
Storage Size Estimation for Schemaless Big Data Applications: A JSON-

based Overview

Devang Swami and Bibhudatta Sahoo

National Institute of Technology Rourkela, Rourkela, Odisha, India 769008

swamx.mi@gmail.com, bdsahu@nitrkl.ac.in

Abstract. Numerous technologies have been proposed for storing big data on the

Cloud platform. However, choice of these technologies is always application

specific. Determining a strong model is a perplexing task, which makes it

necessary for the architects and designers to review the requirements and choose a

solution. This paper presents 14 data models available in the market. Above all,

there are more than 45 database solutions available in the market, which can be

categorized into one of the data models each of which is applicable to its own set

of use cases (However, there are few products, which could not be categorized into

any of these 14 data models). Contributors have figured out that while storing

schema-less information, the size of data stored in the database is higher than the

original size. Metadata information and physical schema are the two responsible

factors for such a high amount of storage requirement. Mathematical models and

experimental evaluations conducted show that MongoDB requires storage space

many times more than the original size of data. A storage space estimation equation

for JSON based solutions has been suggested, which can compare the storage

requirement size using space required by CSV as a base. This may be used to

decide an approximate amount of storage space required by the application, before

buying a storage space on the Cloud environment.

Keywords: Big Data, Schemaless Data, Cloud, Storage

1 Introduction

Big data is a buzz word which usually represents enormous data which cannot be

processed by a single system due to its bulky size, large variety, and high-speed

of generation. Advancement in IT technologies is primary reason for generation

of big data. At any given time period only a fraction of big data is useful for most

application domains. Hence, many experts and researchers have recommended

mailto:swamx.mi@gmail.com
mailto:bdsahu@nitrkl.ac.in

use of cloud for big data to optimally manage and reduce the overall cost of

operating such systems. Cloud computing is a model which carters three services

of its users, namely dynamisms, abstraction and resource sharing. Generally a

storage structure is defined in the physical data model. A physical data model

is a representation of data on secondary storage device and it also includes

other data structures like indexes and others. It also defines the constrains of the database

systems, like the data types available to store a data, number of

secondary indexes allowed, and others. As shown in Figure 1, a physical data

model comprises of Message Format, File structure, Physical schema, and other

entities. There are two ways in which data in a table may be stored either in

row-order or column-order considering options provided by physical schema. [32].

The physical schema defines the storage space required to organize the data

on secondary storage devices. Also it defines the number of indexes and limit

the data structures which can be used to create index. A mathematical model

can be used to estimate the size of storage space required to store data. We

found that storing 1.5GB blogging data with three secondary indexes (including

a Text search index) was stored by MongoDB in 2.63GB which was 1.7 times

the original size. It is very critical to know storage space requirement because

it will impact the decision process of buying a storage space. Also, most cloud

service providers limit access to storage by limiting number of IOPS performed

Fig. 1. Physical Data Model [32]

by an application. Hence, it is in the best interest of application developers &

designers to have a detailed knowledge of physical schema of a data model or

database before deciding to host the data on the Cloud. In section 2, relevant

works on physical schema, data models and past attemps to estimate storage size

for different physical schema are discusses. Successively, a mathematical model

of storage space requirement for JSON-based databases is proposed. In section 4, a simulation

of the derived model would be discussed and the results would

be experimental verified. Finally, contributors would conclude the work.

2 Literature Review

A true benchmark in the field of large-scale database management systems was

achieved by information retrieval model by E Codd [8]. Only few works discuss

and suggests new models for evaluating the pros and cons of big data systems. In

Table 1 a list important trends relating to evaluation of data models is revealed

for the period starting from early 1970's to present.

Table 1. Findings and Open Problems

Research

Work

Findings and Open Problems Year

[8] The provisions for data description tables in recently

developed information systems represents a major

advantage towards the goal of data independence

1970

[18] New metadata information types, such as QoS of

service for storage, and algorithms to exploit them,

may be needed to meet emerging trends.

1996

[30] Schema-last is a probably a niche market. 2005

[26] The high increase of disk usage compared to raw

data is due to additional schema as well as version

of information that is stored each key-value pair.

2012

[14] Integration of structured and unstructured data and

information from distributed, heterogonous virtual

clouds need further research.

2013

[7] Data storage and search schemas (or Indexes) are responsible

for high latency & overhead

2014

[19] Applications often drive the design of the underlying

storage systems

2014

Three of every four companies have found the necessity of using or shifting to Big

Data solutions in the next two years [17]. These industries would be facing a great

challenge of researching and choosing a big data technology as they have a large variety

of solutions to choose from. With 10+ Data Models (listed in Table 2) and 45+ DBMS

systems (listed in Table 3) are available for various applications. However, a single

Table 2. Data Models for Big Data Applications

List of Data Models for Big Data Solutions

Content Stores Graph Native

XML

RDBMS Time Series

Document

Stores

Key-Value Stores Navigatio

nal

RDF Stores Wide-Column

Event Stores Multi-value

Stores

Object

Oriented

Search

Engines

Table 3. Database Solutions for Big Data Applications

List of Databases for Big Data Solutions

Adabas Db4o Hypertable MySQL Solr

Algebraix DynamoDB IDMS Neo4j Sphinx

Amaxon

Cloud-

Elasticsearch IMS NEventStore Titan

Search a

Azure Docu- Event Store Jack Rabbit ObjectStore TC-TT

mentDB

BaseX Flare Jena Oracle BigData

SQL

 UniData, uni-

Verse

Cache Google Cloud

Bigtable

 MarkLogic Oracle SQL Versant Object

Database

Cassandra Google Cloud

Datastore

Microsoft

Azure

Search

Redis Voldemort

Couchbase Google Search

Appliance

Applicance

Microsoft SQL

Server

Scalaris VoltDB

CouchDB GraphDB ModeShape Sedna ...

D3 HBase MongoDB Sesame (or

RDF4J)

solution does not fit all purpose of the industry, hence it becomes eventually necessary to

combine one or more solutions into a single conglomerated system that solves all the

business problems. For instance, Oracle Big Data System, provides both NoSQL and/or

Hadoop cluster options to its customer with SQL. A major problem for choosing such

technologies is that very few models such as Relational, Object-oriented, and Object-

Relational have been built on strong mathematical model. Now, modelling of storage is a

non-trivial challenge and in many cases demands evaluation of designs. If resource

requirement cannot be justified, it would become increasingly difficult to monitor

the growth of the system data and could adversely affect performance considering

that scalability issue is not tackled in the right way.

Many prominent tools and technologies have been proposed in past to esti-

mate the size of storage space required. MySQL also provides a perl script to

estimate the size of storage space required for storing a database on the cluster

based storage engine named NDB based on size of storage space used by Inn-

oDB storage engine to store the data [3]. InnoDB storage engine uses Barracuda

file organization. Neo4j, a graph based database also provides a calculator to

estimate storage space, main memory and processing power required at a node

to store & process the data [1]. Neo4j calculator takes number of nodes, size

of a single node, number of edges and storage size of each edge as input to

approximate the storage space required [1].

3 Storage Estimation Model for JSON-based databases

Fig. 2. A simple JSON document

JSON has been one of the most influential format in the movement of migration from

RDBMS to NoSQL [25]. JSON has found its place among many

application domains with semi-structured and unstructured data [16] [10] [4]

[6]. Many databases and solutions have extended JSON to suit their needs like BSON.

BSON is a communication and storage protocol used by MongoDB, which is derived from

JSON.

Fig. 3. Physical Schema of MongoDB (BSON)

Figure 2 depicts a json document with a single field, "name" and its value "Devang".

Figure 3 describes the storage schema of BSON which is a communication and storage

protocol used by MongoDB. BSON is a storage structure which is derived from JSON.

From the figures, it is also evident that BSON will consume much large storage size than

JSON, owing to extra information it keeps for recording the data. Although, this extra

information does help in increasing throughput by informing about type and size of data,

helping I/O processor make smart decisions (if relevant technologies are available and

programmed to use). Above all, this extra information also helps the I/O processor decide

how much bits to skip so as to find next document making read task faster. Nevertheless,

one cannot ignore the increment in amount of storage space they require. We propose to

derive a model that can help us to estimate the factor by which storage size of JSON

increases in comparison with storage size required by CSV. Although, the model is

derived for JSON, it is applicable across all databases and solutions that use JSON or its

derivatives (e.g. BSON, MessagePack 1, etc [5]).

The storage estimation model is explained by considering the physical schema

of CSV and JSON storage schema's. For the purpose of modelling storage space

requirement we proposed comparing storage with flat file databases like CSV

as the raw storage size because of all available formats CSV has been more

commonly used by many literatures as a physical schema of choice due to its

simplicity and high level of human readability that it offers [28] [12] [29] [11].

Consider a source S, which emits data at regular intervals. This data may be

1 MessagePack is a JSON-like but comparatively smaller in size [2].

stored in table T with following properties:

 A Table T consists of N columns and R rows.

 Each column of the table has on average b(k) bytes of data for kth column.

 Total number of bytes for each row of the table on average is B = ∑ 𝐶(𝑘)
𝑛

𝑘=0

 Each column header is of size c(k) bytes of data for kth column.

For simplicity we assume that the source releases data at regular intervals. It can

be considered that source follows some distribution for generating data. Thus it

can be said that the number of rows for the given table T can be approximated

using the prior attained distribution. Also, generating data is a characteristic of

the Source. Hence, the maximum number of bytes required to store data in a

file can be estimated. Thus, we can get the value of bi from the source itself.

By getting N, which is the number of data items required to be stored in the

table, by using distribution, which predicts when the given source will produce

the data. Thus by knowing, bi, R and N, we can compute B. Finally, the size

of column header ci can be measured since the developer or DBA decides the

column name.

CSV organizes the data in row-order format so that columns are mentioned in the first line

and all successive lines store the data. Now amortized size2 of column stored in CSV file

would be ∑ 𝐶(𝑘)
𝑛

𝑘=0
 and since B bytes is the average size of a row, data would take B x R.

Hence, it can be concluded that for CSV store the size of data would be CSV Size = (B x R) +

∑ 𝐶(𝑘)
𝑛

𝑘=0
 bytes. In JSON-based stores, each row is in the format { column1 name: value,

column2 name: value, ...} as shown in Figure 3. Hence, the size of each row in such a

physical schema3 would be (B + ∑ 𝐶(𝑘)
𝑛

𝑘=0
) bytes. For R number of rows in the table, the

size of database would be MC_Size = R x (B + ∑ 𝐶(𝑘)
𝑛

𝑘=0
) bytes. Thus, the ratio of storage

size for JSON-based store to CSV would be ((B + ∑ 𝐶(𝑘)
𝑛

𝑘=0
)) / ((B x R) + ∑ 𝐶(𝑘)

𝑛

𝑘=0
).

2 We use the term amortize because we donot consider the size of putting other characters like comma,

carriage return, space for null values and other special characters.

3 We are not including comma, other special characters and null values since we only

are after a rough estimate.

Fig. 4. Simulation: Ratio of MongoDB to CSV Data Size

4 Experiment

Experimental evaluation has been conducted with a simulation for total column field

storage size of 136 byes and Row size of 474 byes for varying number

of Row for NYC Taxi cab database [9] that is used for traffic patterns analysis

of Taxi cabs to reduce pollution was utilized. To obtain size of column on an

average we created a dummy document with all the values NULL or not set.

We used this as a reference since we are only offer amortized comparison of the

storage size requirement. Figure 4 is a CDF and thus its corresponding PDF

is "Exponential". Which suggests that exponential increase in mongodb storage

size could be noticed when the size of raw data increases linearly. And the results

obtained from simulation are produced in Figure 4.

Table 4. Ratio of MongoDB to CSV Data Size

Year-

Month

of Data

Generate

d

N

o. of

Recor

ds

CSV

Size

(Cumula

tive)

M

ongo

DB

Stora

ge

Size

(Cum

ulativ

e)

Ratio

(MongoDB

size / CSV

size) 2016-

01

10

9068

58

1.6

GB

2.3

GB

1.412

2016-

02

11

3820

49

4.86

GB

7.0

5 GB

1.45

2016-

03

12

2109

52

9.9

GB

14.

75 GB

1.49

2016-

04

11

9343

38

16.68

GB

25.

18 GB

1.44

2016-

05

11

8368

53

24.83

GB

38.

95 GB

1.57

2016-

06

11

1654

70

34.6

GB

50.

17 GB

1.45

 Fig. 5. Experiment: Ratio of MongoDB to CSV Data Size

Results of the simulation were verified by inserting the data of NYC Yellow

Taxi dataset in the big data solution, MongoDB (a JSON-based store) using

WiredTiger storage engine. MongoDB was used for experiment as it is an open

source solution, it uses JSON-like physical schema named BSON and is an extremely

popular NoSQL data store [13]. On storing the data in MongoDB the

size of stored data increased by 1.4 times the size of storage space used by CSV

as shown in Table 4. The results of the experiments are shown in Figure 5 which

confirms the trend suggested by the model. Thus, using the model and simple

math’s we can devise a storage factor for estimating the size of storage space

required by JSON and its derivatives.

 Above all, from the experiment it is discovered that MongoDB takes on an

average 10-13 minutes to import a csv file of size 1.6 GB on a standard non-

 Table 5. MongoDB Throughput (Wall Clock Time)

Fi

le

Import

Start Time

Import

End Time

20

16-

01

10:33:49 10:46:59

20

16-

02

10:52:35 11:08:28

20

16-

03

11:12:48 11:21:39

20

16-

04

16:13:35 16:25:49

20

16-

05

16:27:45 16:39:03

20

16-

06

16:45:50 16:57:00

commercial grade hard drive with 5400 RPM disk speed on a machine with 8GB

RAM and Intel core-i5 6th generation processor.

5 Conclusion

This paper has listed 14 data models and 45+ databases that provides a glimpse

of wide range of solutions available in the market for different big data applications.

Researchers in the given work had also proposed a model that proved the

of storage size determination by using physical schema for JSON-based stores. It

had also been proved that the increment in disk utilization is due to the requirement of

storing schema and version information into the table so as to allow

storing semi-structured or unstructured data. This increased disk usage with

respect to raw size shows exponential increment as the size of data increases.

In near future, a comprehensive research for uniting structured, semi-structured

& unstructured data from different data inception points needs to be carried

out. This research should be from the perspective of storage and QoS achievement using

minimum resources so that it assists decision makers to make an

optimal choice for their application. Finally, the WiredTiger Storage Engine of

MongoDB takes 1.4 times more space than CSV file for NYC Taxi Cab Dataset

including a primary index. Also, the simulation of proposed model varied from

the experimental values by 5% to 11%.

References

1) Hardware sizing calculator. https://neo4j.com/hardware-sizing/, accessed: 2016-09-30

2) Messagepack. http://msgpack.org/index.html, accessed: 2016-09-26

3) Ndbcluster size requirement estimator.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-size-pl.html,

accessed: 2016-09-30

4) Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques. Addison

wesley Boston (1986)

5) del Alba, L.: Data serialization comparison: Json, yaml, bson, messagepack.

https://www.sitepoint.com/data-serialization-comparison-json-yaml-bson-

messagepack/, accessed: 2016-09-26

6) Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a

collaboratively created graph database for structuring human knowledge. In:

Proceedings of the 2008 ACM SIGMOD international conference on Management of

data. pp. 1247-1250. ACM (2008)

7) Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and

technologies: A survey on big data. Information Sciences 275, 314-347 (2014)

8) Codd, E.F.: A relational model of data for large shared data banks. Communications

of the ACM 13(6), 377-387 (1970)

9) Commission, N.T..L.: Tlc yellow taxi trip record data.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml, accessed: 2016-09-30

10) Consortium, W.W.W., et al.: Json-ld 1.0: a json-based serialization for linked data

(2014)

11) Cook, K.B., Kazan, H., Zuberi, K., Morris, Q., Hughes, T.R.: Rbpdb: a database of

rna-binding specificities. Nucleic acids research 39(suppl 1), D301-D308 (2011)

12) Cranford, K.: How to excel with sas. In: Proceedings of the 28 th Annual SCSUG

Conference, Austin, Texas, September (2007)

13) DB-engines.com: Dbms rankings 2017 (2016)

14) Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision

support systems: Putting analytics and big data in cloud. Decision Support Systems

55(1), 412-421 (2013)

15) ENDPOINT.com: Benchmarking top nosql databases

16) Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L.,

Gunasekaran, P., Ceric, G., Forslund, K., et al.: The pfam protein families database.

Nucleic acids research p. gkp985 (2009)

17) Gartner.com: Gartner report

18) Gibson, G.A., Vitter, J.S., Wilkes, J.: Strategic directions in storage i/o issues in large-

scale computing. ACM Computing Surveys (CSUR) 28(4), 779-793 (1996)

19) Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics.

Journal of Parallel and Distributed Computing 74(7), 2561-2573 (2014)

20) Kant, K.: Data center evolution: A tutorial on state of the art, issues, and challenges.

Computer Networks 53(17), 2939-2965 (2009)

21) Katal, A., Wazid, M., Goudar, R.: Big data: issues, challenges, tools and good

practices. In: Contemporary Computing (IC3), 2013 Sixth International Conference

on. pp. 404-409. IEEE (2013)

22) Khalifa, S., Elshater, Y., Sundaravarathan, K., Bhat, A., Martin, P., Imam, F., Rope,

D., Mcroberts, M., Statchuk, C.: The six pillars for building big data analytics

ecosystems. ACM Computing Surveys (CSUR) 49(2), 33 (2016)

23) Montoya, J.A., Velez-Gallego, M.C., Villegas, J.G.: Capacitated facility location

problem with general operating and building costs (2012)

24) NetApp, I.: Netapp all flash fas storage arrays Padhy, R.P., Patra, M.R., Satapathy,

S.C.: Rdbms to nosql: reviewing some next-

25) generation non-relational databases. International Journal of Advanced Engineering

Science and Technologies 11(1), 15-30 (2011)

26) Rabl, T., Gomez-Villamor, S., Sadoghi, M., Muntes-Mulero, V., Jacobsen, H.A.,

Mankovskii, S.: Solving big data challenges for enterprise application performance

management. Proceedings of the VLDB Endowment 5(12), 1724-1735 (2012)

27) Sanders, P.: Algorithm engineering for big data. In: GI-Jahrestagung. p. 57 (2014)

28) Shafranovich, Y.: Common format and mime type for comma-separated values (csv)

files (2005)

29) Sharma, T.C., Jain, M.: Weka approach for comparative study of classification

algorithm. International Journal of Advanced Research in Computer and

Communication Engineering 2(4), 1925-1931 (2013)

30) Stonebraker, M., Hellerstein, J.: What goes around comes around. Readings in

Database Systems 4 (2005)

31) Strohbach, M., Daubert, J., Ravkin, H., Lischka, M.: Big data storage. In: New

Horizons for a Data-Driven Economy, pp. 119-141. Springer (2016)

32) Whitehouse, O.: Fea consolidated reference model document (2005)

