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Abstract—In this paper, we propose a maximum likelihood
based estimation technique for accurately estimating the velocity
of mobile users in Heterogeneous networks (HetNets). In HetNets,
base station (BS) density around a particular user is more
compared to the traditional cellular network, resulting in
frequent handoffs for a better quality of service. However, if
the mobility management is not efficient, there is always a high
probability of handover failures, unnecessary handoffs and call
drops. The accurate estimation of the velocity of mobile users is
one of the most challenging task in mobility management. The
proposed velocity estimation strategy is based on handoff count
which occurs during a predefined time span. Here we model
densely deployed BSs using random waypoint process (RWP) and
analyse the statistics of handover count as a function of velocity,
BS density, and time span. Using these statistics we first derive
the Cramer-Rao lower bound (CRLB) and later we determine a
maximum likelihood estimator (MLE), which is an asymptotic
unbiased estimator. We validate our approach by simulation
which show the tight closeness of MLE asymptotic variance with
CRLB. In addition, our result illustrates that velocity estimation
error decreases with increase in BS density and time span of
handover count measurements.

Keywords—Cramer-Rao lower bound (CRLB), Maximum
likelihood estimator (MLE), Heterogeneous networks (HetNets),
Long term evolution (LTE), Mobile velocity estimation, Base
station density, Handover count.

I. INTRODUCTION

Over the past few decades, the communication network

technology has undergone remarkable development. To meet

the users demands, like seamless connectivity, high data

rate, etc. The network operators are aiming to provide

different inter-network services. Deploying small cells inside

macro cell seems the most promising solution to support

the requirement of high data rate, such cellular networks

are termed as heterogeneous networks (HetNets). HetNets

typically comprise of a variety of the base stations (BSs)

supported by diverse radio access networks with hierarchical

power levels. In HetNets, the chances of handoff (process

of transferring ongoing call from one BS to another) and

call drops are frequent because the BS density around the

typical user is more as compared to traditional macro cell

networks [1], [2]. Thus, mobility management is a crucial task

in HetNets.

Mobility management provides a high quality of service

by reducing the number of handoff failure and unnecessary

handoff. In comparison to other parameters, user velocity, and

BS density plays an important role in a successful handoff

process. Handoff decision process becomes more difficult with

the increase in the BS density, resulting in handoff failure.

In addition, increase in user velocity results in unnecessary

handovers and more frequent handoff failure. These challenges

motivate the need of user-BS specific handoff optimization,

which requires an accurate velocity strategy [3], [4]. Velocity

estimation may also be used for mobility load balancing and

energy management [5]. Smart devices are equipped with

global positioning system (GPS), Wi-Fi, and other sensors

which can be readily used for estimation . However, power

supply in mobile devices is quite limited. In addition, these

services are not ubiquitous; for example GPS signal are weak

in the dense urban area while wi-fi signals are not available

in rural areas. Thus, these technology features are insufficient

for velocity estimation [6].

In Release-8 of long term evaluation (LTE) specification,

mobility state detection has been standardized based on

handover count. The handover count based user velocity

estimation and approximate probability mass function (PMF)

count for handover count is introduced in literature [7]. Based

on our limited literature survey, there is no practical ML

velocity estimator based on handover count. ML estimator

is a most popular approach for obtaining practical estimator,

which is also an alternative to minimum variance unbiased

(MVU) estimator. It is desirable in a situation where MVU

estimator does not exist, or can not be found even if it does.

In this paper, we introduce novel ML estimator for velocity

estimation in HetNets based on handover count. Cramer-Rao

lower bound (CRLB) is used to characterize its accuracy

when base station density (λ) is known. Since the service

provider has the information of the number of BSs in a

particular geographical area, the BSs density in that area can

be calculated and broad-casted as part of system information

in next generation networks. The BSs density may also be

signaled in a user-specific manner to next generation user

equipments which are capable of velocity estimation.

Rest of the paper is organized as follows. In section II, we

described system model used for deploying small cell inside

the macro cell by using stochastic geometry. Subsequently,

we calculated the PMF for handover count using Gaussian

distribution in section III. In section IV, we find the lower

bound variance for velocity estimation. In section V, the novel

ML estimator is derived, which is asymptotically unbiased and



efficient. The accuracy of the proposed estimator is proved by

the numerical results in section VI. Section VII carries the

conclusion of the paper.

II. SYSTEM MODEL

Consider a HetNet scenario, where small cell BSs are nested

inside macro cell coverage area. The respective coverage areas

of small cell BSs is modeled as Poisson-Voronoi tessellation,

as shown in Fig.1. We assume that the BS are randomly

deployed using stochastic geometry. For simplification, we

further assume in the analysis that user travels in straight

path trajectory (for example, through X axis). Here we define

handover count as the measure of number of handovers in

a predefined time span (T ). In other words, it is equal to a

number of intersections between the user trajectory and base

station boundaries [8], [9].

Since the location of small cell BSs and its coverage area

considered as stochastic values, the number of handoff or

handover count is also a random value. Here we assume

that statistics of handover count does not changes with the

change in the direction of mobile user. Further, computing

exact density function of handover count is computationally

very complex and mathematically intractable. With the help of

simulation, we plot the PMF for handover count as a function

of velocity and BS density. The plot of PMF against handover

count for different BS density and user velocity for the fixed

time slot T = 10s are shown in Fig. 2 and Fig. 3.

From Fig. 2 it is clear that, when the BS density is less, the

accuracy of velocity estimation based on handover count will

be lower as the PMF for different velocity is overlapped. For

higher BS density, the PMF is significantly separated leading

to better velocity estimation, as shown in Fig. 3. It is to be

noted that with an increase in user velocity, the variance of

handover count increases, and thus decreases the accuracy of

velocity estimation. Finally, we also observe that with the

increase in BS density and velocity, the PMF of handover

count resembles Gaussian distribution. These observations can

also be verified in previous research work [7].

Fig. 1: Coverage of heterogeneous cellular network
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Fig. 2: PMF of handoff count for λ = 100BS/km2
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Fig. 3: PMF of handoff count for λ = 1000BS/km2

III. PMF FOR HANDOVER COUNT

As discussed in the introduction section, the objective of

this work is to estimate the velocity of a user based on the

number of handover in a predefined time span. However,

in the literature, there is no exact expression available for

PMF of handover count. Hence we approximate PMF for

handoff count using Gaussian distribution this approach is

validated in [8]. In approximation method, the parameters of

a Gaussian distribution are calculated by using curve fitting

tools in MATLAB. The expression for Gaussian probability

density function (PDF) can be stated as,

p (x;μ) =
1√
2πσ2

e−
(x−μ)2

2σ2 (1)

where, μ and σ2 are mean and variance of random variable x

respectively. The discrete and approximate version of Gaussian

PMF p(h; v) for handover count can be expressed as [7],

p (h; v) =
1√

2πσ2 (v)
e
− (h−μ(v))2

2σ2(v) , for h ∈ {0, 1, 2, . . . .}
(2)



The values of μ(v) and σ2(v) are calculated based on

minimum mean square error (MSE) between approximated

PMF p(h; v) and simulated PMF for handover count. The

approximate values of μ(v) and σ2(v) are given as.

μ (v) =
4vT

√
λ

π
(3)

σ2 (v) = 0.07 + 0.41vT
√
λ (4)

Here we have assumed that the distance traveled by

the mobile user is d = vT during fixed time slot. The

approximation of variance for various distance is plotted

against BS density as shown in Fig. 4. It can be noticed that

with an increase in distance d, the variance of handover count

also increases implying lower estimation accuracy.
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Fig. 4: Approximate variance σ2(v) for PMF of handover count versus BS
density

IV. CRLB FOR VELOCITY ESTIMATION

The Cramer-Rao lower bound (CRLB), is the lower bound

in the variance for an unbiased estimator. If an estimator

on an average able to give the true value of an unknown

parameter, then it is termed as an unbiased estimator. An

efficient estimator are those whose variance can achieve

CRLB. However, if it is not feasible to calculate an efficient

estimator than the estimator which gives the lowest variance

is called MVU estimator. Consider an approximated PMF

for handover count as given in equation (2). The generalized

expression for Fisher information I(v) can be calculated by

following procedure in [10] and For velocity estimation a

similar expression can be stated as,

I (v) =
1

σ2 (v)

(
∂μ (v)

∂v

)2

+
1

2σ2(v)
2

(
∂σ2 (v)

∂v

)2

(5)

Substituting value of μ(v) and σ2(v) from equations (3) and

(4) in equation (5) we get,

I (v) =

(
4T

√
λ

π

)2
1

σ2 (v)
+
(
0.41T

√
λ
)2 1

2σ2(v)
2 (6)

So CRLB for velocity estimation denoted as CRLB(v̂) can

be written as,

CRLB (v̂) =
1

I (v)
=

1(
4T

√
λ

π

)2
1

σ2(v) +
(
0.41T

√
λ
)2

1
2σ2(v)2

(7)

A simplified form of CRLB for velocity estimator also be

expressed as,

CRLB (v̂) =
1(

μ(v)
vσ(v) +

1
2

(
0.41T

√
λ

σ2(v)

)2
)2 (8)

V. MLE FOR VELOCITY ESTIMATION

As the name suggest, a ML estimator is based on maximum

likelihood principle. It is a popular approach for obtaining

practical estimator and can be implemented for complicated

estimation problems [10]. The performance of estimator

relies on the property that ML estimator is asymptotically

efficient. Once again we consider an approximated PMF

value for handoff count using Gaussian distribution. In this

approximation method, the parameters of Gaussian PDF are

calculated using the curve fitting tool in MATLAB. Consider

equation (2) for Gaussian PMF for handover count and taking

logarithm both sides, we get,

ln p (h; v) = −1

2
ln
(
2πσ2 (v)

)(− (h− μ (v))
2

2σ2

)
(9)

After differentiating above equation we get,

∂ln p (h; v)

∂v
= − 1

2σ2 (v)

∂σ2 (v)

∂v
+

∂μ (v)

∂v

(h− μ (v))

σ2 (v)

− 1

2
(h− μ (v))

2

(
− 1

(σ2 (v))
2

∂σ2 (v)

∂v

)
(10)

For MLE, we equate the derivative of log-likelihood

function to zero i.e.,

∂ln p (h; v)

∂v
= 0 (11)

By substituting the values of μ(v) and σ2(v) from equations

(3) and (4) in equation (10) and solving for velocity v we get,

v2 +
v

T
√
λ

(
0.41π2

16
+

2× 0.07

0.41

)

− 1(
T
√
λ
)2

π2

16
h2 +

0.07π

2× 0.41
h− 0.07π2

16
= 0

(12)



The above equation is a quadratic equation of the form

ax2 + bx+ c = 0, such that,

a = 1

b =
1

T
√
λ

(
0.41π2

16
+

2× 0.07

0.41

)

c = − 1(
T
√
λ
)2

(
π2

16
h2 +

0.07π

2× 0.41
h− 0.07π2

16

)

Now solving for the roots of v̂, by using the following

equation

v̂ =
−b±√

b2 − 4ac

2a

Solving for v̂ , we get

v̂ = − 1

2T
√
λ

(
0.41π2

16
+

2× 0.07

0.41

)

± π

4T
√
λ

√√√√ h2 + 8×0.07h
0.41π +

4
π2

(
4×0.072

0.412 + 0.412π4

162

) (13)

Finally the ML estimator for velocity estimation based on

handover count, which takes N handover count sample as the

input can be expressed as,

v̂ =
π

4T
√
λ
(−0.41π

8
− 4× 0.07

0.41π

+

√√√√√ 1
N

N−1∑
n=0

h2
n + 8×0.07

0.41πN

N−1∑
n=0

hn

+ 16×0.072

0.412π2 + 0.412π2

4×16

)
(14)

To determine the biasness of the estimator, we take

expectation of estimator i.e. E(v̂),

E [v̂] =
π

4T
√
λ
(−0.41π

8
− 4× 0.07

0.41π

+

√√√√√ 1
N

N−1∑
n=0

E
[
h2
n

]
+ 8×0.07

0.41πN

N−1∑
n=0

E [hn]

+ 16×0.072

0.412π2 + 0.412π2

4×16

)
(15)

On further simplification and substituting E(h) = μ(v) and

E(h2) = μ2(v) + σ2(v) we get,

E [v̂] =
π

4T
√
λ

(−0.41π

8
− 4× 0.07

0.41π

+
4

π

√√√√√
(
vT

√
λ
)2

+ vT
√
λ
(

0.41π2

16 + 2×0.07
0.41

)
+π2

16

(
0.07 + 0.412π2

4×16 + 16×0.072

0.412π2

) ) (16)

Thus, ML estimator expressed in equation (14) is an

asymptotically unbiased estimator as E [v̂] → v for N → ∞.

The proposed estimator for velocity estimation is a nonlinear

function of h, by linearizing it, we get the variance of ML

estimator as,

varMLE (v̂) ≈
(
vσ (v)

μ (v)

)2

(17)

ML estimator expressed in equation (14) is an

asymptotically efficient as for N → ∞ and high BS

density (λ), variance approaches to CRLB.

VI. NUMERICAL RESULTS

In this section, we plot the CRLB and proposed ML

estimator variance for different BS density with respect to

the user velocity and time span used for handoff count

measurement.

A. Results for CRLB

The CRLB plot for velocity estimation with the

variation of user velocity for various BS density (λ =
100, 500, 1000, 5000) is shown in Fig. 5. It can be observed

that CRLB increases with increase in velocity and decreases

with increase in BS density. It can also be verified from Fig.

2 and Fig. 3 where, with λ = 100BSs/km2, the peak of

PMF are overlapped for different values of velocity, this results

in higher estimation error. For the case where BS density is

more say λ = 1000BSs/km2, the peaks of PMFs for different

velocity are distinct, resulting in lower CRLB. Fig. 6 show the

variation of CRLB with respect to time span used for handover

count. When time span T = 30s , velocity v = 50km/h
and λ = 500BSs/km2 the standard deviation is 8km/h and

for the similar case, when time span T = 60s then standard

deviation found to be 4km/h. It indicates that accuracy of

estimator increases with increase in BS density. It can also be

clear that CRLB decreases with increase in time span, so the

accuracy of estimator increases by taking more time span for

handover count.
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Fig. 5: CRLB versus user velocity for various BS density, (T = 10s)

B. Variance of the ML based velocity estimator

The asymptotic variance of the ML estimator is given

in equation (17). The performance metric is square root

of variance which is equivalent to root mean square error

(RMSE). Fig. 7 shows the variation of RMSE with respect to
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Fig. 6: CRLB versus time span for various BS density, (v = 50km/h)

user velocity for various BS density. It is observed from the

plot that the variance of ML estimator is tightly matching with

CRLB. We can also observe that as the BS density increases,

the variance of ML estimator matches more accurately with

CRLB. For example with user velocity of 80km/h and BS

density λ = 500, the RMSE of ML estimator is just 18km/h
which is same as CRLB.
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Fig. 7: RMSE versus velocity for various BS density, (T = 10s)

We have used smaller measurement time span T = 10s
so that estimator can provide fast results. The time span

for handover count depends on service provider strategy.

Therefore the variation of RMSE for ML estimator with time

span is also investigated and is shown in Fig. 8. The variance

of ML estimator decreases with increase in the time span

of handover count measurement. Here we can also observe
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Fig. 8: RMSE versus time span for various BS density, (v = 50km/h)

that longer time span increases the accuracy of ML velocity

estimation. However, increase in time span slow downs the

response of the estimator. So there exist a the trade-off between

accuracy and rapidness in velocity estimation .

VII. CONCLUSION

In this paper, we have proposed ML estimator for velocity

estimation based on handover count. Since computation of

exact PMF of handover count is mathematically intractable,

we approximate PMF of handover count using Gaussian

distribution. Next, we derived the CRLB for velocity

estimation and compared it with the variance of proposed

ML estimator. The results show the tight closeness of ML

estimator asymptotic variance with CRLB. Further, we have

observed that the variance of ML velocity estimator decreases

with increases in time span for specified handover count.

Thus, there exists the trade-off between the accuracy and

rapidness in velocity measurement. In addition, the variance of

velocity estimator decreases with increase in BS density, which

facilitate more accurate velocity estimation in the hyper-dense

network.
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