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Abstract. Till now the CORDIC algorithm is primarily used to calculate only 

trigonometric operations.  In the proposed work, we extend the Radix-4 CORDIC 

algorithm to the hyperbolic vectoring mode to implement fast computation of 

Square-Root. This paper illustrates the implementation of a regular VLSI 

architecture for Radix-4 hyperbolic vectoring CORDIC on FPGA platform. The 

speed can further be  increased with higher version of FPGA devices. A 

comparison between Radix-2 and Radix-4 CORDIC algorithm based on the 

simulation results is also presented in the work.   

Keywords: CORDIC algorithm, Radix-4, pipelined architectures. 

 

1   Introduction 

The CO-ordinate Rotation DIgital Computer (CORDIC) has been a prevailing 

computational tool for a wide range of applications. This strategy has expanded in 

preponderance especially in mathematical applications. Volder introduced CORDIC 

algorithm method for calculation of trigonometric functions as well as for complex 

binary techniques using CORDIC algorithm with its two different operation modes, 

which are vectoring and rotation mode. CORDIC based architectures have been used 

for inversion of matrix, Eigen-value calculations, singular value decomposition (SVD) 

algorithms, logarithmic functions, multiplication of complex numbers, orthogonal 

transformations, etc. 

 Conventionally, CORDIC algorithm is implemented using Radix-2 

microrotations. Later, various algorithms and architectures have been developed for 

increasing throughput of the algorithm through the pipelined implementation. The 

CORDIC algorithm has become very much popular majorly because of its efficiency 

for cost efficient implementation of various applications. Its main attraction is its ability 

to provide simple architecture because it only uses shift, add, and subtract operations. 

It is also clear that it is really going to get much better shape in the future. In the present 

scenario, CORDIC is finding its great use in embedded system processors. The 

CORDIC algorithm is described suitable for the use in a special purpose computer 

where most of the computations involve basic trigonometric functions[2]. After 

completing 50 years of its invention, The basic evolutions made in the CORDIC 

algorithm and their architectures along with their effectiveness and applications in the 

coming times are illustrated in [1]. Various authors presented the restrictions of the 



numerical values of functional arguments, which are given to the CORDIC units with 

an emphasis on the binary as well as the fixed point implementations[4]. Villalba 

discussed the Radix-4 CORDIC algorithm for circular vectoring mode[5]. In paper [5], 

authors presented that the proposed Radix-4 circular CORDIC algorithm in vectoring 

mode has a similar recurrence as the Radix-4 division algorithm and some dedicated 

studies are presented concerning the vectoring mode. In [6], the parallel Radix-4 

architecture is implemented to show the latency and the hardware improvements to 

reduce the area. Radix-4 architecture for rotation mode is designed in [7] where, it can 

be seen that the total iterations’ count in Radix-4 is half as compared to Radix-2. Hence, 

we can see that most of the work in the area of CORDIC is limited to rotational mode 

only specially for calculating trigonometric functions. Therefore, Radix-4 CORDIC can 

be used for hyperbolic vectoring mode too. The time required for the computation of 

square root can be reduced; which can be very useful for the works of signal processing.  

 

2   CORDIC Algorithms 

The Radix-2 and Radix-4 CORDIC algorithm are presented here in brief. The CORDIC 

algorithm can be altered to compute various hyperbolic functions. Hence, it is 

reformulated to a generalized form, suitable to execute rotations in circular, hyperbolic 

and linear coordinate systems. For this, a variable ‘p’ is added extra, which takes 

different values for different co-ordinate systems. The value of ‘p’ can be p =1,0 or,-1 

and 

𝛽m = 𝑡𝑎𝑛
−1(2−m) , (2−m) 𝑜𝑟, 𝑡𝑎𝑛ℎ−1(2−m); 

where, the generalised CORDIC algorithm is working respectively in circular, linear or 

hyperbolic coordinate systems. The generalized CORDIC is formulated as follows[1]: 

 
𝑥𝑚+1 = 𝑥𝑚 − 𝑝𝜎𝑚2

−𝑚𝑚 
 

 
𝑦𝑚+1 = 𝑦𝑚 + 𝜎𝑚2

−𝑚𝑥𝑚      (1) 

 
𝑧𝑚+1 = 𝑧𝑚 − 𝜎𝑚𝛽m 

 

Where, 

𝜎𝑚 = {
𝑠𝑖𝑔𝑛(𝑧𝑚); for rotation mode

−𝑠𝑖𝑔𝑛(𝑦𝑚); for vectoring mode
 

In Radix-2 CORDIC algorithm, to have n bits output precision n clock cycles are 

required. Hence, latency is more. The latency of computation is a major drawback of 

CORDIC algorithm. In various signal-processing applications, fast computation of 

Square-Root is required. So, attempts are made to reduce latency of computation for 

calculation of Square-Root. 

In the following section, a vectoring mode Radix-4 hyperbolic CORDIC algorithm is 

developed, which is used in the calculation of square root. To ensure the convergence, 



the values of 𝑤𝑚 are taken as,  𝑤𝑚 = 4𝑚𝑦𝑚. 

 

 

The equations for Radix-4 CORDIC are as follows [5]: 

 𝑥𝑚+1 = 𝑥𝑚 + 𝜎𝑚4
−2𝑚𝑤𝑚 , 

 

 

 𝑤𝑚+1 = 4(𝑤𝑚 + 𝜎𝑚𝑥𝑚) ,     (2) 

 𝑧𝑚+1 = 𝑧𝑚 − 𝛽m(𝜎𝑚) , 
 

 

 Here, 𝛽m(𝜎𝑚) = tanh−1(𝜎𝑚4
−𝑚) .  

Here, 𝜎𝑖 takes values {−2,−1,0,1,2}. The scale factor here is  

Κ = ∏ (1 + 𝜎𝑚
2 4−2𝑚)1 2⁄

𝑚   .  

The scaling factor ‘K’ varies with iterations, as it varies with the 𝜎𝑚 values. Its value 

ranges from 1.0 to 2.62. The Radix-4 CORDIC algorithm has two problems: viz 

complexity of selection of  𝜎𝑚  and variable nature of scale factor. 

By selecting four different comparison points, the value of  𝜎𝑚 is calculated. In case of 

circular coordinate CORDIC, the four different comparison points are taken as,  

 

Ρ𝑚(±1) = {
±
𝑥0
2
; 𝑖𝑓 𝑚 = 0

±
𝑥1
2
; 𝑖𝑓 𝑚 ≥ 1

 (3) 

 

Ρ𝑚(±2) = {
±
3𝑥𝑖
2
; 𝑖𝑓 𝑚 ≤ 0

±
3𝑥2
2
; 𝑖𝑓 𝑚 ≥ 2

 (4) 

Since we are using hyperbolic coordinate CORDIC, therefore iteration 𝑚 = 0 is invalid 

here. The iteration count will start from 𝑚 = 1. The calculated values for 𝜎𝑚 are 

 

𝜎𝑚 =

{
 
 

 
 

+2; 𝑖𝑓 𝑤𝑚 > Ρ𝑚(2)

+1; 𝑖𝑓 Ρ𝑚(1) < 𝑤𝑚 ≤ Ρ𝑚(2)

0; 𝑖𝑓 Ρ𝑚(−1) < 𝑤𝑚 ≤ Ρ𝑚(1)

−1; 𝑖𝑓 Ρ𝑚(−2) < 𝑤𝑚 ≤ Ρ𝑚(−1)

−2; 𝑖𝑓 𝑤𝑚 ≤ Ρ𝑚(−2)

  (5) 

Due to most popular Area-Delay-Accuracy trade off [1], reducing latency in case of 

Radix-4 will increase the area by a smaller amount and will decrease the accuracy too. 

3 Proposed Architecture for Radix-4 hyperbolic CORDIC algorithm 

In the following section, we present the pipelined architecture of Radix-4 hyperbolic 

CORDIC algorithm.  



 

Fig. 1.  Architecture of Pre-processing block in unscaled CORDIC block 

The proposed architecture consists of two parallel operations:  

i) Unscaled CORDIC architecture 

ii) Scale factor computation architecture 

The architecture of pre-processing block and first iteration is shown in fig 1 and fig 2 

respectively. This architecture uses 33-bits precision. The number of iterations are 

three; which is half of number of iterations required in Radix-2 CORDIC. 
 

 

Fig. 2. Architecture of first iteration in unscaled CORDIC block 

To calculate the value for σ, combinational block consisting of comparators and 

multiplexers are used. The output of this block is used in both parallel operations. The 

computation for scale factor is carried out parallely with CORDIC iterations. After 



calculating scale factor for each operation, these values are stored in the LUT, which 

provides the final scale factor ‘K’. The final output of unscaled CORDIC block is 

divided by this value of scale factor to get the square root of given input.  

4   Results of Implementation in FPGA 

The CORDIC architecture presented here consists of three stages and a word length of 

33 bits. Out of these 33 bits, 9 bits are used as integer points and remaining as fractional 

points. The MSB is taken as sign bit. The FPGA used here has following specifications 

mentioned in table 1: 

TABLE 1.  FPGA DEVICE & SIMULATION ENVIRONMENT 

FPGA Xilinx Virtex7 

Device  XC7VX690T 

Package  FFG1157 

Synthesis tool XST(VHDL/Verilog) 

Speed -3 

Preffered language Verilog  

Simulator  Isim 

To calculate the square root of a number ‘a’, in cordic initial values of x and y are taken 

as 

x = a + 0.25 and y= a – 0.25  . 

 

 

Fig. 3. Simulation result of Square-Root calculation using Radix-4 CORDIC 

The input here is taken as ‘a’ and output is ‘asqrt’. Here ‘atrun’ is showing the integral 

value of ‘a’ without its fractional part. In ‘asqrt’ too the fractional part is truncated, 

which means only upper 9 bits are taken as output. Pipelined architecture uses structure 

similar to that of  parallel implementation of CORDIC. The only difference is pipelining 

registers are inserted after every iterations. The scale factor for each iteration is 

truncated to five bits in which first two bits represents integral part and remaining three 

represents fractional part. 



  

Fig. 4. Simulation result of Square-Root calculation using Radix-2 CORDIC 

5   Conclusion  

In the proposed work, a normally scaled Radix-4 hyperbolic CORDIC architecture is 

presented. The calculated latency of operation here is five clock cycles as shown in fig 

3; which is approximately half of the Radix-2 CORDIC architecture shown in fig 4. 

But, it involves comparatively more hardware than Radix-2 CORDIC because it 

parallelly compute the scale factor. This study reveals that the speed optimized Radix-

4 CORDIC architecture designed can be suitable for applications in real time.  
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