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Abstract

The perturbed Schrodinger equation with p-biharmonic operator and real valued

parameter has been considered. We use variational technique to guarantee the

existence of solution.
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1. Introduction

The problem of perturbed Schrodinger equation has been studied. The potential func-

tion V (x) is a real valued continuous function on RN satisfying some conditions.Further,

to study the existence of nontrivial solution and concentration of solutions (as λ→∞),

we make a few assumptions on the nonlinear function f . We further have to deal with

lack of compact embedding since the domain considered is RN . We will prove the

following results.

Theorem 1.1. Assume the conditions (V1)-(V3), (F1), (F2) to hold. Then there

exists Λ0 > 0 such that for each λ > Λ0, problem has at least one non trivial solution

uλ.

Theorem 1.2. Let un = uλn be a solution of the problem corresponding to λ = λn. If

λn →∞, then

||un||λn ≤ c,
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for some c > 0

un → ũ in Lq(RN),

and up to a subsequence for p ≤ q < p∗. This ũ is a solution of the problem

∆2
pu−∆pu = f(x, u), in Ω

u = 0, on RN \ Ω.
(1.1)

and un → ũ in W 2,p(RN).

The paper has been organized as follows. In section 2, we discuss the notations

which will be used in the theorems. In section 3, we give the proof of Theorem 1.1 and

in section 4, we prove the Theorem 1.1.

2. Preliminaries and Notations

We will denote a Sobolev space of order 2 as W 2,p(RN), which is given by

W 2,p(RN) = {u ∈ Lp(RN : |∇u|,∆u ∈ Lp(RN)}

endowed with the norm

||u||p
W 2,p(RN )

=

∫
RN

(|∆u|p + |∇u|p + |u|p)dx.

Let

X =

{
u ∈ W 2,p(RN) :

∫
Rn

(|∆u|p + |∇u|p + V (x)|u|p)dx <∞
}

be endowed with the norm

||u||p =

∫
Rn

(|∆u|p + |∇u|p + V (x)|u|p)dx.

For λ > 0, we set

Eλ = {u ∈ W 2,p(RN) :

∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx <∞}

with

||u||pλ =

∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx.

It is easy to verify that for λ ≥ 1 (Eλ, || · ||λ) is a closed in X and

||u|| ≤ ||u||λ

. We will denote µ to be the Lebesgue measure on RN .
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Lemma 2.1. If (V1)-(V2) hold, then there exists positive constants λ0, c0 such that

||u||W 2,p(RN ) ≤ c0||u||λ; for all u ∈ Eλ, λ ≥ λ0.

The lemma shows that Eλ ↪→ W 2,p(RN). By the Sobolev embedding results for

p < N we have ↪→ Lq(RN), for q ∈ [p, p∗].

||u||q ≤ cq||u||W 2,p(RN ) ≤ c0cq||u||λ,

for all λ ≥ λ0, q ∈ [p, p∗].

3. Existence of non trivial solutions

We propose the following lemma.

Lemma 3.1. Suppose that (V1)-(V3), (F1),(F2) are satisfied. Then there exists Λ0 >

0 such that for every λ ≥ Λ0, Jλ is bounded below in Eλ.

Proof. Since ξi(x) ∈ L
p

p−γi (RN ,R+), we can choose Rε > 0 such that(∫
RN\BRε

|ξi(x)|
p

p−γi dx

) p−γi
p

< ε, 1 ≤ i ≤ m. (3.1)

Since un → u0 in Lploc(RN), there exists N0 ∈ N such that(∫
BRε

|un − u0|pdx

) γi
p

< ε (3.2)

for n ≥ N0 and for all 1 ≤ i ≤ m. Therefore,∫
RN\BRε

|f(x, un − u0)||un − u0|dx→ 0, as n→∞. (3.3)

From (3.3), we have∫
RN
|f(x, un − u0)||un − u0|dx→ 0, as n→∞. (3.4)

This shows that un → u0 in Eλ.

Proof of the Theorem 1.1. By lemmas above, it follows that cλ = infEλ Jλ(u) is a

critical value of Jλ, that is there exists a critical point uλ ∈ Eλ such that Jλ(uλ) = cλ.

Therefore, uλ is a solution for the problem for λ > Λ0. Now we will show that uλ 6=
0.
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4. Limiting case λ→∞
We consider the concentration of solutions for the problem as λ→∞. Since W 2,p(Ω)∩
W 1,p

0 (Ω) ⊂ Eλ for all λ > 0, restrict Jλ on W 2,p(Ω)
⋂
W 1,2

0 (Ω).

c̃ = inf
u∈W 2,p(Ω)∩W 1,p

0 (Ω)
Jλ|W 2,p(Ω)∩W 1,p

0 (Ω),

where Ω is given in the condition (V3) and Jλ|W 2,p(Ω)∩W 1,p
0 (Ω) is a restriction of Jλ on

W 2,p(Ω) ∩W 1,p
0 (Ω), that is

Jλ|W 2,p(Ω)∩W 1,p
0 (Ω) =

1

p

∫
Ω

(|∆u|p + |∇u|p) dx−
∫

Ω

F (x, u)dx,

for u ∈ W 2,p(Ω)∩W 1,p
0 (Ω). Similar to the proof of the theorem 1.1, it can be seen that

c̃ < 0 is achieved and

cλ ≤ c̃ < 0, for all λ > Λ0.
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