
Reduced Latency Square- Root calculation for Signal

Processing using Radix-4 Hyperbolic CORDIC

Aishwarya Kumari1 , D.P.Acharya1
1 Department of Electronics and Communication Engineering, National institute of

Technology, Rourkela

Abstract. Till now the CORDIC algorithm is primarily used to calculate only

trigonometric operations. In the proposed work, we extend the Radix-4 CORDIC

algorithm to the hyperbolic vectoring mode to implement fast computation of

Square-Root. This paper illustrates the implementation of a regular VLSI

architecture for Radix-4 hyperbolic vectoring CORDIC on FPGA platform. The

speed can further be increased with higher version of FPGA devices. A

comparison between Radix-2 and Radix-4 CORDIC algorithm based on the

simulation results is also presented in the work.

Keywords: CORDIC algorithm, Radix-4, pipelined architectures.

1 Introduction

The CO-ordinate Rotation DIgital Computer (CORDIC) has been a prevailing

computational tool for a wide range of applications. This strategy has expanded in

preponderance especially in mathematical applications. Volder introduced CORDIC

algorithm method for calculation of trigonometric functions as well as for complex

binary techniques using CORDIC algorithm with its two different operation modes,

which are vectoring and rotation mode. CORDIC based architectures have been used

for inversion of matrix, Eigen-value calculations, singular value decomposition (SVD)

algorithms, logarithmic functions, multiplication of complex numbers, orthogonal

transformations, etc.

 Conventionally, CORDIC algorithm is implemented using Radix-2

microrotations. Later, various algorithms and architectures have been developed for

increasing throughput of the algorithm through the pipelined implementation. The

CORDIC algorithm has become very much popular majorly because of its efficiency

for cost efficient implementation of various applications. Its main attraction is its ability

to provide simple architecture because it only uses shift, add, and subtract operations.

It is also clear that it is really going to get much better shape in the future. In the present

scenario, CORDIC is finding its great use in embedded system processors. The

CORDIC algorithm is described suitable for the use in a special purpose computer

where most of the computations involve basic trigonometric functions[2]. After

completing 50 years of its invention, The basic evolutions made in the CORDIC

algorithm and their architectures along with their effectiveness and applications in the

coming times are illustrated in [1]. Various authors presented the restrictions of the

numerical values of functional arguments, which are given to the CORDIC units with

an emphasis on the binary as well as the fixed point implementations[4]. Villalba

discussed the Radix-4 CORDIC algorithm for circular vectoring mode[5]. In paper [5],

authors presented that the proposed Radix-4 circular CORDIC algorithm in vectoring

mode has a similar recurrence as the Radix-4 division algorithm and some dedicated

studies are presented concerning the vectoring mode. In [6], the parallel Radix-4

architecture is implemented to show the latency and the hardware improvements to

reduce the area. Radix-4 architecture for rotation mode is designed in [7] where, it can

be seen that the total iterations’ count in Radix-4 is half as compared to Radix-2. Hence,

we can see that most of the work in the area of CORDIC is limited to rotational mode

only specially for calculating trigonometric functions. Therefore, Radix-4 CORDIC can

be used for hyperbolic vectoring mode too. The time required for the computation of

square root can be reduced; which can be very useful for the works of signal processing.

2 CORDIC Algorithms

The Radix-2 and Radix-4 CORDIC algorithm are presented here in brief. The CORDIC

algorithm can be altered to compute various hyperbolic functions. Hence, it is

reformulated to a generalized form, suitable to execute rotations in circular, hyperbolic

and linear coordinate systems. For this, a variable ‘p’ is added extra, which takes

different values for different co-ordinate systems. The value of ‘p’ can be p =1,0 or,-1

and

𝛽m = 𝑡𝑎𝑛
−1(2−m) , (2−m) 𝑜𝑟, 𝑡𝑎𝑛ℎ−1(2−m);

where, the generalised CORDIC algorithm is working respectively in circular, linear or

hyperbolic coordinate systems. The generalized CORDIC is formulated as follows[1]:

𝑥𝑚+1 = 𝑥𝑚 − 𝑝𝜎𝑚2

−𝑚𝑚

𝑦𝑚+1 = 𝑦𝑚 + 𝜎𝑚2

−𝑚𝑥𝑚 (1)

𝑧𝑚+1 = 𝑧𝑚 − 𝜎𝑚𝛽m

Where,

𝜎𝑚 = {
𝑠𝑖𝑔𝑛(𝑧𝑚); for rotation mode

−𝑠𝑖𝑔𝑛(𝑦𝑚); for vectoring mode

In Radix-2 CORDIC algorithm, to have n bits output precision n clock cycles are

required. Hence, latency is more. The latency of computation is a major drawback of

CORDIC algorithm. In various signal-processing applications, fast computation of

Square-Root is required. So, attempts are made to reduce latency of computation for

calculation of Square-Root.

In the following section, a vectoring mode Radix-4 hyperbolic CORDIC algorithm is

developed, which is used in the calculation of square root. To ensure the convergence,

the values of 𝑤𝑚 are taken as, 𝑤𝑚 = 4𝑚𝑦𝑚.

The equations for Radix-4 CORDIC are as follows [5]:

 𝑥𝑚+1 = 𝑥𝑚 + 𝜎𝑚4
−2𝑚𝑤𝑚 ,

 𝑤𝑚+1 = 4(𝑤𝑚 + 𝜎𝑚𝑥𝑚) , (2)

 𝑧𝑚+1 = 𝑧𝑚 − 𝛽m(𝜎𝑚) ,

 Here, 𝛽m(𝜎𝑚) = tanh−1(𝜎𝑚4
−𝑚) .

Here, 𝜎𝑖 takes values {−2,−1,0,1,2}. The scale factor here is

Κ = ∏ (1 + 𝜎𝑚
2 4−2𝑚)1 2⁄

𝑚 .

The scaling factor ‘K’ varies with iterations, as it varies with the 𝜎𝑚 values. Its value

ranges from 1.0 to 2.62. The Radix-4 CORDIC algorithm has two problems: viz

complexity of selection of 𝜎𝑚 and variable nature of scale factor.

By selecting four different comparison points, the value of 𝜎𝑚 is calculated. In case of

circular coordinate CORDIC, the four different comparison points are taken as,

Ρ𝑚(±1) = {
±
𝑥0
2
; 𝑖𝑓 𝑚 = 0

±
𝑥1
2
; 𝑖𝑓 𝑚 ≥ 1

 (3)

Ρ𝑚(±2) = {
±
3𝑥𝑖
2
; 𝑖𝑓 𝑚 ≤ 0

±
3𝑥2
2
; 𝑖𝑓 𝑚 ≥ 2

 (4)

Since we are using hyperbolic coordinate CORDIC, therefore iteration 𝑚 = 0 is invalid

here. The iteration count will start from 𝑚 = 1. The calculated values for 𝜎𝑚 are

𝜎𝑚 =

{

+2; 𝑖𝑓 𝑤𝑚 > Ρ𝑚(2)

+1; 𝑖𝑓 Ρ𝑚(1) < 𝑤𝑚 ≤ Ρ𝑚(2)

0; 𝑖𝑓 Ρ𝑚(−1) < 𝑤𝑚 ≤ Ρ𝑚(1)

−1; 𝑖𝑓 Ρ𝑚(−2) < 𝑤𝑚 ≤ Ρ𝑚(−1)

−2; 𝑖𝑓 𝑤𝑚 ≤ Ρ𝑚(−2)

 (5)

Due to most popular Area-Delay-Accuracy trade off [1], reducing latency in case of

Radix-4 will increase the area by a smaller amount and will decrease the accuracy too.

3 Proposed Architecture for Radix-4 hyperbolic CORDIC algorithm

In the following section, we present the pipelined architecture of Radix-4 hyperbolic

CORDIC algorithm.

Fig. 1. Architecture of Pre-processing block in unscaled CORDIC block

The proposed architecture consists of two parallel operations:

i) Unscaled CORDIC architecture

ii) Scale factor computation architecture

The architecture of pre-processing block and first iteration is shown in fig 1 and fig 2

respectively. This architecture uses 33-bits precision. The number of iterations are

three; which is half of number of iterations required in Radix-2 CORDIC.

Fig. 2. Architecture of first iteration in unscaled CORDIC block

To calculate the value for σ, combinational block consisting of comparators and

multiplexers are used. The output of this block is used in both parallel operations. The

computation for scale factor is carried out parallely with CORDIC iterations. After

calculating scale factor for each operation, these values are stored in the LUT, which

provides the final scale factor ‘K’. The final output of unscaled CORDIC block is

divided by this value of scale factor to get the square root of given input.

4 Results of Implementation in FPGA

The CORDIC architecture presented here consists of three stages and a word length of

33 bits. Out of these 33 bits, 9 bits are used as integer points and remaining as fractional

points. The MSB is taken as sign bit. The FPGA used here has following specifications

mentioned in table 1:

TABLE 1. FPGA DEVICE & SIMULATION ENVIRONMENT

FPGA Xilinx Virtex7

Device XC7VX690T

Package FFG1157

Synthesis tool XST(VHDL/Verilog)

Speed -3

Preffered language Verilog

Simulator Isim

To calculate the square root of a number ‘a’, in cordic initial values of x and y are taken

as

x = a + 0.25 and y= a – 0.25 .

Fig. 3. Simulation result of Square-Root calculation using Radix-4 CORDIC

The input here is taken as ‘a’ and output is ‘asqrt’. Here ‘atrun’ is showing the integral

value of ‘a’ without its fractional part. In ‘asqrt’ too the fractional part is truncated,

which means only upper 9 bits are taken as output. Pipelined architecture uses structure

similar to that of parallel implementation of CORDIC. The only difference is pipelining

registers are inserted after every iterations. The scale factor for each iteration is

truncated to five bits in which first two bits represents integral part and remaining three

represents fractional part.

Fig. 4. Simulation result of Square-Root calculation using Radix-2 CORDIC

5 Conclusion

In the proposed work, a normally scaled Radix-4 hyperbolic CORDIC architecture is

presented. The calculated latency of operation here is five clock cycles as shown in fig

3; which is approximately half of the Radix-2 CORDIC architecture shown in fig 4.

But, it involves comparatively more hardware than Radix-2 CORDIC because it

parallelly compute the scale factor. This study reveals that the speed optimized Radix-

4 CORDIC architecture designed can be suitable for applications in real time.

References

1. Pramod K. Meher. : 50 Years of CORDIC: Algorithms, Architectures, and Applications. In:

IEEE Transactions on Circuits and Systems, September 2009.

2. Volder J. E.: The CORDIC trigonometric computing technique. In: IRE Trans. Electron.

Computers, vol. EC-8, pp. 330–334, Sept. 1959.

3. Waltherm S.: A unified algorithm for elementary functions. In: in Proc. 38th Spring Joint

Computer Conf., Atlantic City, NJ, 1971, pp.379–385.

4. X. Hu.: Expanding the Range of Convergence of the CORDIC Algorithm. In: IEEE

Transactions on Computers, January 1991.

5. Villalba J.: Radix-4 Vectoring CORDIC Algorithm and Architectures. In IEEE Transactions

on Application Specific Systems, Architectures and Processors, 1996.

6. Lakshmi B.: VLSI architecture for parallel Radix-4 CORDIC. In: ELSEVIER transactions on

Microprocessors and Microsystems 37 (2013) 79–86.

7. Antelo E.: High performance rotation architectures based on Radix-4 cordic algorithm. In:

IEEE Transactions on Computers,Vol. 46, August 1997.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3973

