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Abstract

In this paper, we extend our recent work [Opt. Commun. 231(1-6) (2004) 199] by adding quality-of-service (QoS)
provisioning. We revise the earlier proposed node architecture and the token-based distributed ‘earliest available
channel’ algorithm to access the shared medium in a Wavelength Division Multiplexing ring network by supporting
priority based QoS. The proposed algorithm which we call earliest available channel with priority (EACP) is based
on a reservation scheme; however, it differs from the traditional reservation scheme in that no explicit release of reserved
resources takes place. EACP algorithm gives priority to node having high priority request in reserving destination node
and/or data-channel. The node architecture is configured around a tunable transceiver; thus the proposed scheme is
scalable with respect to the number of wavelengths. We study the performance of the algorithm, by simulation, for
bursty traffic modeled by M/Pareto distribution, and compare the performance with another token based algorithm.
We found that our scheme performs superior in terms of wavelength utilization. However, delays are higher due to
the single tunable transceiver in our scheme as opposed to an array of transmitters and receivers used in the other work.
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1. Introduction

There has been a phenomenal growth in demand for bandwidth due to the ever increasing number of
Internet users and increase in variety of Internet applications. It is widely believed that the next generation
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of optical Internet built on Wavelength Division Multiplexing (WDM) technology would satisfy the in-
creasing demand for bandwidth. However, different Internet applications such as those involving multime-
dia traffic require different levels of quality-of-service (QoS). Today’s Internet based on packet switching
paradigms supports the best-effort service. WDM provides the required bandwidth, however, this does
not guarantee the QoS requirements of different applications. Therefore, it is envisaged that the future op-
tical Internet should not only meet the bandwidth requirements but also support the QoS requirements of
different applications.

To provide end-to-end QoS the backbone networks as well as the Local Area Networks (LANS)
must support some kind of QoS. The end-users of Internet applications are mostly hooked to a
LAN. With increase in demand for bandwidth at the backbone network the corresponding demand
at the LAN has increased proportionately. To meet the bandwidth requirements at LAN much work
has been reported in the literature for the deployment of WDM technology in LANs. To provide
end-to-end QoS not only the backbone network but also the LAN must support some kind of QoS.
Available bandwidth is shared among all the network users in a LAN. To deal with multiuser access,
a media access control (MAC) protocol is needed in such networks. In recent years, many media access
control protocols have been proposed for WDM LAN based on star or ring as the underlying physical
topology [2,3].

In this paper, we focus on a token-based WDM LAN with ring as the underlying physical topol-
ogy. Token-based WDM ring is explained in Fumagalli et al. [4,5]. Unlike the FDDI rings, Fumagalli
et al. [4,5] used multiple tokens in the ring. Number of tokens, number of transmitters and receivers
at each node in the ring are equal to number of data-channels in their scheme [4,5]. Most of the
MAC protocols proposed for WDM ring are based on the case where the nodes are equipped with
either a single tunable transmitter and a fixed receiver (TT-FR), or a fixed transmitter and a fixed
receiver (FT-FR). A few of them [5-8] require an array of transmitters and/or receivers at each node.
Such architectures where nodes are equipped with fixed transmitters and/or receivers are not scalable.
The major drawback of such nodes with an array of transmitters and receivers is that they give rise
to high equipment cost and are not scalable. Additionally, when operating in a multi-traffic environ-
ment the MAC protocol should be able to interleave the different priorities of the traffic to meet their
QoS requirements. To the best of our knowledge not much of the work is reported in the literature
to provide QoS in a WDM ring network. For example, Marsan et al. [7] proposed an incremental
slot reservation strategy based on local node traffic with T7-FR as the node architecture. Bengi
et al. [8] proposed different access strategy for real-time and data traffic. Fumagalli et al. [4] proposed
control channel based multi-token approach; the authors concluded that the approach can be
extended to provide QoS. While the work reported in [7,8] used slotted ring, the work [4] used
token-based ring. Number of data-channels is equal to the number of nodes in [7], while in [8] the
number of nodes is greater than the number of channels. In [4], nodes are equipped with transceiver
array imposing constraint on scalability.

The present work, in this paper, is an extension of our previous work describing EAC algorithm [1]. We
revise the node architecture and the EAC algorithm to access the shared medium and to support QoS in an
optical ring network. Like EAC, the revised algorithm which we call ‘earliest available channel with priority’
(EACP) algorithm selects the carliest available data-channel. The protocol is based on a reservation
scheme. To overcome the high reservation latency transmission of a node is overlapped with reservation.
We used bursty traffic for simulating the performance of the EACP algorithm. We compare performance
of the EACP algorithm with another token-based algorithm proposed by Fumagalli et al. [4]; their work is
closest to our work.

The rest of the paper is organized as follows. In Section 2 the system model is described. In Section 3
proposed algorithm is presented. Correctness of algorithm is mentioned in Section 4. Simulation results
are reported in Section 5. Finally, some conclusions are drawn in Section 6.



2. System model
2.1. Node architecture

A number of architectures for WDM LANSs are reported in the literature; see [4,5,7-10] for ring topol-
ogy, and see [11-20] for star topology. In this work, we propose a node architecture for token-based WDM
ring network. Classically, a node architecture is equipped with a tunable transmitter and a fixed receiver, a
fixed transmitter and a tunable receiver, or a fixed array of transmitters and receivers. Such architectures
where nodes are equipped with fixed transmitter(s) and/or receiver(s) are not scalable. Moreover, in such
a scheme, for any change in the spectrum requirements, the old fixed transmitters and/or receivers need
to be replaced; this gives rise to high maintenance cost. To overcome the scalability problem of fixed trans-
mitters and receivers, we propose an architecture where nodes are equipped with a single tunable transmit-
ter for data-channels and a fixed transceiver for control channel; such a configuration is shown in Fig. 1. It
is predicted by many that with the advances made in laser technology, the future nodes of WDM networks
will be equipped with tunable lasers, of course, at a little additional cost. Tunable laser has several attractive
features such as it can be remotely programmed to adjust the changing condition, and no replacement of
laser is needed if the spectrum requirement changes [21].
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Fig. 1. Architecture of a node 7 in ring network.



The node architecture that we have proposed in this work is an extension of the node architecture used in
our previous work [1]. In this current work, we propose a node having the following additional elements — a
receive module, a req_rec’ queue, and DAT and CAT vectors for supporting QoS. In the following para-
graphs, from the completeness point of view, we include the complete details of the node architecture
though this involves a bit of repetition.

We assume N nodes and W wavelengths in the network. One of the wavelengths is dedicated to control
channel and the rest are used for data-channels. Each node is equipped with a single fixed transceiver for
control channel and a tunable one for data-channels. There exists a fixed ADM for control channel and a
tunable ADM for data-channel. The fixed transceiver is tuned to the wavelength dedicated for control
channel to transmit and receive control information between adjacent nodes while the tunable transceiver
is tuned to the data-channels as and when required. Each node in the network maintains status of its trans-
mitter, receivers of the other nodes, and all the data-channels used in the network. Status gives the time at
which transmitter, receivers, and data-channels are available. For two nodes to communicate, the tunable
transmitter of the source and the tunable receiver of the destination must be tuned to the same wavelength
(data-channel). Information transfer between the nodes takes a single hop over a data-channel.

In our proposed architecture, there is a single token that circulates around the ring on the control
channel. The token consists of N fields, each field we call a slot; the slot [ is assigned to node [. Each
field is subdivided into severn mini-fields which we collectively call the control information of a slot. We
define a Token Period (TP) as the period between two successive arrivals of the token at a node. We cal-
culate TP as TP= R+ Nxp, where p is the processing delay of token at each node and R is the associated
ring latency. Since TP is same for all nodes in the network, each node gets a fair chance to access the
shared medium. Thus, delay involved in accessing the token is bounded; this is a characteristic feature
of a ring network.

A node on receiving the token processes each slot, /, (0 < 1<N) to update its knowledge about node / in
the network. Prior to the communication between a pair of nodes, the source must reserve the destination
and one data-channel. A node reserves the destination and the data-channel by writing the control infor-
mation at its allotted slot in the token. We explain the reservation mechanism in Section 3. A node i writes
control information in slot i of the token and modify slot j if the reservation request of node j is de-reserved
at node 7. Besides N — 1 buffers, one for each destination, every node has send, receive, interrupt, token pro-
cessing and interrupt modules; req_rec, req_send and req_rec' queues; DAT, CAT, DAT' and CAT' vectors;
the purpose of each of these elements is explained in the following Section 2.2.

2.2. Notation and definitions
Each node i/ maintains the following four vectors: DAT, CAT, DAT' and CAT’ vectors where:

DAT]d]: indicates the earliest time at which the receiver of node d=#i will be available for receiving;
DATTi]: indicates the earliest time at which the transmitter of node i will be available for transmitting;
CAT]c]: indicates the earliest time at which the data-channel ¢ will be available for transmission, and DA T’
and CAT' are the copies of DAT and CAT vectors, respectively;

7,. transmitter available time

T4 receiver available time

7. data-channel available time

t,. tuning time of the transmitter/receiver

t,: average propagation delay between source and destination

S;: a set of data-channels

S;,S!: a set of nodes whose request is de-reserved at node i

current_time: time at which an action is taken at the node.



The above includes the notations Sj, S;, S; which were not needed in EAC algorithm.

req_made queue: A FIFO queue that holds successful reservation requests made by a node. Each element
of the queue has the following fields: ¢7 — time at which transmitter of a node is tuned to a data-channel; di —
identity of destination node to which transmission will take place; dc — wavelength to which the transmitter
of a node will be tuned to; td — duration for which transmission will take place.

req_rec queue: A sorted queue that holds the reservation requests from other nodes for which the current
node (here current node is the node that is processing the token) is the destination. For example, say, there
is a reservation request from node 1, destined to node 5. When node 5 receives the token, reservation re-
quest from node 1 is added in its req_rec queue. No other node will make an entry of this request in it’s
req_rec queue. Elements of the req_rec queue are same as that of req_made queue. Here dc field specifies
the wavelength to which the receiver of the node will be tuned to.

req_rec' queue: A FIFO queue that holds the requests that are served by a node from its req_rec queue in
the last TP.

T,: indicates the status of a node’s transmitter (FREE/BUSY), and
R.: indicates the status of a node’s receiver (FREE/BUSY).

related request: We define two requests from node i and j to be related if they are either requesting the
same destination node m#i,j or the same data-channel 4,, and node i is requesting at ¢ and node j at ¢’ such
that r<¢'<t+TP.

Control information in a slot(s,d,c,t.,D,p,rm) of the token are:

s: value of one indicates node j is making request for reservation, and zero indicates either the reservation
request made by the node j is de-reserved or node j is not making request for reservation. When s equal to
zero the slot; will not be processed by a node;

d: identity of the destination node requested for reservation;

c¢: identity of the data-channel requested for reservation;

t.. time at which the transmitter of the source and the receiver of the destination are tuned to data-
channel c;

D: duration of transmission;

p: priority of reservation request; 0: low, 1: high;

rm: a vector of N—1 elements that specifies the low priority requests that are modified by node j having
high priority request. Each element of the vector has the following sub-fields: sn — identity of the source
node whose request was modified by node j; dn — identity of the destination node requested for reservation
by node sn; we — data-channel requested for reservation by node sn; ¢ — tuning time of the transmitter and
receiver in the modified request. Initially all sub-fields are set to negative values.

We added two control fields p and rm in the architecture used for EACP in addition to the fields used for
EAC algorithm,

3. EACP algorithm

EACP algorithm differs from the traditional reservation mechanism in the following aspects. First, no
explicit release of reserved resources takes place. Second, unlike the traditional reservation mechanism
where resources are reserved only when they are free, EACP algorithm looks ahead to find the time
at which the required resources are available and reserves the resources from that point of time.



(The algorithm is an adaptation of scheduling-based earlier available time scheduling (EATS) algorithm
[22] originally designed for WDM passive-star based LANs/MANS.)

EACEP algorithm uses the DAT and CAT vectors to find the time at which the resources are available.
Third, to overcome the high reservation latency, the transmission and reservation at a node is overlapped.
Resources (source node transmitter, receiver of destination node, and a data-channel) are reserved for a
duration which is determined at the time reservation request is made, and is different for different reserva-
tion requests. This assumption is natural in some applications such as file transfer or WWW down-loading.
However, if the duration of transmission is unknown, this can be approximated. Since it takes a TP for a
node to reserve the required resources depending on the arrival rate we can estimate the traffic for the TP
and reserve the resources for this period. The reserved resources can be requested for reservation by another
node after the requested period. This protocol does not necessitate the explicit release of reserved resources.
Transmitter of the source and receiver of the destination are tuned to the same data-channel before com-
munication between them takes place. In other words, a lightpath is dynamically established between the
source and destination along the reserved data-channel for a period requested at the time of reservation.
Establishing such a dynamic lightpath is made possible now with the availability of fast tuning lasers as
reported in [23-26].

EACP algorithm gives priority to a node having high priority request in reserving a destination node
and/or data-channel. Process of reservation begins when a node receives the token and completes when
the node receives back the token. High priority requests are always successful in making reservation
whereas a low priority request may or may not be successful. A low priority reservation request is un-suc-
cessful when a node having high priority request de-reserves it. A low priority request is de-reserved at a
node by setting the s field of the slot corresponding to that request to zero. De-reserved requests are not
processed at successive nodes. To avoid starvation of low priority request, the request priority is upgraded
to high after a failure of certain number of reservation attempts. Request whose priority is changed to high
is treated as a new request to the node, so that the previously arrived high priority requests are served first.
Period of transmission is determined at the time reservation request is made. Duration of transmission for
which a request is made is determined at each node by monitoring the traffic at the node for the last 7P
period.

EACP algorithm has the following modules: Send, Receive, Token processing, and Interrupt module. send
and receive modules remain the same as that of EAC algorithm [1], however, EAC and EACP algorithms
differ in the token processing module. Therefore, in the following paragraphs, we detail the token process-
ing and interrupt modules; see [1] for details of send and receive modules.

Interrupt module: a reservation request destined to a node is added in the reg_rec queue of that node. A
low priority request that is added to req_rec queue may or may not be successful in making reservation.
Such low priority requests that are not successful in making reservation and are added to the req_rec queue
of the destination node must be removed from the req_rec queue or appropriate action must be taken such
that the un-successful request is not processed. Later we show that a low priority request that is unsuccess-
ful in making reservation and is added to the req_rec queue of the destination node is either removed from
the req_rec queue or is not processed by the receive module. Interrupt module is invoked to terminate the
processing of a unsuccessful request by the receive module.

Token processing module: when a node receives the token it invokes its foken processing module and the
following actions are taken. For a successful request made by the node: (i) value of the s field of its own slot
is set to zero; (ii) available time of it’s transmitter, destination node’s receiver and reserved data-channel is
updated; (iii) the successful request is added to its req_made queue; (iv) the rm vector of it’s own slot is set to
a negative value. Next, all high priority requests are checked to find if any of the high priority request has
modified a low priority request. If such a request exists, the values of DAT and CAT vectors are restored
back to their previous values. Before updating the values of DAT and CAT vectors a copy of it is stored in
DAT and CAT vectors, respectively, so that it can be restored back to its previous value if required. If the



modified low priority request exists in the req_rec queue of the node it is deleted from the queue. If the re-
ceive module has removed the request from the req_rec queue the Interrupt module is invoked to stop pro-
cessing the request. Values of the DAT and CAT vectors are updated after storing a copy in DAT’ and
CAT' vectors, respectively.

Then the node makes reservation requests for which following actions are taken. If the buffers are non-
empty, a high priority burst is selected if it exists otherwise a low priority burst is selected. Destination iden-
tity of the burst which has the maximum waiting time is found, and an earliest available data-channel is
selected. The maximum of the available time among the node’s transmitter, destination node’s receiver
and the selected data-channel is found. Let this time be ¢’ and this gives the time at which all the required
resources — source node’s transmitter, destination node’s receiver, and the selected data-channel — are avail-
able at the same time. The node can reserve the resources at #’. Let ¢ be the time at which the node has
received the token and it’s reservation process is completed at ¢+ TP. Then, ¢’ <tz+ TP implies the required
resources are available before the reservation is completed. But a node can reserve the required resources
only after it’s reservation request is completed i.e., on or after ¢+ TP period of time. Therefore, if ¢’ <¢t+ TP
the value of ¢’ is set to ¢+ TP. Control information is written at the slot allotted to the node in the token and
the token is sent to the successor node. When the destination node receives the token, it adds the request in
its req_rec queue. When the source receives back the token its reservation process is completed and if the
request is successful it is added in its req_made queue.

In the following subsection, we write the pseudocode for the EACP algorithm.

3.1. Pseudocode for the EACP — algorithm

Perform the following Cases at each node i; in the following pseudocode, node i is the node that is pro-
cessing the module.

CASE 1: if (req_made queue is non-empty and 7,= FREFE) invoke the Send module.

CASE 2: if (req_rec queue is non-empty and R,=FREEFE) invoke the Receive module.
CASE 3: invoke the Token processing module when node i receives the token.

3.1.1. Interrupt module

1. Stop processing the request.

2. R\« FREE.

3.1.2. Token processing module

1. Examine slot{(s,d,c,t.,D,p,rm) of the token. if (s=1) then do the following
o slot{s<0, rm«a negative value)

e Add reservation request in req_send queue of node i.
o DAT(d|« CAT[c]<- DATi]«t.+t,+1,+D

2. for all slot;. (s,d,c,t.,D,p,rm) of the token, if (s=1 and p=1) do the following

e while (rm[k].sn = 0){
— switch(rm[k].sn = 0){



* case 0 or N—1:

if (z = mod(rm[k].sn+1,N) and (i < mod(j— 1,N)){
DATrm[k].dn) <~ DAT'[rm[k].dn]

- CATTrm[k].wc]) <= CAT'[rm[k].wc]

- if (rm[k].dn=1) delete the reservation request if exists in the reg_rec queue node
i else invoke interrupt module
break

} /I end of if, and also end of Case 0 or N-1

x default:

if (z = mod(rm[k].sn+1,N) or (i < mod(j— 1,N)){
DAT[rm[k].dn] <~ DAT'[rm[k].dn]

- CATrm[k].wc] < CAT'[rm[k].wc]

- if (rm[k].dn=1) delete the reservation request if exists in the req_rec queue node
i else invoke interrupt module
break

} /I end of if, and also end of Case default

} I/ end of switch

} Il end of while

end_for.
3. DAT < DAT, and CAT' < CAT
4. for all slot; . (s,d,c,t.,D,p,rm) of the token, if (s=1) do the following

o if (1.+1,+1,+D>DATId))

— DATId)« CAT[c] 1, + t,+1,+D
o if (p=1)

— DAT'[d)« DATId]
— CAT'[c]« CATId]

end_for.
. if node 7’s buffer is empty goto Step 27.
. if node i has no high priority bursts to transmit goto Step 20.
. Find a burst with maximum waiting time. Let the destination identity of the burst be say x.
. for all slot;.; (s=1, d=x, p=o0) do the following

o3 O\

add the wavelength requested by node j to S

de-reserve the request of node j

add node j to S;

record the destination node, data-channel and tuning_time of node ;’s reservation request in rm vector
of slot i .

e DAT[x]<~ DAT'[x], CAT][c]« CAT'[c]

end_for.
9. if (S,#¢) do the following

e DAT[x]« DAT'[x];



o CAT[A,|< CAT'[A,] for all 4,€ S,

10. Find the earliest available data-channel k< {m: CAT'[m] is minimum for m«1,... . W—1}.
11. for all slot(s=1, d#x, c=k, p=0) do the following

e add node j to S!

e de-reserve the request of node j

e record the destination node, data-channel and tuning_time of node ;’s reservation
request in rm vector of slot i.

o DAT[x]< DAT'[x], CAT[c]« CAT'[c]

end_for.
12. while (S;#¢) do the following

e remove a node j from S;
e if'the request of node j is related with another request from node n do the following

— de-reserve the request of node n

— add node n to S!

— record the destination node, data-channel and tuning time of node »’s reservation
request in rm vector of slot i.

— DAT[x]« DAT'[x], CAT[c]« CAT'[c]

13. while (S! # ¢) do the following

e remove an element j from S
o if the request of node i is related with another request from node n do the following

— de-reserve the request of node n

— add node n to S;

— record the destination node, data-channel and tuning time of node n’s reservation
request in rm vector of slot i.

— DAT[x]«<DAT'[x], CAT[c]« CAT'[c]

14. if (S;#¢) goto Step 12.

15. 1, DATIi], tg< DAT]x], 1. CATIK]

16. 1< max(t,,747.). This gives the earliest time at which transmitter of source node i, receiver of
destination node x and a data-channel k are available at the same time.

17. if (t<current_time+ TP) t= current_time+ TP

18. Calculate the duration of transmission D.

19. Prepare slot(s< 1, dex, c<k, t.<1, D, p<1, rm) goto Step 27.

20. Find a burst with maximum waiting time. Let the destination identity of the burst be say x.

21. Find the earliest available data-channel k<« {m: CAT[m] is minimum for m«1.2,...,W—1}.

22. 1, DATIi], 14 DAT[x], 1. CATIK]

23. te—max(t,t47.)

24. if (t<current_time+ TP) t= current_time+ TP

25. Calculate the transmission duration, D

26. Prepare slot(s<1, dx, c<k, t.<1, D, p<0, rm)



27. for all slot;. (s,d,c,t.,D,p,rm) of the token, if (s=1 and d=i) do the following

e Add the request of node j in req_rec queue of node i.

end_for.
28. Send the token to the successor node.

Send and receive modules are identical to those given for EAC algorithm so we have not reproduced
here.

3.1.3. Simulation of EACP algorithm

We illustrate the reservation process in EACP algorithm with the following example. For simplification,
we consider a four-node ring network and two number of data-channels. Available time of the transmitter
and the receiver of each node, and data-channels is shown in Table 1. Table 2 shows the traffic at each node
at some point of time ¢. The entry b,(x,y) corresponding to row m and column » of Table 2 indicates, source
m has a burst of ith priority (zero for low and one for high) to transmit to destination n. Duration of trans-
mission of the burst is indicated by x, and y indicates the time at which the burst has arrived at node m
destined to node n. We choose the following quanta of values for our example: 7,=2, propagation delay
of token between a pair of adjacent node to be 5, and the processing delay of token at each node is assumed
to be negligible. Computed value of TP =20, ¢,=10 (computed as in [27]).

Let £=40 and node 0 receives the token at 7. Suppose the token has no reservation request. Contents of
DAT and CAT vectors at node 0 remain unchanged after processing the token. Node 0 selects the destina-
tion node 2 and data-channel, ;. Following computation is performed: t,= DAT[0] i.e., 45, t,= DAT[2] i.e.,
45, 1.= CAT[/] i.e., 47, t=max(t,,747.) 1.6., 47. T<t+1t,+ TP so the value of 7 is set to z+ TP i.e., 60. Con-
trol information is written in sloto(s=1, d=2, c= 1, t.=1, D=4, p=0, rm) of the token and the token is send
to node 1.

Node 1 updates the values of DAT and CAT vectors at its node shown in Table 4. Before updating, a
copy of DAT and CAT vectors is stored in DAT' and CAT' vectors, respectively, as shown in Table 3.

Table 1

Available time of transmitter and receiver of nodes and data-channels

Node 0 1 2 3
Transmitter 45 40 110 47
Receiver 40 47 45 110
CATI[M]=47 CAT[/,] =110

Table 2

Traffic at different nodes

Node 0 1 2 3
0 bo(4, 23)

1 by(10, 23)

2 b1(25, 33)

3 by(10, 25) bo(25, 35)




Table 3
Contents of DAT and CAT’ vectors at node 1

DAT'[0]=40, DAT'[1]=40, DAT'[2]=45, DAT'[3]=110
CAT'[}4]=47, CAT'[/2]=110

Table 4
Contents of DAT and CAT vectors at node 1

DAT[0]=40, DAT[1]=40, DAT[2]=76, DAT[3]=110
CAT[/4]=76, CAT[4,]=110

Node 1 selects the destination node 0 and data-channel 4, and performs the following computation as
stated earlier: t,=40, 1,=40, 1.=76, 1=76. Control information is written in slot;(s=1, d=0, c=14, t.=71,
D=10, p=0, rm) of the token and the token is send to node 2.

Node 2 selects the destination node 1 and data-channel 4;. The requests from node 0 and node 1 are de-
reserved at node 2, and are recorded in the rm vector of slot, of the token (requests from node 0 and node 1
are of low priority and are requesting data-channel A; which is selected by node 2 having high priority re-
quest). The values of DAT and CAT vectors after processing the token are shown in Table 5. Following
computation is performed: 7,=110, 1,=47, 1.=47, 1=110. Control information is written in sloty(s=1,
d=1, ¢c=4y, t.=1, D=25, p=1, rm) of the token and the token is sent to node 3.

The values of DAT and CAT vectors at node 3 after processing the token are shown in Table 6.

Node 3 selects destination node 0 and data-channel 4,. Following computation is performed: 7,=47,
14=40, 7.=110, 1=110. Control information in slotz(s=1, d=0, ¢c=1,, t.=1, D=10, p=1, rm) of the token
and the token is sent to node 0.

When node 0 receives the token, it finds its reservation request is not successful, and makes another res-
ervation attempt. The values of DAT and CAT vectors after processing the token are shown in Table 7.

Table 5
Contents of DAT and CAT vectors at node 2

DAT[0]=40, DAT[1]=47, DAT[2]= 110, DAT[3]=110
CAT[/1]=47, CAT[},]=110

Table 6
Contents of DAT and CAT vectors at node 3

DAT[0]=40, DAT[1]= 147, DAT[2]=45, DAT[3]=47
CAT[/,]= 147, CAT[/5]=110

Table 7
Contents of DAT and CAT vectors at node 0

DAT[0]=45, DAT[1]= 147, DAT[2]=45, DAT[3]=110
CAT[/4]= 147, CAT[22]=132




Table 8
Contents of DAT and CAT vectors at node 1

DAT[0]= 132, DAT[1]=40, DAT[2] =148, DAT[3]=110
CAT[/,]= 147, CAT[4,]=148

Request from node 3 is entered in the req_rec of node 0. Node 0 selects the destination node 2 and data-
channel /,, and performs the request operation as explained earlier.

When node 1 receives the token the values of DAT[2] and CAT[/] are restored to the previous values by
setting DAT[2]=DAT'[2], and CAT[1]= CAT'[/1]. Note that the request of node 0 was de-reserved at node
2 and node 1 has updated the parameters corresponding to this request which needs to be restored back
before processing further for correct operation of the algorithm. The values of DAT and CAT vectors at
node 1 after processing the token are shown in Table 8. Request from node 2 is entered in the req_rec queue
of node 1.

Reservation process continues as explained above. Note before a node updates values of its DAT and
CAT vectors the copies are stored in DAT’ and CAT’ vectors, respectively, so that these can be restored
back to the previous values if the request become un-successful. In the above example, we have shown
for updating values of DAT" and CAT’ vectors for node 1 only; they need to be updated for every node.

4. Correctness of the algorithm

In the following subsections, we illustrate correctness of the algorithms that: (i) Destination collision
never occurs, (i) Channel collision never occurs, (iii) Transmitter of the source and Receiver of the desti-
nation are tuned to the same data-channel precisely at the same time, (iv) Reservation requests made by a
node do not overlap in time, (v) Reservation requests received by a node do not overlap in time, (vi) Low
priority requests that are added in the req_rec queue of the destination node and are unsuccessful in making
reservation are either removed from the reg_rec queue or are not processed by the receive module. (vii) If a
low priority request is de-reserved at a node having high priority request, then the parameters that are up-
dated at nodes corresponding to the de-reserved request are correctly restored back to its previous value.

The correctness illustrations for the cases (i)—(v) remain the same as given in [1]. The remaining illustra-
tions for cases (vi) and (vii) are given below.

4.1. Low priority requests that are added in the req_rec queue of the destination node and are unsuccessful in
making reservation are either removed from the req_rec queue or not processed by the receive module

Let node x make low priority reservation request destined to node y, which is de-reserved by node z hav-
ing high priority request. Suppose node y has entered the request from node x in its req_rec queue before
node z de-reserves the request. We show that the request of node x is either not processed, or removed from
the req_rec queue of node y. We consider two cases:

Case 1. The receive module of node y has removed the request of node x from the req_rec queue node y.

We know that when a request is removed from the req_rec queue of a node, a copy of it is added to the
req_rec’ queue of that node. This is done in step 1 of the receive module [1]. When node y receives back the
token, the req_rec’ queue is checked for the de-reserved request of node x. If the de-reserved request of node
x is at the end of the req_rec’ queue, it indicates the receive module of node y has most recently removed the
request of node x from the req_rec queue of node y. So, the Interrupt processing module is called, which



stops processing the request from node x and sets the receiver of node y to FREE. Thus the request from
node x is not processed further.

Case 2. The receive module of node y has not removed the request of node x from the req_rec queue
node y.

When node y receives back the token, the de-reserved request of node x is deleted from the reg_rec queue
of node y. This is done in step 2 of the token processing module. Hence, the de-reserve request is not avail-
able for processing.

4.2. If a low priority request is de-reserved at a node having high priority request, then the parameters that are
updated at nodes corresponding to the de-reserved request are correctly restored back to previous values

We consider different cases to show that the parameters updated by de-reserved requests are restored
back to their previous values (the values before updating), giving correct operation of the algorithms.

Case 1. Suppose nodes s; and s, have requests destined to node d, and priority of requests be low and
high, respectively. Let node s; receive the token at ¢ and make reservation request. 4; be the selected data-
channel. The intermediate nodes between s; and s, (both exclusive) update the values of DAT[d] and
CATI/q] at their nodes when they receive the token, mentioned in step 4 of the token processing module.
A node makes a copy of the values of DAT and CAT at it’s node in DAT" and CAT', respectively, before
updating the values of DAT and CAT. This is done in step 3 of the token processing module.

Let node s, receive the token at ¢/ where 1<t <t+ TP. Node s, has high priority request destined to node
d. Request from node s is de-reserved at node s,. Note both the algorithms give priority to node having
high priority requests in reserving the destination node. Node s, records the de-reserve request from node
s1 in its control information field that is in the rm vector of slot, of the token. This is done in step 8 of the
token processing module. A de-reserve request is not processed by other nodes. When the intermediate
nodes between s, and s, receive back the token the values of DAT][d] and CAT[A,] are restored back to their
previous values. This is done is step 1 of token processing module.

Thus the values of DAT and CAT vectors updated at nodes due to de-reserved low priority requests are
restored back to its previous values.

Case 2. Suppose nodes s; and s, have requests destined to node d; and d», and priority of requests be low
and high, respectively. Let node s; receive the token at ¢ and make reservation request. / be the selected
data-channel. The intermediate nodes between s; and s, (both exclusive) update the values of DAT[d]]
and CATT/] at their nodes when they receive the token, this is done in step 4 of the token processing module.
As already stated a node makes a copy of the values of DAT and CAT at its node in DAT’ and CAT’, re-
spectively, before it updates DAT and CAT vectors.

Let node s, receive the token at ¢ where 1<t <t+ TP. Suppose the data-channel selected at node s, be 4
which is also selected by node s; having low priority request. Request from node s, is de-reserved at node s,.
Note both of the algorithms give priority to node having high priority request in reserving data-channel.
Node s, records the de-reserve request from node s; in its control information field. This is done in step
11 of the token processing module.

When the intermediate nodes between s; and s, receive back the token the values of DAT[d;] and CAT[1]
are restored back to their previous values. This is done is step 1 of token processing module.

Thus the values of DAT and CAT updated at nodes due to de-reserved low priority requests are restored
back to previous values.

Case 3. Suppose the requests of nodes i and j are related. If the request of node i is de-reserved by a node
z having high priority request, then the request of node j must be de-reserved. This is because the transmis-
sion from node j follows the completion of transmission of node 7, and the duration of transmission of node
i may be different from that of node z.



Suppose nodes s; and s, have low priority requests destined to node ¢, and the data-channel selected for
reservation be 4; and A,, respectively. Suppose the requests of node s and s, are also related. Suppose node
s3 has high priority request to node d5 and the data-channels selected be 4;. When node s3 receives the token
the values of DAT[d,], CAT[.] and CAT[A,] have updated appropriately at the intermediate nodes. Node s3
has higher priority request, and selected data-channel A; which is also selected by node s; having low pri-
ority request. So, the request of s is de-reserved at node s3, this is done in step 11 of the token processing
module. Requests from nodes s; and s, are related by assumption and the request from node s; is
de-reserved at node s3. This results in the de-reservation of requests from node s, at node s5. This is done
in step 14 of the roken processing module.

The steps 12-14 of the token processing module de-reserve all related requests. All de-reserved requests
are recorded in the rm vector of the control information field of the node that de-reserves the request. In the
case that we considered above, de-reserve requests are recorded in the rm vector of control information field
of node s3.

Updated values of DAT and CAT vectors restored back as explained in case 1.

Case 4. Suppose nodes s; and s, have low priority requests destined to nodes d; and d>, respectively, and
A be the selected data-channel. Suppose the requests from nodes s; and s, are also related. Let node s3 has
high priority request destined to node d;. The low priority request from node s; is de-reserved at node s;
(requests of both s3 and s, are destined to node d; and d; having higher priority). This is done in step 3
of the token processing module. Requests from node s and s, are related, this results in the de-reservation
of request from node s,. Steps 14-16 de-reserve all related requests. All de-reserved requests are recorded in
the rm vector of the control information field of the node that de-reserves the requests. In the case that we
considered above, de-reserve requests are recorded in the rm vector of control information field of node s;.
Updated values of DAT and CAT vectors are restored back as explained in case 1.

The above illustrates correctness of the EACP algorithm.

5. Simulation and results

In this section, we evaluate the performance of the proposed node architecture and EACP algorithm by
simulation. We measure the performance in terms of wavelength utilization, throughput (bps) and mean
delay; we use these three matrics as they are first class design parameters in WDM networks and used
by many authors. We consider a 10 node ring network where nodes are equally spaced around the ring.
The number of data-channels are varied between 5 and 7. We use the following quanta of values in carry-
ing-out the simulation: capacity of data-channel is 1 Gbps, length of the ring is 100 km (FDDI ring can span
upto 200 km [28]), processing time of token at each node is 1 ps, and tuning time of transmitter and receiver
is 5 ps (laser with tuning time of 5 ns are reported in the literature see [12—15]). Computed value of TP co-
mes out to be 510 ps from the formulation given in Section 2.1. The average propagation delay, f,, between
nodes is computed by #,=N/2x 1 where 7 is the propagation delay between adjacent nodes [29]. Further, we
assume that a lightpath is established between source and destination during a TP. We consider bursty traf-
fic as the traffic in LANs are reported to be bursty in nature [30]. We use M/Pareto distribution for gener-
ating the bursts [31]. We keep the size of packets in a burst to be fixed at 10 kb per packet. We assume that
the load in the network is uniformly balanced.

For simulation, we have considered the following three cases:

e Case 1: both size and inter-arrivals of bursts are deterministic which we call DaDb.
e (Case 2: inter-arrival of bursts to follow an exponential distribution and deterministic burst size which
we call EaDb.



e Case 3: inter-arrival of bursts to follow an exponential distribution and burst size follows M/Pareto
distribution we call EaPb.

We define the terms DaDb, EaDb and EaPb using the following notations:

D: deterministic size,

E: exponential distribution,
P: M/Pareto distribution,
a: inter-arrival of burst,

b: burst size.

In the above, the D, P and F are suffixed by a and b, which we use for denoting inter-arrival of the bursts
and burst size, respectively. For example, EaPb implies exponential inter-arrival of bursts and Pareto dis-
tributed burst-size. For deterministic cases, the size of the burst and the inter-arrival of the bursts are
known. We have considered the deterministic cases for comparison purpose only. However, in the real-
world scenario neither the burst size nor the inter-arrival of burst are known in advance. Therefore, the
real-world scenario is better modeled by EaPb. Most of the results presented in the rest of this section be-
long to this case.

This section is divided in two parts. In first Section 5.1, we include the simulation results obtained from
the EACP algorithm. Then, in next Section 5.2 we compare the performance of EACP algorithm with the
available algorithm closest to our work and proposed by Fumagalli et al. [4].

5.1. Simulation results of EACP algorithm

5.1.1. Wavelength utilization vs. burst size

First, we include plots for wavelength utilization vs. burst size — Figs. 2-4. Burst size is expressed in num-
ber of packets. We generated one million packets in our simulation for each study. Wavelength utilization
for fixed-size burst is plotted in Fig. 2. The inter-arrival of bursts is assumed to be 1 ms. The wavelength
utilization increases with increase in the burst size and at a higher burst size the wavelength utilization sat-
urates. The increase in wavelength utilization in the lower range of burst-sizes is mainly due to the increase
in the transmission duration. For example, at a burst size of 50 packets the duration of transmission is
500 ps whereas at a burst size of 200 packets the duration of transmission is 1 ms. At a higher burst size
the duration of transmission increases but the scheduling latency also increases proportionately giving
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Fig. 2. Burst size vs. wavelength utilization for FaFb.
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an almost constant utilization in wavelength. (We have taken scheduling latency as the difference in time
between the start of the transmission on the channel and the availability of the channel.)

Next, we include results of wavelength utilization for exponential inter-arrival and fixed-sized bursts in
Fig. 3. It is observed the wavelength utilization increases marginally with increase in the burst size. The
marginal increase in the wavelength utilization is due to the proportionate increases in the scheduling la-
tency with the increase in the duration of transmission. Similar is the trend for exponential inter-arrival
and Pareto distributed burst size as shown in the Fig. 4.

From Figs. 24, it is also observed that the wavelength utilization decreases with increase in the number
of wavelengths. This is due to the fixed number of packets (which is one million in our present case) that we
have generated in our simulation. These packets are transmitted over the increased wavelength giving lesser
wavelength utilization.

5.1.2. Throughput vs. burst size
The plots for throughput vs. burst size are included in Figs. 5-7. Throughput for fixed inter-arrival time
and burst size is plotted in Fig. 5. It is observed that throughput increases for lower burst size and gets sat-
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urated at higher burst size; this is because of the increase in the wavelength utilization at lower burst size
and gets saturated at higher burst size as shown in Fig. 2.

Throughput for exponential inter-arrival time of burst and fixed burst size is plotted in Fig. 6. It is ob-
served that throughput increases with increase in the burst size. Almost similar is the trend for exponential
inter-arrival time and Pareto distributed burst size as shown in Fig. 7. The increase in the throughput is due
to the increase in the wavelength utilization as shown in Figs. 3 and 4, respectively.

Fig. 8 shows the throughput for different number of nodes at a fixed number of wavelengths. We varied
the number of nodes, and used 10, 12 and 16 node-topologies, and kept the number of wavelengths fixed at
seven. It is observed that with increase in the number of nodes the throughput increases. This is because
with increase in the number of nodes, more nodes have data to transmit giving better wavelength utilization
and higher throughput.

5.1.3. Burst size vs. mean delay

Plots for mean delay vs. burst size are included in Figs. 9-11. Mean delay for fixed arrival and burst size
is plotted in Fig. 9. It is observed that at lower burst size delay experienced by packets is lesser and the delay
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Fig. 9. Burst size vs. mean delay for FaFb.



0.4 . r
EACP-5 ——
0.38 NEACP-7--%--

0.36
0 0.34 L

o @
w 8

0.28
0.26 |
0.24
0.22
0.2

mean delay(se

50 100 150 200 250 300 350 400 450 500
mean burst size

Fig. 10. Burst size vs. mean delay for EaFb.

0.4

0.38 |
036}
0.34

lay(sec

S o032}

d

g 03|

me

0.28 |
0.26 |

0.24

50 100 150 200 250 300 350 400
mean burst size

Fig. 11. Burst size vs. mean delay for EaPb.

increases at higher burst size. This is due to the increase in the throughput at lower burst size and almost a
constant at higher burst size shown in Fig. 5. For exponential inter-arrival time and fixed burst size, delay is
plotted in Fig. 10. From Fig. 10 it is observed that delay decreases with increase in the burst size; this is due
to the increase in the throughput as shown in Fig. 6. Identical observation is made for the exponential inter-
arrival and Pareto distributed burst size shown in Fig. 11.

It is observed from Figs. 9-11 that with increase in the number of wavelengths the delay experienced by
requests decreases. This is in accordance with the WDM technology that the delay experienced decreases
with increase in the number of wavelength. As expected the delays experienced by high-priority requests
are lower than the low-priority requests as shown in Fig. 12 for the case EaPb. Identical observations were
made for other two cases — DaDb and EaDb.

Finally, we include the plot for the delay experienced with varying number of nodes at a given wave-
length for exponential inter-arrival and Pareto distributed burst-size in Fig. 13 for the case EaPb. It is ob-
served that there is decrease in delay; this is due to the increase in the throughput with increase in the
number of nodes as shown in Fig. 8. Thus all the results are consistent.
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5.2. Comparison of EACP algorithm with Fumagalli et al. [4]

In Fig. 14, we plot the wavelength utilization by EACP algorithm and the algorithm proposed by Fuma-
galli et al. It is observed from Fig. 14 that the wavelength utilization in our proposed algorithm is much
higher than that of Fumagalli et al.’s scheme. The lower wavelength utilization in their algorithm is mainly
due to the way it releases the lightpaths. For every request served, the wavelength reserved by the node re-
mains un-utilized for at least one or at the most two token cycles giving lower utilization in their scheme.
This is not the case with EACP.

The delay experienced by packets in their scheme is lower than our algorithm as shown in Fig. 15. This is
mainly due to the difference in node architecture. Their nodes are equipped with an array of fixed transmit-
ters and receivers. Thus, a node can transmit and receive more than one data-channels at the same time. In
our algorithms, nodes have a single tunable transceiver each where a single transmission or/and reception
alone can take place at the same time. We believe that with the recent advances in laser technology, nodes
will be equipped with tunable transceiver rather than a fixed array of transmitters and receivers in future.

In Fig. 16, we compare the throughput, in bps, for their scheme with our algorithm. We observed that the
throughput (bps) obtained by their scheme is higher than our algorithm; this is because of the array of
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transmitters and receivers used by them whereas we used a single tunable transceiver. In Fig. 15, it is ob-
served that the mean delay in their case decreases with increase in burst size and there is a corresponding
increase in throughput (bps) with increase in burst size as shown in Fig. 16.

The main disadvantage of Fumagalli et al.’s scheme is the poor scalability — their scheme does not scale
with wavelength. With increase in the number of wavelengths, the number of transmitters and receivers
have to be increased proportionally. Second, with increasing number of wavelengths, the cost increases
due to addition of transmitter(s) and receiver(s). Third, it also incurs higher maintenance cost because of
multiple tokens in the ring. Our scheme is scalable, it does not incur any additional equipment cost or
the maintenance cost with increase in wavelengths; we do not need any additional tokens too. Further,
it is difficult to incorporate the notion of QoS in their scheme.

6. Conclusions

In this paper, we have proposed a node architecture and an EACP algorithm to access the shared me-
dium and to provide QoS in an optical ring network. As desired in any MAC protocol the EACP algorithm
is contention-free. We have observed that the throughput increases with increase in number of wavelengths
and also with increase in number of nodes. As expected, the higher priority requests experience lesser delays
than the low priority requests. The proposed node architecture uses a tunable transceiver for data-channel
and a fixed transceiver for control channel. The tunable transceiver is an emerging device and is in tune with
the advances in laser technology, and makes the scheme scalable. This proposal is an extension of our re-
cent work [1] and includes the QoS provisioning.

We compared our scheme with that of Fumagalli et al. [4]. Though their scheme does not support QoS,
nonetheless, this is closest to our work. We found that our scheme performs better in terms of wavelength
utilization. Their scheme has smaller delays and higher throughput (bps); this is mainly due to the difference
in node architecture. The node architecture in our scheme has only one tunable and fixed transceiver each,
while that of their scheme has an array of transmitters and receivers. The use of tunable components in our
scheme is in tune with the recent advances in laser technology. It is widely believed that, in future, nodes in
WDM networks will be equipped with tunable transceiver over an array of fixed transmitters and receivers,
however, at a little additional cost.
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