correcting the reported
bugs consume enormous effort. This is especially true for distributed object-oriented pro-
grams. In order to cope with this scenario, programmers need effective computer-supported
techniques for decomposition and dependence analysis of programs. Program slicing is one
technique for such decomposition and dependence analysis. A program slice with respect to
a specified variable v at some program point P consists of those parts of the program which
potentially affect the value of v at p. The pair < v,p > is known as the slicing criterion. A
static slice is valid for all possible executions of a program, while a dynamic slice is mean-
ingful for only a particular execution of a program [1,2]. Program slicing has been found to
be useful in a variety of applications such as debugging, program understanding, testing and
maintenance [3-9].

Many real life object-oriented programs are distributed in nature and run on different
machines connected to a network. The emergence of message passing standards, such as
MPI, and the commercial success of high speed networks have contributed to making mes-
sage passing programming common place. Message passing programming has become an
attractive option for tackling the vexing issues of portability, performance, and cost effec-
tiveness. As distributed computing gains momentum, development and maintenance tools
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for these distributed systems seem to gain utmost importance.

Development of real life distributed object-oriented programs presents formidable chal-
lenge to the programmer. It is usually accepted that understanding and debugging of dis-
tributed object-oriented programs are much harder compared to those of sequential programs.
The non-deterministic nature of distributed programs, lack of global states, unsynchronized
interactions among threads, multiple threads of control and a dynamically varying number
of processes are some reasons for this difficulty. An increasing amount of effort is being spent
in debugging, testing and maintaining these products. Slicing techniques promise to come
in handy at this point. Through the computation of a slice for a message passing program,
one can significantly reduce the amount of code that a maintenance engineer has to ana-
lyze to achieve some maintenance tasks. However, research attempts in program slicing area
have focused attention largely on sequential programs. Many research reports addressed ef-
ficient handling of data structures such as arrays, pointers etc. in the sequential framework.
Attempts have also been made to deal with unstructured constructs like goto, break etc.
Although researchers have reported extension of the traditional concept of program slicing
to static slicing of distributed programs, dynamic slicing of distributed object-oriented pro-
grams has scarcely been reported in the literature.

Any effective dynamic slicing technique for distributed object-oriented programs needs to
address the important concepts associated with object-oriented programs such as encapsula-
tion, inheritance, message passing and polymorphism etc. This poses new challenges during
slice computation which are not encountered in traditional program slicing and render rep-
resentation and analysis techniques developed for imperative language programs inadequate.
So, the object-oriented features need to be considered carefully in the process of slicing.

We have already mentioned that object-oriented programs are often large. Therefore, to
be practically useful in interactive applications such as debugging, program traces should
be avoided in the slicing process. Maintaining execution traces become unacceptable due to
slow I/O operations. Further, to be useful in a distributed environment, the construction of
slices should preferably be constructed in a distributed manner. Each node in a distributed
system should contribute to the slice by determining its local portion of the global slice in a
fully distributed fashion.

Keeping the above identified objectives in mind, in this paper we propose an algorithm
for computing dynamic slices of distributed Java programs. Though we have considered only
Java programs, programs in any other language can be handled by making only small changes
to our algorithm. We have concentrated only on the communication and concurrency issues
in Java. Standard sequential and object-oriented features are not discussed in this paper, as
these are easily found in the literature [10-14]. For example, Larson and Harrold [10] have
discussed the techniques to represent the basic object-oriented features. Their technique can
easily be incorporated into our algorithm to represent the basic object-orientation features.

We have named our proposed algorithm distributed dynamic slicing (DDS) algorithm for
Java programs. To achieve fast response time, our algorithm can run in a fully distributed
manner on several machines connected through a network, rather than running it on a cen-
tralized machine. We use local slicers at each node in a network. A local slicer is responsible
for slicing the part of the program executions occurring on the local machine.

Our algorithm uses a modified program dependence graph (PDG) [15] as the intermedi-
ate representation. We have named this representation distributed program dependence graph
(DPDG). We first statically construct the DPDG before run-time. Our algorithm marks and
unmarks the edges of the DPDG appropriately as and when dependencies arise and cease
during run-time. Such an approach is more time and space efficient and also completely does
away with the necessity to maintain a trace file. This eliminates the slow file I/O operations
that occur while accessing a trace file. Another advantage of our approach is that when a
request for a slice for any slicing criterion is made, the required slice is already available.



This appreciably reduces the response time of slicing commands.

The rest of the paper is organized as follows. In section 2 we present some basic concepts
and definitions that will be used in our algorithm. In section 3, we discuss the intermedi-
ate program representation: distributed program dependence graph (DPDG). In section 4,
we present our distributed dynamic slicing (DDS) algorithm for distributed object-oriented
programs. In section 5, we briefly present an implementation of our algorithm. In section 6,
we compare our algorithm with related algorithms. Section 7 concludes the paper.

2 Basic Concepts

Before presenting our dynamic slicing algorithm, we first briefly discuss the relevant features
of Java. Then, we introduce a few basic concepts and definitions that would be used in our
algorithm. In the following discussions and throughout the rest of the paper, we use the
terms a program statement, a node and a vertex interchangeably.

2.1 Concurrency and Communication in Java

Java supports concurrent programming using threads. A thread is a single sequential flow
of control within a program. A thread is similar to a sequential program in the sense that
each thread also has a beginning, an execution sequence and an end. Also, at any given time
during the run of a thread, there is a single point of execution. However, a thread itself is
not a program; it can not run on its own. To support thread programming, Java provides a
Thread class library, which defines a set of standard operations on a thread such as start(),
stop(), join(), suspend(), resume() and sleep() etc. [16].

Java supports communication among threads both through shared memory and message
passing. Objects shared by two or more threads are called condition variables. Access to these
variables must be synchronized for the proper working of the system. The Java language and
run-time system support thread synchronization through the use of monitors. A monitor is
associated with a specific data item and functions to lock that data. When a thread holds
the monitor for some data item, other threads can not inspect or modify the data. The
code segments within a program that access the same data from within separate threads are
known as critical sections. In Java programs, critical sections need to be marked with the
keyword synchronized for synchronized access to shared data. Java provides the methods
wait(), notify(), and notifyall() to support synchronization among different threads [16].

When a thread needs to send a message to another thread, it calls the method getOut-
putStream(). To receive a message, the receiving thread calls the method getInputStream().
Java provides sockets to support distributed programming among component programs run-
ning on different machines. By using the key word Socket, a client program can specify the
ip address and the port number of a sever program with which it wants to communicate [16].

A distributed object-oriented program P = (Py, Ps,...,P,) is a collection of concurrent
individual programs P; such that each of the P;’s may communicate with other programs
through the reception and transmission of messages. We refer to the individual programs P;
as the component programs. We assume asynchronous (non-blocking) send and synchronous
(blocking) receive message passing among component programs, in our DDS algorithm. How-
ever, other models can easily be considered through minor alterations to our proposed algo-
rithm. Each component program may contain multiple threads. We assume use of sockets for
message passing among threads of different component programs, and assume use of shared
objects for message passing among different threads within a single component program.

We assume that the number of nodes on which a distributed object-oriented program
runs, is predefined. We make no assumptions on the order in which messages arrive at the
destination once they are sent. The only assumption we make is that messages sent by



one thread to another are received in the same order as dispatched by the sending thread.
However, messages sent concurrently from different threads to one thread may arrive in any
arbitrary order. All messages that arrive at a thread are collected in a message queue. A
thread executing a getInputStream() call removes the oldest message that is available at the
front of the queue. The receiving thread waits for the sending thread to put a new entry in
the queue, if the queue is empty. Here, communication is non-deterministic in the sense that,
the receiving thread continues with its execution by selecting whichever message arrives first.

We explain the message passing mechanism in distributed Java programs by taking a
sample distributed Java program. We subsequently use the example program to explain the
notations we have used in our algorithm. We construct the intermediate representation of
this example program in the next section. Finally, we use this example program to explain
the working of our proposed algorithm.

Let us consider the distributed Java program shown in Fig. 1 and Fig. 2. In this ex-
ample, Fig. 1 represents a client program and Fig. 2 represents a server program. The
client program specifies the IP address of the machine where the server program runs and
the port number for connection. The client program reads the value of the integer variable z
from the key board and performs some arithmetic computations using it. Then, it sends the
results of the computation to the server program through a socket. The client program in
Fig. 1 contains one thread called clthd. The server program in Fig. 2 contains two threads
threadl and thread2. We distinguish the threads by assigning unique thread-ids to each of
the threads. The thread thread receives the result sent by the client program and performs
some arithmetic computations. Then, thread! sends the results to thread2 through a shared
object obj. The thread thread?2 performs some computations using the shared object 0bj and
sends the results to the client program through a socket. Using this result, the client program
performs the final computations and displays the computed value.

1. class clthd extends Thread {

2. BufferedReader rcvmsg;

3. PrintWriter sendmsg;

4. BufferedReader in=new BufferedReader(new InputStreamReader(system.in));

5. Socket socket;

6. public void run() {

7 socket=new Socket("10.5.18.49",1500); // connecting to server at given ip and port no.s
8. sendmsg=new PrintWriter(socket.getOutputStream()); // declaration of sendmsg

9.  rcvmsg=new BufferedReader(new InputStreamReader (socket.getInputStream())); // declaration
10.  String s=in.readLine();

11.  int x=Integer.parselnt(s);

12. intz,q,y=15;
13, if(x>y)
14. Z=X-Y;
else
15. Z=X+Y;
16. sendmsg.println(z); // sending value of z to server
17.  System.out.println("value of z is: "+z);
18.  String msgfrom_server=rcvmsg.readLine(); /I receiving value from server
19. int p=Integer.parselnt(msgfrom_server);
20. if(p>x)
21. q=p-X;
else
22. qQ=p+X;

23. System.out.println("total is: "+q);

}
24. public class client {
25.  public static void main(String args[]) {
26. clthd t=new clthd();
217. t.start();

}
}

Figure 1: An Example Client Program
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class shar {

int s;
boolean flag=true;
synchronized public void put(int ¢) {
$=C;
notify();
flag=false;
}
synchronized public int get() {
if(flag==true)
wait();
. returns;
}
}
. class threadl extends Thread {
BufferedReader rcvmsg;
PrintWriter sendmsg;

Socket serv_socket;
int b,c;
shar obj; /I declaration for shared object

BufferedReader o=new BufferedReader(
new InputStreamReader(System.in));
public thread1(Socket req,BufferedReader in,
PrintWriter out,shar ob) {
serv_socket=req;
sendmsg=out;
revmsg=in;
obj=ob;
}
public void run() {
String msg=rcvmsg.readLine(); // receiving message from client prog
int a=Integer.parselnt(msg);
System.out.println("received from client is: "+a);
String mss=o.readLine();
int b=Integer.parselnt(mss);
if(a>b)
c=a-b;
else
c=a+b;
obj.put(c); //sending the value of ¢ to thread2
System.out.println("thd1: "+c);

. class thread2 extends Thread {
BufferedReader revmsg;
PrintWriter sendmsg;
Socket serv_socket;
shar obj; // declaration for shared object
BufferedReader o=new BufferedReader(
new InputStreamReader(System.in));
public thread2(Socket req,BufferedReader in,
PrintWriter out,shar ob) {
serv_socket=req;
sendmsg=out;
revmsg=in;
obj=ob; }
public void run() {
int e,g,f=10;
e=obj.get(); //receiving the value from thread1l
if(e>f)
g=e—f;
else
g=e+f;
sendmsg.printin(g); } } //sending value of g to client
. public class syn_server {
public static void main(String args[]) {
ServerSocket serv_socket;
BufferedReader revmsg;
PrintWriter sendmsg;
shar obj=new shar();
serv_socket=new ServerSocket(1500); // creating a new port
Socket socket=serv_socket.accept(); // accepts client
sendmsg=new PrintWriter(socket.
getOutputStream(),true); // declaration for sendmsg
revmsg=new BufferedReader(new
InputStreamReader(socket.getInputStream())); // declaration for rcvmsg
threadl tl1=new threadI(socket,input,output,obj);
thread] t2=new thread2(socket,input,output,obj);
tl.start();
t2.start();
1)

Figure 2: An Example Server Program



2.2 Notations and Terminologies

We now introduce a few terms and notations which would be used through out the rest of
the paper.

D1. Precise Dynamic Slice. A dynamic slice is said to be precise iff it includes only those
statements that actually affect the value of a variable at a program point for the given execu-
tion. It is very difficult to determine whether a given slice is precise or not since determining
a precise slice is an undecidable problem [17]. However, using the notion of a precise slice,
we can determine whether a given slice is more precise than another for most cases excepting
a few pathogenic cases.

D2. Correct Dynamic Slice. A dynamic slice is said to be correct iff it contains all the state-
ments of the program that affect the slicing criterion. A dynamic slice is said to be incorrect
iff it fails to include some statements of the program that affect the slicing criterion. Note
that the whole program is always a correct slice for any slicing criterion. A correct slice is im-
precise if and only if it contains at least one statement that does not affect the slicing criterion.

D3. def(var). Let var be an instance variable in a class in an object-oriented program. A
node z is said to be a def(var) node, if z represents a definition for the variable var.
In Fig. 1 the node 14 is a def(z) node.

D4. defSet(var). The set defSet(var) denotes the set of all def(var) nodes.
In Fig. 1 defSet(z) = {14,15}.

D5. use(var) node. Let var be a variable defined in a class in an object-oriented program.
A node z is said to be a use(var) node, iff it uses the variable var.
In Fig. 1, node 17 is a use(z) node.

D6. recentDef(thread, var). Let s be a def(var) node of a component program P;. Let p; and
pj be threads in P; . Then, recentDef(p;,var) represents the most recent definition of the
variable var available to the thread p;. Further, recentDef(p;,var) = (p;,s) indicates that
the most recent definition of the variable var in thread p; is also the most recent definition
of the variable var with respect to thread p;. p; may or may not be same as p;, and the
variable var can either be a local or a shared variable.

D7. Distributed Control Flow Graph (DCFG). A distributed control flow graph (DCFG) G
of a component program P; of a distributed program P = (Py,...,P,) is a flow graph (N,
E, Start, Stop), where each node n € N represents a statement of P;, and each edge e € E
represents potential control transfer among the nodes. Nodes Start and Stop are two unique
nodes representing entry and exit nodes of the component program P; respectively. There is
a directed edge representing a control flow from node a to node b if control may flow from
node a to node b.

D8. Post Dominance. Let x and y be two nodes in a CCFG G. Node y post dominates node
z iff every directed path from x to stop passes through y.

D9. Control Dependence. Let G be a DCFG and z be a test (predicate) node. A node y is
said to be control dependent on a node z iff there exists a directed path D from z to y such
that

1. y post dominates every node z # z in D.

2. y does not post dominate .

D10. Data Dependence. Let z be a def(var) node and y be a use(var) node in a DCFG G.
A node y is said to be data dependent on a node z, iff there exists a directed path D from z



to y such that there is no intervening def(var) node in D.

D11. Thread Dependence. For a DCFG G, let z be the node representing the run() state-
ment of thread p;. A node y is said to be thread dependent on z, iff there exists a directed
path D from z to y such that none of the nodes in D is a run node.

D12. Synchronization Dependence. A statement y in a thread is synchronization dependent
on a statement z in another thread, iff execution of y is dependent on execution of z due to
a synchronization operation.

Let y be a wait() node in thread ¢; and z be the corresponding notify() node in thread
to. Then the node y is said to be synchronization dependent on node z. For example, in Fig.
2, node 10 represents a wait() call (which is invoked in thread2) and node 6 represents the
corresponding notify() call (which is invoked in threadl). So, in Fig. 2, node 10 is synchro-
nization dependent on node 6.

D13. Communication Dependence. In a Java program two types of communication depen-
dencies may exist. We restrict communication dependency among threads belonging to the
same component program to be only S-Communication dependence type. Whereas commu-
nication dependency among threads belonging to different component programs is termed as
M-Communication dependence type. In S-Communication dependence, shared memory may
be used to support communication among threads. In this type, two threads exchange data
via shared objects. In M-Communication dependence, communication among threads occurs
through sockets.

S-Communication Dependence. For two threads belonging to the same component pro-
gram, a statement y in one thread is S-Communication dependent on a statement z in another
thread, if the value of an object defined at z is directly used at y through inter thread com-
munication.

Let z be a def(var) node in a shared object present in a component program Py and let
y be the corresponding use(var) node in the same shared object. Then node y is said to be
S-Communication dependent on node z. For example in Fig. 2, node 9 represents a use(flag)
node (which is used in thread2) and node 7 represents the corresponding def(flag) node (in
threadl). So, in Fig. 2, node 9 is S-Communication dependent on node 7. Similarly, node 11
(in thread?2) is S-Communication dependent on node 5 (in threadl). Note that both threadl
and thread2 belong to the same component program.

M-Communication Dependence. In a component program Py, let 2 be a node representing
a statement which invokes a getOutputStream() method and y be the corresponding node
representing a statement which invokes a getInputStream() method in another component
program P». Let both P; and P» use the same socket for communication. Then, the node y
is said to be M-Communication dependent on node z. For example in Fig. 1, node 18 repre-
sents a statements which invokes a getInputStream() method. Node 52 in Fig. 2 represents
the statement which invokes the corresponding getOutputStream() method. So, node 18 of
Fig. 1 is M-Communication dependent on node 52 of Fig. 2.

3 Intermediate Representation

In this section, we introduce an intermediate representation for distributed Java programs.
We have named our intermediate representation Distributed Program Dependence Graph
(DPDG). We use this representation to compute dynamic slices of distributed Java pro-
grams. We first discuss some issues that must be addressed to be able to accurately capture
the dependencies existing in a distributed program, we then introduce our DPDG, and finally
explain how it can be constructed.



The intermediate representation for a concurrent object-oriented program on a single ma-
chine can be constructed statically as in [18]. But, this intermediate representation can not
be used to accurately model a distributed object-oriented program where true concurrency
exists among the different threads running on different machines. For distributed object-
oriented programs, we can have communication dependency among threads running on dif-
ferent machines. A getInputStream() call executed on one machine, might have a pairing
getOutputStream() on some other remote machine. To represent this aspect, we introduce a
logical(dummy) node in the DPDG. We call this logical node as a C-node. In the following,
we define a C-node.

D14. (C-Node. Let Gp, and Gp, be the DPDGs of two component programs P; and P,
respectively. Let 2 be a node in G p, representing a statement invoking a getOutputStream()
method. Let y be a node in Gp, representing the statement invoking the corresponding
getInputStream() method. A C-Node represents a logical connection of the node y of DPDG
Gp, with the node z of the remote DPDG Gp,. Node z represents the pairing of getOut-
putStream() with a getInputStream() call at node y. Node y is M-Communication dependent
on node z.

As an example consider node 18 in Fig. 3 and node 25 in Fig. 4 which represent state-
ments invoking getInputStream() methods. At those nodes, the messages sent by the sending
threads (e.g. from statement 52 in Fig. 2 and from statement 16 in Fig.1, respectively),
are received. So, the algorithm associates C-nodes C(18) and C(25) at nodes 18 and 25
respectively. Node 18 is M-communication dependent on node C(18) and node 25 is M-
communication dependent on node C(25) due to message passing.

The C-nodes maintain the logical connectivity among DPDGs representing different com-
ponent, programs. We therefore call them logical nodes. A C-node does not represent any
specific statement in the source code of a component program. Rather, it encapsulates the
triplet < send_TID, send_node_number, dynamic_slice_at_send_node > representing the pair-
ing of the components in a distributed program. Here, send_TID represents the id of the
thread sending the message, send_node_number represents the particular label number of the
statement sending the message and dynamic_slice_at_send_node represents the dynamic slice
at the sending node. C-nodes capture communication dependencies among the threads of
different component programs. Since C-nodes are not mapped to any specific program state-
ment, we call them dummy nodes.

In case of inter-thread communication through sockets, the triplet
< send_TID, send_node_number, dynamic_slice_at_send_node > should be made available on
the C-node C(z) corresponding to the getInputStream() node z of the DPDG. For this,
the thread executing a getOutputStream() call needs to perform the following. The thread
passes the message to be sent to the slicer. The slicer piggybacks this triplet on the message.
Whenever any thread executes a getInputStream() call, the slicer extracts the triplet from the
message in the message queue and passes the actual message to the receiving thread. Thus
the slicer updates the information on C-nodes and establishes the communication dependency.

It may be noted that the number of C-nodes in the DPDGs of a distributed Java program,
equals the number of getInputStream() calls present in the program. In the DPDG, for a
getInputStream() node z, the corresponding C-node is represented as C(z).

Using the discussed terminology and concepts, we can now define a Distributed Program
Dependence Graph (DPDG). Let P = (P,..., P,) be a distributed Java program, and P; be
a component program of P. P is represented using a set of DPDGs (Gp,,...Gp, ). The dis-
tributed program dependence graph (DPDG) Gp, of the component-program P; is a directed
graph (Np,, Ep,) where each node n (excepting the dummy nodes) represents a statement
in P;. For z, y € Np,, (v,x) € Ep, iff any one of the following holds:

1. y is control dependent on z. Such an edge is called a control dependence edge.



2. y is data dependent on z. Such an edge is called a data dependence edge.
3. y is thread dependent on x. Such an edge is called a thread dependence edge.

4. y is synchronization dependent on z. Such an edge is called a synchronization depen-
dence edge.

5. y is communication dependent on x. Such an edge is called a communication dependence
edge.

For all the nodes x, representing getInputStream() calls, in the component program P;, a
dummy node C(z) is created, and a corresponding dummy M-Communication edge (x, C(x))
is added.

A Distributed Program Dependence Graph (DPDG) captures the basic thread structure
of a distributed Java program component along with it’s run-time behavior. Thus a DPDG
represents dynamic thread creation, synchronization of threads, and inter-thread communica-
tion using message passing. This graph contains the information available from other remote
slicers by having additional logical nodes(C-nodes). A DPDG can contain nine different types
of nodes. In the following, we list these types of nodes:

1. a def (assignment) node represents a statement defining a variable,

2. a use node represents a statement using a variable,

a predicate node represents a statement containing an if construct,

a run node represents a statement containing a run() statement,

a notify node represents a statement containing a notify() method call,

a wait node represents a statement containing a wait() method call,

a getInputStream() node represents a statement invoking a getInputStream() method,

getOutputStream() node represents a statement invoking a getOutputStream() method,

© ® NS o W

a C-node is a dummy node associated with the getInputStream() node, and repre-
sents its logical connection with the corresponding getOutputStream() node of a remote
DPDG.

The DPDGs of the example programs given in Fig. 1 and 2 are shown in Fig. 3 and
4 respectively. In these figures circles represent program statements and ellipses represent
the C-nodes. Edges represent the various dependencies existing among program statements.
Since, the S-communication dependence and M-communication dependence are handled in a
similar fashion in our DDS algorithm, so we have used the same notations (dashed-dot edge)
to represent them in the DPDG.

It can be observed that control dependencies do not vary with the choice of input values
and hence can be determined statically at compile time. We refer to control dependencies as
static dependencies. The dependencies arising due to data definitions, statements appearing
under the scope of selection and loop constructs, inter-thread synchronization and inter-
thread communication are handled at run-time after execution of every statement. These
dependencies are dynamic dependencies and have to be handled appropriately at run-time.

4 Distributed Dynamic Slicing (DDS) Algorithm

In this section, we first briefly explain our DDS algorithm. Subsequently, we illustrate the
working of our algorithm through an example. Next, we investigate the space and time
complexities of the DDS algorithm.
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Figure 4: DPDG of the Example Server Program of Fig. 2

4.1 Overview of DDS Algorithm

We now provide a brief overview of our dynamic slicing algorithm. Before execution of a
distributed Java program P = (Py,...,P,), the DCFG of each component program P; is
constructed statically. Next, we statically construct the DPDG of each component program
P; from the corresponding DCFG. During execution of a component program P;, we mark
an edge of the DPDG when its associated dependence exists, and unmark the edge when its
associated dependence ceases to exist [19]. Since control dependencies do not change dur-
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ing run-time, we permanently mark the control dependence edges. We consider all the data
dependence edges, thread dependence edges, synchronization dependence edges and commu-
nication dependence edges for marking and unmarking. We support communication to occur
across different machines. The following activities are explicitly carried out in our DDS algo-
rithm to capture this communication. Inter-machine communication is captured at run-time
by adding C-nodes in the DPDG. The addition of C-nodes in the DPDG takes care of any
communication dependency that might exist at run-time between communicating threads on
different machines.

Whenever a statement invoking a getInputStream() method is executed during a run
of the program, the slicer checks the message queue for availability of any message from
any communicating thread. It then extracts the triplet < send TID, send-node_-number,
dynamic_slice_at_send_node > that was piggybacked on the actual message. Then, the slicer
updates the information on the C-node regarding the execution of the pairing getOutput-
Stream() node in some thread on a remote or a local machine.

We compute the dynamic slice of a distributed Java program with respect to a distributed
slicing criterion. We define a distributed slicing criterion for a component program P;, as a
triplet < p,u,var >, where u is the statement of interest in thread p and var is a variable
used or defined at statement u. During execution of the component program P;, let Dy-
namic_Slice (p, u, var) with respect to the distributed slicing criterion < p, u,var > denote
the dynamic slice with respect to variable var in the most recent execution of the statement
w in thread p. Let (z1,u),..., (xx,u) be all the marked incoming dependence edges of u in
the updated DPDG after an execution of the statement u. Then, we define the dynamic slice
with respect to the present execution of the statement u, for the variable var in thread p as

Dynamic Slice(p, u, var) ={(p,z1),.-.,(p,zx)} U Dynamic_Slice(p,z1,var) U ... U
Dynamic_Slice(p, zy,, var).

Let {var_1, var_2, ..., var_k} be the set of all the variables used or defined at a statement
u in some thread p. Then, we define dynamic slice of the statement u as

Dynamic_Slice(p, u) = Dynamic_Slice(p,u,var_1) U Dynamic_Slice(p,u,var2) U ... U
Dynamic_Slice(p, u,var_k).

Our slicing algorithm operates in the following three main stages:

Stage 1: Construct the intermediate program representation graph statically
Stage 2: Manage the DPDG at run-time
Stage 3: Compute the required dynamic slice

In the first stage, the DCFG of each component program P; is constructed from a static
analysis of the source code. Also, in this stage the static DPDG is constructed using the
DCFG. The stage 2 of the algorithm handles run-time updations and is responsible for main-
taining the DPDG as the program execution proceeds. The maintenance of the DPDG at
run-time involves marking and unmarking the different dynamic dependencies as they arise
and cease, and creating nodes for dynamic creation of threads, objects, etc. Stage 3 is respon-
sible for computing the dynamic slices for a given slicing criterion using the DPDG. Once a
slicing criterion is specified, our DDS algorithm immediately displays the dynamic slice with
respect to the slicing criterion by looking up the corresponding Dynamic_Slice computed
during run time.

To achieve fast response time, our DDS algorithm parallely runs on several machines
connected through a network. For this purpose, we use local slicers at each remote machine.
Our slicing algorithm in effect operates as the coordinated activities of local slicers running
at the remote machines. Each local slicer contributes to the dynamic slice by determining
its local portion of the global slice in a fully distributed fashion. We now present our DDS
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algorithm for distributed Java programs in pseudo-code form.

Algorithm: Distributed Dynamic Slicing (DDS) algorithm.
Input: Slicing Criterion < p, u,var >
Output Dynamic_ Slice(p, u, var)

Stage 1: Constructing Static Graphs

1. DCFG Construction

(a) Node Construction

i. Create two special nodes start and stop
ii. For each statement s of the sub-program P; do the following:
A. create a node s

B. Initialize the node with its type, list of variables used or defined, and its scope.
(b) Add control flow edges

for each node x do the following
for each node y do the following

Add control flow edge (y, x) if control may flow from node y to node x.

2. DPDG Construction

(a) Add control dependence edges
for each test(predicate) node u, do
for each node x in the scope of u, do
Add control dependence edge (u, x) and mark it.
(b) Add data dependence edges
for each node x, do
for each variable var used at x, do
for each reaching definition u of var, do
Add data dependence edge (u, x) and unmark it.
(c) Add thread dependence edges

for each run node u, do
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Add thread dependence edge (u, x) for every node x that is thread dependent
on u and unmark it.

(d) Add synchronization dependence edges
for each wait node x in thread ¢;, do
for the corresponding notify node u in thread t;, do
Add synchronization dependence edge (u, x) and unmark it.
() Add S-Communication dependence edges
for each use(var) node x in thread ¢, do
for the corresponding def(var) node u in thread t2, do
Add S-Communication dependence edge (u, x) and unmark it.
(f) Add M-Communication dependence edges

for each getlnputStream() node u, do

Add a C-node C(u)
Add M-Communication dependence edge (u, C(u)) and unmark it.

Stage 2: Managing the DPDG at run-time

1. Initialization: Do the following before execution of each of the component program P; at
the corresponding local slicers:

(a) Set Dynamic_slice(NULL, u, var) = ¢ for every variable var used or defined at every
node u of the DPDG.

(b) Set recentDef(NULL, var) = ¢ for every variable var in P;.
(c) Set message queue = ¢.

(d) Set < send TID,send node_number,dynamic_slice_at_send_node > = NULL for
every C-node C(x).
//end of initialization

2. Runtime Updations: Run the component programs parallely. For a component program
P;, carry out the following at the corresponding local slicer after each statement (p, u) of
P; is executed:

(a) Unmark all incoming marked dependence edges to (p,u) excluding the control depen-
dence edges, if any, associated with the variable var, corresponding to the previous
execution of the node w.
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(b) Update data dependencies: For every variable var used at node (p,u), mark the data
dependence edge corresponding to the most recent definition recentDef(p, var) of the
variable var.

(c) Update thread dependencies: For every node u, mark the thread dependence edge
between the most recently executed run node and the node (p,u).

(d) Update synchronization dependencies: If u is a wait node, then mark the incoming
synchronization dependence edge corresponding to the associated notify node.

(e) Update S-Communication dependencies: If u is a use(var) node in thread t1, then
mark the incoming S-Communication dependence edge, if any, from the corresponding
def(var) node in thread t2.

(f) Update M-Communication dependencies: If (p,u) is a getinputStream() node, then
mark the incoming M-Communication dependence edge, if any, from the correspond-
ing C- node C(u).

(g) Update dynamic slice for different dependencies:

i. Handle data dependency:
Let {(di,u),...,(d;,u)} be the set of marked incoming data dependence edges
to u in thread p. Then,
Dynamic_Slice(p,u) ={(p,d1), .. ., (p, d;) }UDynamic_Slice(p, d1)U. . .UDynamic_Slice(p, d;),
where dy,dy, ..., d; are the initial vertices of the corresponding marked incoming
edges of u.

ii. Handle control dependency:
Let (¢, u) be the marked control dependence edge. Then,
Dynamic_Slice(p,u) =Dynamic_Slice(p,u) U {(p, ¢)} U Dynamic_Slice(p, c).

iii. Handle thread dependency:
Let t, u be the marked thread dependence edge. Then,
Dynamic_Slice(p,u) =Dynamic_Slice(p,u) U {(p,t)} U Dynamic_Slice(p,t).

iv. Handle synchronization dependency:
Let u be a notify node in thread p and s be a wait node in thread pl. Let s, u
be the marked synchronization dependence edge.Then,
Dynamic_Slice(p,u) =Dynamic_Slice(p,u) U {pl, s} U Dynamic_Slice(pl, s).

v. Handle S-Communication dependency:
Let u be a use(var) node in thread p and (z, u) be the marked S-Communication
dependence edge from the corresponding def(var) node z in thread p;. Then,
Dynamic_Slice(p,u) =Dynamic_Slice(p,u) U{(pl, z) } U Dynamic_Slice(pl, z).

vi. Handle M-Communication dependency:
Let u be a getlnputStream() node and (u, C(u)) be the marked communication
dependence edge associated with the corresponding C-node C(u). Then,
Dynamic_Slice(p,u) =Dynamic_Slice(p, u)U{(p, C(u)) }UDynamic_Slice(p, C(u)).

Stage 3: Computing dynamic slice for a given slicing criterion

1. Dynamic Slice Computation:
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(a) For every variable var used at node u in thread p of the component program P;, do
Let (d,u) be a marked data dependence edge corresponding to the most recent defi-
nition of the variable var,(c,u) be the marked control dependence edge, (s,u) be the
marked synchronization dependence edge, (t,u) be the marked thread dependence
edge,(z,u) be the marked S-Communication dependence edge, and (C(u),u) be the
marked M-Communication dependence edge. Then,
Dynamic_Slice(p, u, var) = {(p, d), (p, ), (pL, 5), (p, 1), (pL, 2), (p, C(u)) }uDynamic_Slice(p, d)U
Dynamic_Slice(p, c)UDynamic_Slice(p, s)UDynamic-Slice(p, t)UDynamic_Slice(pl, z)U
Dynamic_Slice(p, C(u))
//p, pl may be different threads.

(b) For a variable var defined at node u, do
Dynamic_Slice(p, u, var) = Dynamic_Slice(p, u).

2. Slice Look Up:

(a) If a slicing command < p,u,var > is given for a component program P;, carry out
the following:

i. Look up Dynamic_Slice(p, u, var) for the content of the slice.
ii. Display the resulting slice.

(b) If the program has not terminated, go to step 2 of Stage 2.

Working of the DDS Algorithm

We illustrate the working of the algorithm with the help of an example. Consider the dis-
tributed Java program given in Fig. 1 and 2. The threads in the client and server programs
are identified by unique thread-ids. Let the thread-id of the clthd in Fig. 1 be 1001, the
thread-id of thd! in Fig. 2 be 2001 and the thread-id of thd2 in Fig. 2 be 2002. The updated
DPDGs are obtained after applying stage 2 of the DDS algorithm and are shown in Fig. 5
and Fig.6. Let us compute the dynamic slice with respect to variable ¢ at statement 23 of the
thread clthd in the client program (Fig. 1). This gives us the slicing criterion < 1001,23, ¢ >
in the client program. With input data s = 20 in the client program in Fig. 1 and b =2 in
the server program in Fig. 2, we explain how our DDS algorithm computes the dynamic slice.

During the initialization step, our algorithm first unmarks all the edges of the DPDG and
sets Dynamic_Slice(p, u, var) = ¢ for every node u of the DPDG. The algorithm has marked
the synchronization dependence edges (6, 10) in Fig.6 as synchronization dependency exists
between statements 6 and 10 due to wait-notify relationship. Statement 9 is communication
dependent on statement 7 and statement 11 is communication dependent on statement 5
due to the shared objects flag and s respectively. So, in Fig.6, the algorithm marks the S-
Communication dependence edges (7, 9) and (5, 11). Node 9 is communication dependent on
node C(9) and node 63 is communication dependent on node C(63) due to message passing.
So, the algorithm marks the M-Communication dependence edges (C(9),9) as shown in Fig.5
and (C(63),63) in Fig.6. Similarly, the algorithm marks the control and data dependence
edges when the respective dependencies arise. We have shown all the marked edges in Fig.5
and Fig. 6 in bold lines.

Now we explain how the DDS algorithm finds the backward dynamic slice with respect to
the slicing criterion < 1001,23,q >. According to our DDS algorithm, the dynamic slice at
statement 23 of the client program, is given by the expression Dynamic_Slice(1001, 23, q) =
{(1001, 21), (1001, 6)} U Dynamic_Slice(1001, 21) U Dynamic_Slice(1001, 21). By evaluating
the expression in a recursive manner, we get the final dynamic slice at statement 23 of Fig.
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1. The statements included in the dynamic slice are shown as shaded vertices in Fig. 5 and
6. The dynamic slice is also shown as the statements in rectangular boxes in Fig.7 and 8.

_—
control dependence edge

data dependence edge
P g >

thread dependence edge

-7 - ~ AN ", !
@‘ Slice Pcin@

start point

control dependence cdge,
data dependence edge -

thread dependendence edge

Communication dep. edge

Figure 6: Updated DPDG of Server Program

4.2 Correctness of DDS Algorithm

In this section, we sketch the proof of correctness of our DDS algorithm.

16



1. class clthd extends Thread {

2. BufferedReader rcvmsg;

3. PrintWriter sendmsg;

4. BufferedReader in=new BufferedReader(new InputStreamReader(system.in));

5. Socket socket;

6./public void run() {

7.| socket=new Socket("10.5.18.49",1500) ‘

8. sendmsg=new PrintWriter(socket.getOutputStream()); ‘

9. rcvmsg=new BufferedReader(new InputStreamReader (socket.getInputStream())); ‘
10, String s=in.readLine();
11, int x=Integer.parselnt(s);
12, int z,q,y=15;

134 if(x>y)

14 Z=X-Y;

else

15.  z=x+y;

164‘ sendmsg.println(z); / message sent to server ‘
17. System.out.println("value of z is: "+z);

18, String msgfrom_server=rcvmsg.readLine(); ‘
19, int p=Integer.parselnt(msgfrom_server); ‘

20 if(p>x)

21| q=p—X;
else

22. q=p+Xx;

234‘ System.out.println("total is: "+q); ‘
}

24/ public class client {

25/ public static void main(String args[]) {
26| clthd t=new clthd();

27 t.start();

}

}
}

Figure 7: Dynamic Slice for Slicing Criterion (1001, 23, q)

Theorem 1 DDS algorithm always finds a correct dynamic slice with respect to a given
slicing criterion.

Proof. The proof is given through mathematical induction. Let P = (Py,...,P,) be a
distributed Java program for which a dynamic slice is to be computed using DDS algorithm.
Let P; be a component program of P. For any given set of input values to P;, the dynamic slice
with respect to the first executed statement is certainly correct, according to the definition.
From this, we can argue that, the dynamic slice with respect to the second executed statement
is also correct. During execution of the component program P;, assume that the algorithm
has computed correct dynamic slices prior to the execution of a statement u. To complete the
proof, we need only to show that the dynamic slice computed after execution of the statement
u is correct. Note that the statements that affect the execution of the statement u must have
been executed prior to this execution of the statement w. It is obvious that the dynamic slice
Dynamic_Slice(p, u, var) contains all those statements which have affected the current value
of the variable var used at u, since our DDS algorithm has marked all the incoming edges
to u only from those nodes on which node u is dependent. The Steps 2(b), 2(c), 2(d), 2(e)
and 2(f) of Stage 2 of the DDS algorithm ensure that the node « is dependent (with respect
to its present execution) on a node v if and only if the edge (u, v) is marked in the DPDG
of the component program P;. If a node has no affect on the variable var, then it will not
be included in the dynamic slice Dynamic_Slice(p, u, var). So, Dynamic_Slice(p, u, var) is a
correct dynamic slice. In other words, we can say that the dynamic slices computed prior to
this execution of the statement u are correct. Therefore, the Steps 2(g(i)), 2(g(ii)), 2(g(iii)),
2(g(iv)), 2(g(v)), 2(g(vi)) of Stage 2 and Steps 1(a) and 1(b) of Stage 3 of the DDS algorithm
ensure that the dynamic slices computed after execution of the statement u are correct.
Further Step 2(b) of Stage 3 of the DDS algorithm guarantees that the algorithm stops when
execution of the component program P; terminates. This establishes the correctness of the
algorithm. O

4.3 Complexity Analysis

In this section, we analyze the space and time complexity of our DDS algorithm.
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1. class shar {
2. ints;
3._boolean flag=true;
4.| synchronized public void put(int ¢) { ‘
5. s=c;
6. notify();
7. flag=false;

}
8.‘ synchronized public int get() { ‘
9. if(flag==true)
10.  wait();
11 [retums, |

}

}
12. class threadl extends Thread {
13.  BufferedReader rcvmsg;
14.  PrintWriter sendmsg;
15. Socket serv_socket;
16. intb,c;
17.  shar obj;
18. BufferedReader o=new BufferedReader(

new InputStreamReader(System.in));
19. public thread1(Socket req,BufferedReader in,
PrintWriter out,shar ob) {
20. serv_socket=req;
21. sendmsg=out;
22. rcvmsg=in;
23. obj=ob;
}

24. | public void run() {
25.| String msg=rcvmsg.readLine();
26. | int a=Integer.parselnt(msg);
27.  System.out.println("received from client is: "+a);
28.| String mss=o.readLine();
29. | int b=Integer.parselnt(mss);

30. | if(a>b)
31 c=a-b;
else
32. c=a+b;
33. [ obj.put(c); // message sent to thread2 |

34. System.out.println("thdl: "+c); }
}

35. class thread2 extends Thread {

36. BufferedReader rcvmsg;

37.. PrintWriter sendmsg;

38. Socket serv_socket;

39. shar obj;

40. BufferedReader o=new BufferedReader(

new InputStreamReader(System.in));

41. public thread2(Socket req,BufferedReader in,

PrintWriter out,shar ob) {

42, serv_socket=req;
43. sendmsg=out;
44. rcvmsg=in;

45, obj=ob; }

46. | public void run() {

47. int e,g,f=10;

48. | e=obj.get(); // message received from thread1
49. | if(e>f)

50. g=e—f;

else

51. g=e+f;

52.| sendmsg.println(g); } }// message sent to client
53. | public class syn_server {

54. | public static void main(String args[]) {

55. ServerSocket serv_socket;

56. BufferedReader rcvmsg;

57. PrintWriter sendmsg;

58. shar obj=new shar();

59. serv_socket=new ServerSocket(1500);

60. Socket socket=serv_socket.accept();

61.| sendmsg=new PrintWriter(socket.
getOutputStream(),true);

62. rcvmsg=new BufferedReader(new
InputStreamReader(socket.getInputStream()));
63.| threadl tl=new threadl(socket,input,output,obj);
64. thread2 t2=new thread2(socket,input,output,obj);
65. | tl.start();

66. | t2.start();

1)

Figure 8: Dynamic Slice for Slicing Criterion (1001, 23, q)
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Space complexity. Let P; be a component program of the distributed Java program P.
We assume that the number of threads in a component program P; is bounded by a small
positive number. Let P; contains n; program statements. Let k be the number of component
programs in the distributed program P. The value of k is usually a small finite number
in a loosely coupled environment. Let N be the total number of statements in all the
component programs of P. So, N = Zle n;. We used C-nodes for each getInputStream|()
node in the DPDG of every component program. The C-nodes are used to maintain logical
connectivity among various component programs running on different machines. So, the
slice at some arbitrary node of one DPDG may contain nodes of some other remote DPDGs.
The number of C-nodes in the DPDGs of a distributed Java program, equals the number of
getInputStream() calls present in the program. Since, the number of getInputStream() calls
present in a component program is bounded, so number of C-nodes in all the DPDGs of the
distributed program P is bounded. It can be easily realized that the space requirement for
the DPDG of a component program P; having n; statements is O(n?). We have assumed
that the number of statements of a component program is bounded by the total number of
statements in the whole distributed program . Also, if N = Y n;, then (3 n;)? < N2. So,
the space requirement for all the DPDGs of the distributed program P having N statements
is O(N?). We need the following additional space at run-time for manipulating the DPDG:

1. To store Dynamic_Slice(p, u, var) for every statement u of the component program P;,
at most O(N) space is required, as the maximum size of the slice is equal to the size
of the distributed program P. So, for n; statements in the component program P;, at
mostO(n;N) space is required. Since n; is bounded by N, so in the worst case, the
space requirement for Dynamic_Slice(p, u, var), becomes O(N?), where N is the total
number of statements in P.

2. Let there are v number of variables present in the component program P;. To store
recentDef(thread, var) for every variable var of P;, at most O(n;) space is required.
Assuming the number of variables present (v) is less than the number of statements
(ni), our DDS algorithm will require O(n?) space to store the recentDef(thread, var) of
all the variables.

Since the space complexity of the DPDG and the run-time storage requirements is O(N?),
the space complexity of our DDS algorithm is O(N?), N being the total number of state-
ments of the distributed program P.

Time complexity. To determine the time complexity of our DDS algorithm, we need to
consider two factors making up the time required to compute a slice. The first one is the
execution time requirement for the run-time manipulations of the DPDG. The second one is
the time required to look up the data structure Dynamic_Slice for extracting the dynamic
slice, once the slicing command is given. Let S; be the length of execution of the component
program P;. Let S = Zle S;, where k is the number of component programs in P. Let N
be the total number of statements in all the component programs in P,i.e . N = Zle n;.
Then, the time required for computing and updating information corresponding to an execu-
tion of a statement is O(kN?), since the updations occur simultaneously in the local nodes.
The value of k is usually a small finite number for a loosely coupled environment. So the
time required for computing and updating information corresponding to an execution of a
statement is O(N?2). Hence, the run-time complexity of the DDS algorithm for computing
the dynamic slice, for the entire execution of the distributed program P is O(N2S). We con-
sider the complexity of computing the slice once a slicing criterion is defined, this excludes
run-time computations required to maintain the DPDG.

The DPDG is annotated with the dynamic slices for the executed statements. So, the

dynamic slices can be looked up in O(N) time, where N is the total number of statements in
the distributed program P.
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5 Implementation

In this section, we present a brief description of a tool which we have developed to implement
our dynamic slicing algorithm for distributed object-oriented programs. Our tool can com-
pute the dynamic slice of a distributed object-oriented program with respect to a given slicing
criterion. The current version handles only a subset of Java language constructs. Now, we
are trying to extend our tool to handle the complete Java syntax. We have named our tool
Dynamic Slicer for Distributed Java programs (DSDJ). To construct the intermediate graphs
we have used the compiler witting tools JLEX and JYACC [20]. A distributed Java program
is given as the input to the JLEX program. The JLEX program automatically generates the
DPDGs for the component programs. The schematic design of our implementation is shown
in Fig. 9.

A distributed Java program is read as input to our slicer. The lexical analyzer and
parser and semantic analyzer components are combined and the joint component is termed
as program analysis component [21]. The lexical analyzer part has been implemented using
the standard lexical analysis tool JLEX. The semantic analyzer component has been imple-
mented using JYACC, the standard tool for LALR(1) parser. During semantic analysis, the
Java source code is analyzed token by token to gather the various program dependencies.
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Figure 9: Schematic Diagram of DSDJ

The tokens are first used to construct the DCFG (Distributed Control Flow Graph).
Next, using the DCFG the corresponding DPDG (Distributed Program Dependence Graph)
is constructed as mentioned in the stage 1 (DPDG Construction) of the DDS algorithm. The
source program is then automatically instrumented, by adding calls to the slicer module after
every statement in the source program.

We have used local slicers at every node of the distributed system for running the al-
gorithm in a distributed manner. FEach local slicer contributes to the dynamic slice by
determining its local portion of the global slice in a fully distributed fashion. The local
slicers update the DPDGs as and when the dependencies arise and cease at run-time, and
compute the dynamic slice depending on the specified slicing criterion through the GUI. The
local slicers also communicate among each other to help in the inter-component dependencies.
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Table 1: Average run-time requirement and overhead cost of DDS algorithm

Sl. | Total Prg. Size | # Component | Normal Exec. Avg. Run-Time Over head
No. (# stmts) Programs Time (in mSec) | Regmt.(in mSec) | cost(in mSec)

1 250 2 94 142 48

2 355 2 117 185 68

3 462 2 141 237 96

4 558 3 165 294 129

5 670 3 190 355 165

6 782 3 215 416 201

7 894 3 247 482 235

Fig. 10 shows how the local slicers communicate with each other in a distributed environment.
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Figure 10: Communication among different local slicers

We have tested the working of our slicing tool, DSDJ, using a large number of distributed
Java programs and for several slicing criteria. Our tool supports inter-thread synchronization
and inter-thread communication using sockets and shared memory. We studied the run-time
requirements of our DDS algorithm for several programs and for several runs. Table 1 sum-
marizes the average run-time requirements and over head costs of the DDS algorithm. Since,
we could not found any algorithm for dynamic slicing of distributed object-oriented programs,
so we do not present any comparative results. We have only presented the results obtained
from our experiments. The performance results of our implementation completely agree with
the theoretical analysis. From the experimental results, it can be observed that the average
run-time requirement increases slowly as the program size increases. So, the over head cost
increases slowly as the program size increases. Table 2 summarizes the memory requirements
of the DDS algorithm. It can be observed that the memory requirement increases slowly as
the program size increases. This is due to the fact that the number of nodes and edges of
the intermediate graph and the number of objects increase as the program size increases. It
may be noted that, we have conducted the experiments for some typical example programs.
So, the results such as average run-time requirements and memory requirements may vary
from program to program. As the tool DSDJ does not need any trace files to store the ex-
ecution history, it does not impose any restrictions on the size of the distributed programs.
Also it saves the expensive file I/O operations. Another advantage is that, the marking and
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Table 2: Memory requirement of DDS algorithm

Sl. | Total Prg. Size | # Component | # Objects | Memory requirement
No. (# stmts) Programs present (in KB)

1 250 2 55 502

2 355 2 76 714

3 462 2 88 930

4 558 3 105 1125

5 670 3 127 1350

6 782 3 145 1575

7 894 3 167 1798

unmarking technique used in our approach obviates the neccessity to create any new nodes
in the different iterations of a loop. Thus, the run-time data structure remains bounded even
in the presence of several loops.

6 Comparison With Related Work

Slicing of concurrent object-oriented programs has been investigated by many researchers [22—
25]. Slicing of distributed procedural programs [26-30] has also drawn the attention of many
researchers. To the best of our knowledge, no algorithm for dynamic slicing of distributed
object-oriented programs has been reported in the literature. In the absence of any directly
comparable work, we compare our algorithm with the existing dynamic slicing algorithms
for distributed procedural programs.

Korel et al. [26] has proposed an extension of their dynamic slicing algorithm [2] to dis-
tributed programs with Ada type rendezvous communication. In their approach, each process
generates a complete execution trace. The necessary dependence information to construct
program slices is determined postmortem by analyzing the stored traces. Korel’s slicing al-
gorithm [26] operates on complete execution traces whose lengths may be unbounded. The
computed slices are not independent programs and are executed using an explicit run-time
scheduler which ensures the replay of the recorded communication events.

Duesterwald et al. [27] presented a hybrid parallel algorithm for computing dynamic slices
of procedural distributed programs using a distributed dependence graph. Their algorithm
combines both static and dynamic information to compute a slice. They used a Distributed
Dependence Graph (DDG) to represent distributed program. A DDG contains a separate ver-
tex for each statement and control predicate in the program. Control dependencies between
statements are determined statically, prior to execution. Edges for data and communication
dependencies are added to the graph at run-time. Slices are computed in the usual way by
determining the set of DDG vertices from which the vertices specified in the criterion can
be reached. Both the construction of the DDG and the computation of slices is performed
in a distributed manner. Separate DDG construction procedure and slicing procedure are
assigned to each process p; in the program. The processes in the program communicate
when a send or a receive construct is encountered. Additionally, they proposed to transform
non-deterministic communication constructs to deterministic ones to provide re-executable
slices. Their approach requires the user to specify a slicing criterion in terms of a particular
process and execution position. However, since a single vertex is used for all occurrences
of a statement in the execution history, inaccurate slices may be computed in the presence
of loops. They did not consider communication through shared objects. Also, their method
can not be applied to programs where processes send messages asynchronously due to the
assumption of synchronous message send.

Cheng [28] presented an alternate dependence graph-based algorithm for computing dy-
namic slices of procedural distributed and concurrent programs. He used Program Depen-
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dence Net (PDN) as the intermediate representation. The PDN representation of a concur-
rent program is basically a generalization of the initial approach proposed by Agarwal and
Horgan [31]. The PDN vertices corresponding to the executed statements are marked, and
the static slicing algorithm is applied to the PDN sub-graph induced by the marked vertices.
So, if a statement in a while loop is executed in some iteration, then the corresponding vertex
is marked and included in the slice. But, if that statement is not executed in some other
iteration, then that marked vertex is not removed from the slice. So, this approach yields
inaccurate slices for programs having loops. Our algorithm unmarks the edges of the DPDG
when the dependency does not exist. So, if a statement was executed in some iteration of a
loop and for some other iteration it is not executed, then our algorithm successfully omits
that statement from the slice.

Li et al. [30,32] presented two novel predicate-based dynamic slicing algorithms for pro-
cedural distributed programs. Their algorithms are based on a partially ordered multi-set
(POMSET) model. Unlike traditional slicing criteria that focus only on parts of the program
that influence a variable of interest at a specific position in the program, a predicate focuses
on those parts of the program that influence the predicate. The dynamic predicate slices
capture some global requirements or suspected error properties of a distributed program and
computes all statements that are relevant. Their algorithms handle distributed programs
that communicate through message passing. They did not consider communication through
shared objects. They have not considered the object-orientation aspects too.

Goel et al. [33] proposed compression schemes for representing execution profiles of shared
memory parallel programs. Their representation captures control, data flow and synchroniza-
tions in the execution of a shared memory multi-threaded program running on a multiproces-
sor architecture. According to their approach the control and data flow of each processor is
maintained individually as whole program paths (WOP). The total order of the synchroniza-
tion operations executed by all processors and the annotation of each processor’s WOP with
synchronization counts help to capture the inter-processor communications which are pro-
tected via synchronization primitives such as lock, unlock and barriers. They have illustrated
the applications of compact execution traces in program debugging, program comprehen-
sion, code optimization, memory layout etc. They have used trace files to store the execution
history. This leads to slow I/O operations. They have considered that the communica-
tion across different threads occurs only via synchronization primitives. Communication via
shared variable accesses is not explicitly represented in their method. We have considered
communications among threads through shared variables as well as message passing.

Gag et al. [34] introduced the notion of a slice of a distributed computation. They have
defined the slice of a distributed computation with respect to a global predicate, as a compu-
tation which captures those and only those consistent cuts of the original computation which
satisfy the global predicate. A computation slice differs from a dynamic slice in that it is
defined for a property rather than a set of variables of a program. Unlike a program slice,
which always exists, a computation slice may not always exist. They have proved that the
slice of a distributed computation with respect to a predicate exists iff the set of consistent
cuts that satisfy the predicate, forms a sub lattice of the lattice of consistent cuts. Mittal
and Garg [35, 36] presented an efficient algorithm to graft two slices, that is, given two slices,
either compute the smallest slice that contains all consistent cuts that are common to both
slices or compute the smallest slice that contains all consistent cuts that belong to at least
one of the slices. They have not considered object-orientation aspects.

Existing techniques [26, 27] for debugging distributed programs include event-based de-
bugging based on recorded event histories and execution replay. During instant replay, the
original execution of a program (or an individual process) is reproduced based on the recorded
order of received messages. All the existing methods [26, 27,29, 33] use execution trace file
whose size is proportional to the number of executed statements which itself can be un-
bounded in presence of loops, and upon this, they use graph reachability to compute dynamic
slices which can take large amount of time. Our use of DPDG does not involve the use of
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trace files. As no trace files are used in our method, it also significantly improves the space
as well as time complexities.

Our graph representation, is substantially different from all the existing methods [27-
29] to take care of dynamically created threads and message passing using message queues.
Our DPDG can handle thread creation, inter-thread synchronization and inter-thread com-
munication. By using our method, messages can be sent asynchronously from one thread to
another. In our approach, messages get stored in message queues and are later retrieved from
the queue by the receiving thread. This is a more elaborate message passing mechanism com-
pared to [26-30,33]. Our dynamic slicing algorithm successfully handles the complications
created by this message passing mechanism.

7 Conclusions

In this paper, we have proposed a novel technique for computing dynamic slices of dis-
tributed Java programs. We have introduced the notion of distributed program dependence
graph (DPDG) as the intermediate program representation used by our slicing algorithm.
We have named our algorithm distributed dynamic slicing (DDS) algorithm. It is based
on marking and unmarking the edges of the DPDG as and when the dependencies arise and
cease at run-time. To achieve fast response time, our algorithm runs on several machines con-
nected through a network in a distributed fashion. Our algorithm addresses the concurrency
issues of Java programs while computing the dynamic slices. It also handles the communica-
tion dependency arising due to objects shared among threads on same machine and due to
message passing among threads on different machines. Our algorithm does not require any
trace file to store the execution history. Another important advantage of our algorithm is
that when a slicing command is given, the dynamic slice is extracted immediately by looking
up the data structure Dynamic_Slice, as it is already available during run-time. Although we
have presented our dynamic slicing technique for Java programs, the technique can easily be
adapted to other object-oriented languages such as C++.
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