
 

Paper presented in 8th International Conference on Information Technology, Bhubaneswar,  
India Dec 20-23 2005 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace 

 

A Parallel Algorithm for Dynamic Slicing of Distributed 
Java Programs in non-DSM Systems 

 
Durga Prasad Mohapatra 

Department of CSE 
National Institute of Technology 

Rourkela, Orissa, 769008 
durga @nitrkl.ac.in 

 

Rajib Mall 
Department of CSE 

Indian Institute of Technology 
Kharagpur, WB, 721302 
rajib@cse.iitkgp.ernet.in 

  

Rajeev Kumar 
Department of CSE 

Indian Institute of Technology 
Kharagpur, WB, 721302 

rkumar@cse.iitkgp.ernet.in 

ABSTRACT 
We propose a parallel algorithm for dynamic slicing of 
distributed Java programs. Given a distributed Java pro-
gram, we first construct an intermediate representation in 
the form of a Distributed Program Dependence Graph 
(DPDG). We mark and unmark the edges of the DPDG 
appropriately as and when dependencies arise and cease 
during run-time. Our algorithm can run parallely on a net-
work of computers, so that each node in the network con-
tributes to the dynamic slice by computing its local portion 
of the global slice in a fully distributed fashion. 

Keywords 
program slicing, program dependence graph, distributed 
programming. 

1. INTRODUCTION 
As software applications grow larger and become more 
complex, program maintenance activities such as adding 
new functionalities, porting to new platforms, and correct-
ing the reported bugs require enormous effort in software 
development. This is especially true for distributed pro-
grams. In order to cope with this scenario, programmers 
need effective computer supported methods for decomposi-
tion and dependence analysis of programs. Program slicing 
is one method for such decomposition and dependence 
analysis. A program slice with respect to a specified vari-
able at some program point consists of those parts of the 
program which potentially affect the value of that variable 
at the particular program point [1]. A static slice is valid for 
all possible executions of a program while a dynamic slice 
considers only a particular execution of a program [2]. 
Program slicing has been found to be useful in a variety of 
applications such as debugging, program understanding, 
testing and maintenance, etc. [3-6]. 
  It is usually accepted that understanding and debugging of 
distributed object-oriented programs are much harder com-
pared to those of sequential programs. The non-
deterministic nature of distributed programs, the lack of 
global states, unsynchronized interactions among threads , 
multiple threads of control and a dynamically varying 

number of processes are some reasons for this difficulty. 
An increasing number of resources are being spent in de-
bugging, testing and maintaining these products. Slicing 
techniques promise to come in handy at this point. Through 
the computation of a slice for a message passing program, 
one can significantly reduce the amount of code that a 
maintenance or development engineer has to comprehend 
or analyze to achieve some maintenance tasks.  
  In this paper, we propose a parallel algorithm for computing 
dynamic slices of distributed Java programs. We have named our 
proposed algorithm parallel dynamic slicing (PDS) algorithm for 
distributed Java programs in. To achieve faster response time, our 
algorithms can parallely run on several machines connected 
through a network, rather than running it on a centralized ma-
chine. In order to run the algorithm parallely, we use local slicers 
at each machine. 
 
2. BASIC CONCEPTS 
A distributed object-oriented program P = (P1, P2,…, Pn ) is 
a collection of concurrent individual programs Pi such that 
each of the Pi's may communicate with other programs 
through the reception and transmission of messages. 
   A distributed control flow graph (DCFG) G of a compo-
nent program Pi of a distributed program P = (P1, P2,…, Pn) 
is a flow graph (N, E, Start, Stop), where each node n∈N 
represents a statement of Pi, while each edge e∈E repre-
sents potential control transfer among the nodes. Nodes 
Start and Stop are unique nodes representing entry and exit 
of the component program Pi respectively. There is a di-
rected edge representing a control flow from node a to 
node b if control may flow from node a to node b. 
   The intermediate representation for a concurrent object-
oriented program on a single machine is constructed stati-
cally as in [7]. But, for distributed object-oriented pro-
grams, 
we can have communication dependency between threads 
running on different machines. A getInputStream() call 
executed on one machine, might have a pairing getOutput-
Stream() on some other remote machine. To incorporate 
this aspect, we introduce a logical(dummy) node in the 
DPDG. We call this logical node as a C-node. In the fol-
lowing, we define the C-node and the intermediate repre-

 
CIT’05, December 20-23, 2005, Bhubaneswar, India. 
 



 

sentation for distributed Java programs used by our dy-
namic slicing algorithm. We now describe the role of a C-
node. 

 
Figure 1. An Example Client Program 

    
   Let GD1 be the DPDG of the component program P1 and 
GD2 be the DPDG of the component program P2. Let x be a 
node representing the statement which invokes a getOut-
putStream() method, in GD1. Let y be the node representing 
the statement which invokes the corresponding getInput-
Stream() method, in GD2. A C-Node represents a logical 
connection of the node y of DPDG GD1 with the node x of 
the remote DPDG GD2. A C-node does not represent any 
specific statement in the source code of a component pro-
gram. Rather, it is used to encapsulate the information of 
the triplet <send_TID, send_node_number, dy-
namic_slice_at_ send_ node > representing the pairing of 
the components in a distributed program. Here, send_TID 
represents the id of the thread sending the message, send_ 
node_ number represents the particular label number of the 
statement sending the message and dy-
namic_slice_at_send_ node represents the dynamic slice at 
the sending node. Communication dependencies among 
threads of distinct component programs are captured using 
the C-nodes. The sending thread passes the message con-
tents to the slicer. The slicer piggybacks this triplet with the 
actual message. Whenever any thread executes a getInput-
Stream() call, the slicer extracts the triplet from the mes-
sage in the message queue and passes the actual message to 
the receiving thread. Thus the slicer updates the informa-
tion on C-nodes and establishes the communication de-
pendency.   
   Now, we define a Distributed Program Dependence 
Graph (DPDG). The distributed program dependence 
graph (DPDG) GD of the component-program Pi is a di-
rected graph 

(ND, ED) where each node n (excepting the dummy 
nodes)∈  ND represents a statement in Pi. For x, y ∈ ND, ( 
y,x) ∈ ED iff any one of the following holds: 



 

 
 

Figure 2. An Example Server Program 

 
     1.   y is control dependent on x. Such an edge is called a  
          control dependence edge. 
    2.  y is data dependent on x. Such an edge is called a 
data 
         dependence edge. 
    3.  y is thread dependent on x. Such an edge is called a  
         thread dependence edge. 
    4.  y is synchronization dependent on x. Such an edge is  
         called a synchronization dependence edge. 
    5.  y is communication dependent on x. Such an edge is  
         called a communication dependence edge. 
For all the nodes x, representing getInputStream() 
calls, in the component program Pi , a dummy node 
C(x) is created, and a dummy communication edge 
(x, C(x)) is added. 
The DPDGs of the example programs given in Fig. 1 
and 2 are shown in Fig. 3 and 4. 
 
3. Parallel Dynamic Slicing (PDS) Algorithm 
 
Before execution of a distributed Java program P, the 
DCFG of each of the component program Pi   is con-
structed statically. Next, we statically construct the 
DPDG of each component program Pi by using the 
DCFG. During execution of a component program Pi 
,we mark an edge of the DPDG when its associated 
dependence exists, and unmark the edge when its 
associated dependence ceases to exist. Since control 
dependencies do not change during run-time, we 
permanently mark the control dependence edges. We 
consider all the dependence edges excepting control 
dependence edges for marking and unmarking. In our 
approach, we allow communication to occur across 
different machines. So, we perform some additional 
task to capture this communication. Intermachine 
communication is captured by adding C-nodes in the 
DPDG. The addition of C-nodes in the DPDG takes 
care of any communication dependency that might 
exist at run-time between communicating threads on 
different machines. 
   Now, we define the dynamic slice with respect to the 
present execution of the statement u, for the variable var, in 
thread p, as Dynamic_Slice(p, u, var) ={(p, x1),…, (p, 
xk)}∪ Dynamic_Slice(p, x1, var) ∪…∪ Dynamic_Slice(p, 
xk ,var). 
   Let var_1, var_2, . . . , var_k be all the variables used or 
defined at statement u in some thread p. Then, we define 
dynamic slice of the whole statement u as dyn_slice(p, u) = 
Dynamic_ Slice(p, u, var_1) ∪ Dynamic_Slice(p, u, var_2) 
∪…∪ Dynamic_ Slice (p, u, var _k). 
Our slicing algorithm operates in three main stages: 
     1. Constructing the intermediate program representation  
         graph statically 
     2. Managing the DPDG at run-time 
     3. Computing the dynamic slice 



 

In the first stage, the DCFG of each component program Pi 
is constructed from a static analysis of the source code. 
Also, in this stage using the DCFG the static DPDG is con-
structed, as the DCFG provides the information regarding 
the control flow in each of the component program. The 
stage 2 of the algorithm executes at run-time and is respon-
sible for maintaining the DPDG as the execution proceeds. 
The maintenance of the DPDG at run-time involves mark-
ing and unmarking the different dynamic dependencies as 
they arise and cease. Stage 3 is responsible for computing 
the dynamic slices for a given slicing criterion using the 
DPDG. Once a slicing criterion is specified, our dynamic 
slicing algorithm computes the dynamic slice with respect 
to the slicing criterion by looking up the corresponding 
Dynamic _Slice computed during run time. 
 
Working of the PDS Algorithm 
  
Consider the distributed Java program given in Fig. 1 and 
2. The threads in the client program and server program are 
identified by unique thread-ids. Let the thread-id of the 
clthd in Fig. 1 be 1001, the thread-id of thd1 in Fig. 2 be 
2001 and the thread-id of thd2 in Fig. 2 be 2002. The up-
dated DPDGs are obtained after applying stage 2 of the 
PDS algorithm and are shown in Fig. 3 and Fig.4. Let us 
compute the dynamic slice with respect to variable q at 
statement 23 of the thread clthd in the client program (Fig. 
1). This gives us the slicing criterion < 1001, 23, q >. With 
input data s = 20 in the client program in Fig.1 and b = 2 in 
the server program in Fig. 2, we explain how our PDS al-
gorithm computes the dynamic slice. 
   According to our PDS algorithm, the dynamic slice at 
statement 23, is given by the expression Dynamic_ 
Slice(1001, 23, q) ={(1001, 21), (1001, 6)} ∪ 
dyn_slice(1001, 21) ∪ dyn_slice(1001, 6). Evaluating the 
expression, we get the final dynamic slice at statement 23 
of Fig. 1. The statements included in the dynamic slice are 
shown as shaded vertices in Fig.3 and 4. 

 
Figure 3: Updated DPDG of Client Program 

 
 Modification of the Algorithm for non-DSM Systems: 

    A distributed system having no support for shared mem-
ory reduces to a message passing system and we term them 
in our study as a non-DSM system. In order to handle non-
DSM systems, we have introduced a new type of node, R-
node, in our intermediate representation DPDG. Because of 
addition of these logical (dummy) nodes in the DPDG, the 
above algorithm is updated by adding the functionality for 
handling of these R-nodes. The existence of R-nodes in the 
DPDG depends on how we are maintaining the most recent 
information on shared variables. We have already dis-
cussed extensively how the C-nodes are incorporated in the 
DPDG. The R-nodes are handled in the similar manner for 
shared variables in non-DSM systems. 
The modifications to be done in the above algorithm to 
incorporate the use of R-nodes involve the following steps: 
 
    Stage-1: DPDG Construction 
           
                    For each shared variable var used at u, do 
                       Add a R-node R(u) 
                       Add data dependence edge (u, R(u)) and  
                       unmark it. 
     
   Stage-2: Managing the DPDG at Run-Time 
                    
                   Update shared data dependencies: For every  
                   shared variable var used at node (p,u), mark the 
                   data dependence edge corresponding to the 
                   most recent definition recentDef(p,var) avail-
able 
                   at the R-node of the variable var. 

 
Figure 4: Updated DPDG of Server Program 

4. Conclusions 
In this paper, we have proposed a novel technique for com-
puting dynamic slices of distributed Java programs in non-
DSM systems. We have introduced the notion of distrib-
uted dependence graph (DPDG). We have named our algo-



 

rithm parallel dynamic slicing (PDS) algorithm. It is based 
on marking and unmarking the edges of the DPDG as and 
when the dependencies arise and cease at run-time. 
 

REFERENCES 
[1]    M. Weiser. Programmers use slices when debugging. 
         Communications of the ACM,25(7):446-452, 1982. 
[2]    B. Korel and J. Laski. Dynamic program slicing. In-
for- 
        mation Processing Letters,29(3):155{163, 1988. 
[3]    R. Mall. Fundamentals of Software Engineering.  
        Prentice Hall, India, 2nd Edition, 2003. 
[4]    D. Goswami and R. Mall. An efficient method for 
com- 
          puting dynamic program slices. Information Process- 
          ing  Letters, 81:111-117, 2002. 
[5]    G. B. Mund, R. Mall, and S. Sarkar. An efficient dy 
          namic program slicing technique. Information and   
           Software Technology, 44:123-132, 2002. 

[6]    X. Zhang, R. Gupta, and Y. Zhang. Efficient forward 
        computation of dynamic slices using reduced ordered 
        binary decision diagrams. In International Conference  
        on Software Engineering, 2004. 
[7]    Durga Prasad Mohapatra, Rajib Mall, and Rajeev 
         Kumar. An efficient technique for dynamic slicing of 
         concurrent Java programs. In Proceedings of Acian  
         Applied Conference on Computing (AACC-2004), 
         Kathmandu, LNCS Springer-Verlag, volume 3285, 
         Pages 255-262, October 2004. 
 
 
 
 
 
 
 
 

 
 


