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Abstract – In this paper, we propose two algorithms and a node architecture to ac-

cess the shared medium and to support priority based quality-of-service (QoS) in WDM

ring network. The algorithms give priority to a node having high priority request in

reserving a destination node and/or a data-channel. The first algorithm selects a data-

channel based on earliest availability of the data-channel, and the second with minimum

scheduling latency. Both the schemes employ reservation mechanism, however they dif-

fer from the traditional reservation mechanism in that no explicit release of the reserved

resources take place. The proposed schemes are contention-free, easy to implement and

require no buffers at nodes. The proposed node architecture is configured around tun-

able transceiver(s) and thus makes the scheme scalable. We study performance of both

the schemes, by simulation, for bursty traffic modeled using an M/Pareto distribution,

and compare the performance with another token based algorithm. We found that our

schemes perform better in terms of wavelength utilization. However, delays are higher

due to the single tunable transceiver used in our scheme as opposed to an array of trans-

mitters and receivers in the previous work.
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1 Introduction

It is widely believed that the increasing demand for bandwidth at the backbone network

due to the rapid increase in the number of Internet users as well as the growing Internet
applications of voluminous data can be satisfied by the WDM technology. The end-
users of Internet applications are mostly hooked to a Local Area Network (LAN). With
increase in demand for bandwidth at LANs the demand for bandwidth at backbone
network has increased proportionately. To meet the bandwidth requirements at LANs,

much work is being reported in the literature for the deployment of WDM technology
in LANs. A growing number of Internet applications require some kind of prioritized
quality-of-service (QoS) guarantee such as delay constraints and low packet loss. To
provide end-to-end QoS, LANs must support some kind of QoS. Bandwidth available in
a LAN is shared among all the network users, therefore, to deal with multiuser access a

media access control (MAC) protocol is needed in such networks. In recent years many
media access control protocols have been proposed for WDM LANs based on star or
ring as the underlying physical topology [1, 2].

In this paper, we focus on a LAN based on ring topology. Ring offers several at-
tractive features such as higher channel utilization and bounded delay. There are three

well-known access strategies for LANs based on ring topology, namely, token ring, slot-
ted ring, and insertion ring. These have been widely used as LANs both in commercial
systems and research prototypes. WDM slotted rings are reported in [3 - 6] where syn-
chronization among the slots are done at WDM ADMs [7]. Token based WDM ring
network is explained in Fumagalli et al. [8, 9]. Unlike FDDI rings, Fumagalli et al.
[8, 9] discussed multiple tokens in a ring.

Most of the MAC protocols for WDM ring network are based on the case where
there are as many wavelength channels as the nodes in the network. For example, in
Fumagalli et al.’s [8, 9] mechanism, the number of tokens, number of transmitters and
receivers at each node in the ring are equal to the number of data-channels. This results
in scalability problem. Most of the proposed protocols equip their nodes with either

tunable transmitter and fixed receiver (TT-FR) or fixed transmitter and fixed receiver
(FT-FR). A few of them [3, 4, 9, 10] require an array of transmitters and/or receivers
at each node and, thus add to high equipment cost. Moreover, such architectures are
not scalable.

Additionally, when operating in a multi-traffic environment a MAC protocol should

be able to interleave the different traffic types to meet their QoS requirements. To the
best of our knowledge not much of the work is reported in the literature to provide
QoS in WDM ring network; for the representative work done in this area, see [3, 4, 8].
Marsan et al. [4] proposed an incremental slot reservation strategy based on the local
node traffic for the TT-FR architecture. Bengi et al. [3] proposed different access
strategies for real-time and non-real-time data traffic. Fumagalli et al. [8] proposed a

control channel based multi-token approach to provide QoS. While proposals [3, 4] are
for slotted ring, proposal [8] is for token based ring. the number of channels is equal to
the number of nodes in [4], while in [3] the number of nodes is greater than the number
of channels. In [8], each nodes is equipped with a transceiver-array imposing constraints
on scalability.

In this paper, we propose a node architecture and two variants of token based algo-
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rithms to access the shared medium and to support QoS in optical ring networks. In
our proposal, each node is equipped with one tunable and one fixed transceiver each.
Both the algorithms presented in this paper differ in selecting a data-channel. First
algorithm which we call earliest available channel with priority (EACP) selects the ear-
liest available data-channel. (The EACP algorithm is a variant of our previous EAC

algorithm [11] which does not include priority.) Second algorithm which we call min-
imum scheduling latency with priority (MSLP) selects a data-channel with minimum
scheduling latency. We define minimum scheduling latency as the difference in time
between start of the transmission on the channel and availability of the channel. We
have shown in this work, by simulation, that the minimum scheduling latency increases

the channel throughput and decreases the delay. Both the proposed algorithms operate
in a distributed manner and are based on reservation. However, both differ from the
traditional reservation schemes in that no explicit release of the reserved resources takes
place. To overcome high reservation latency, transmission of a node is overlapped with
reservation. We have shown that both the algorithms have the capability of avoiding
channel collisions and destination conflicts. We used bursty traffic for simulating the

performance. We compare the performance of EACP algorithm with another token
based algorithm proposed by Fumagalli et al. [8] which also supports QoS in a WDM
ring network and is closest to our work.

The rest of the paper is organized as follows. Architecture and notations used in
the system model are described in Section 2. In Section 3, the proposed algorithms are

detailed. Correctness of algorithms is illustrated in Section 4. Simulation results are
presented in Section 5. Finally, conclusions are drawn in Section 6.

2 System Model

There exist few node architectures for WDM ring networks. For example, Cho and

Mukherjee [12], proposed a node architecture for WDM ring networks where each node
is equipped with a SONET ADM and a DWADM (Dynamic Wavelength Add-Drop
Multiplexers). In their architecture a node must transmit and receive on the same
wavelength. This limits usage of the wavelength and hampers performance of the ring.
Fumagalli et al. [8, 9] proposed a node with an array of fixed transmitters and receivers.
Fixed transmitters and receivers limit the scalability of the network. Some work is

reported for nodes with tunable transmitters [13 - 15], and with tunable receivers [16 -
22]. To overcome limitations of [12] and scalability of [8, 9], we propose an architecture
for a node in WDM ring networks as shown in Fig. 1, and discuss the node-architecture
in subsequent sub-sections.

2.1 Architecture

We assume N number of nodes in the network, numbered as 0,1,2, ......, N−1. Node i of
the network is connected to node j by an optical fiber such that j = (i+1) mod N where
i 6= j, and for all i, j ∈ 0,1, ... , N − 1 then node j is the successor of node i and node i
is the predecessor of node j. The system supports W wavelengths λ0, λ1, ... , λW−1 out
of which (W − 1) number of channels are data-channels and one control channel. One
of the wavelengths, say, λ0 is dedicated to control channel and rest of the wavelengths
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are used for data-channels. A circuit is established on wavelength, λ0, between every
pair of adjacent nodes i and j. The circuit thus established uses the dedicated control
channel. A pair of nodes i and j are said to be adjacent if j is successor of node i and
node i is predecessor of node j.

In this work each node is equipped with a single fixed transceiver for control channel

and a tunable one for data-channels. The fixed transmitter and receiver are tuned to
wavelength, λ0, to transmit and receive control information between the adjacent nodes,
and tunable transmitter and receiver are tuned to data-channels as and when required.
Each node in the network maintains status of its transmitter, receivers of other nodes,
and data-channels in the network. Status gives the time at which transmitter, receivers,

and data-channels are available. For two nodes to communicate, tunable transmitter of
the source and tunable receiver of the destination must be tuned to the same wavelength
(data-channel). (Information transfer now takes a single hop over a data-channel.) With
the advances made in laser technology, It is predicted by many that, in future, nodes
of WDM networks will be equipped with tunable lasers. With a little additional cost,
tunable lasers offer several attractive features such as they can be remotely programmed

to adjust to the changing conditions, and no replacement of lasers is needed if spectrum
requirements change [23].

There is a single token which circulates around the ring on the control channel. The
token consists of N fields, each field we call a slot; slot l is assigned to node l. Each
field is subdivided into seven mini-fields which we collectively call control information

of a slot. We define a Token Period (TP) as the period between two successive arrivals
of the token at a node. We calculate TP as TP = R+N × p where p is the processing
delay of the token at each node and R is the Ring Latency. Since TP is same for all the
nodes in the network each node gets a fair chance to access the shared medium. Thus,
the delay involved is bounded which is the inherent feature of a ring network.

A node on receiving the token processes each slot, l, (0 ≤ l < N) to update its
knowledge about node l in the network. Prior to the communication between a pair of
nodes, the source must reserve the destination and a data-channel. A node reserves the
destination and a data-channel by writing the control information at its allotted slot in
the token. Reservation mechanism is explained in Section 3. A node i writes control

information in slot i of the token and modify slot j if reservation request of node j is de-
reserved at node i. A node has N−1 buffers, one for each destination node. Additionally,
each node has send, receive, interrupt, and token processing modules; req rec, req send
and req rec

′
queues; DAT, CAT, DAT

′
and CAT

′
vectors. The functionality of each of

these elements is explained in the following section.

2.2 Notations and Definitions

Each node i maintains four vectors namely, DAT, CAT, DAT
′
and CAT

′
vectors where:

DAT [d] : Indicates the earliest time at which the receiver of node d 6= i will be available
for receiving,
DAT [i] : Indicates the earliest time at which the transmitter of node i will be available
for transmitting,

CAT [c] : Indicates the earliest time at which the data-channel c will be available for
transmission, and
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Figure 1: Architecture of a Node i in a Ring Network

DAT
′

and CAT
′

are copies of the DAT and CAT vectors, respectively.

τt : Transmitter available time,
τd : Receiver available time,
τc : Data-channel available time,
tu : Tuning time of the transmitter/receiver,
tp : average propagation delay between source and destination,
Sλ : A set of data-channels,

Si, S
′
i : Sets of nodes whose requests are de-reserved at node i, and

current time : time at which an action is taken at the node.

req made queue : A FIFO queue that holds successful reservation requests made by a
node. Each element of the queue has the following fields: tt – time at which trans-

mitter of a node is tuned to a data-channel, di – identity of destination node to which
transmission will take place, dc – wavelength to which the transmitter of a node will
be tuned to, and td – duration for which transmission will take place.

req rec queue : A sorted queue that holds the reservation requests from other nodes

for which the current node (here current node is the node that is processing the token)
is the destination. For example, say, there is a reservation request from node 1 which
is destined to node 5. When node 5 receives the token, reservation request from node
1 is added in its req rec queue. No other node will make an entry of this request in its
req rec queue. Elements of req rec queue are same as that of req made queue. Here dc

field specifies the wavelength to which the receiver of the node will be tuned to.
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req rec
′
queue : A FIFO queue that holds the requests that are served by a node

from its req rec queue in the last TP.

Tx : Indicates the status of a node’s transmitter (FREE/BUSY), and
Rx : Indicates the status of a node’s receiver (FREE/BUSY).

related request: We define two requests from node i and j to be related if they are
either requesting the same destination node m 6= i, j or the same data-channel λk, and
node i is requesting at t and node j at t

′
such that t < t

′
< t+ TP .

Control information in a slotj(s, d, c, tc, D, p, rm) of the token are:

s : value of one indicates node j is making request for reservation, and zero

indicates either the reservation request made by node j is de-reserved or node
j is not making request for reservation. When s is zero the slotj will not be
processed by the node.

d : identity of the destination node requested for reservation.

c : identity of the data-channel requested for reservation.

tc : time at which transmitter of the source and receiver of the destination
are tuned to data-channel c.

D : duration of transmission.

p : priority of reservation request; 0: low, 1: high.

rm : A vector of N − 1 elements that specifies the low priority requests that
are modified by node j having high priority request. Each element of the vec-
tor has the following sub-fields: sn - identity of the source node whose request
was modified by node j, dn - identity of the destination node requested for
reservation by node sn, wc - data-channel requested for reservation by node

sn, and tt - tuning time of the transmitter and the receiver in the modified
request. Initially all sub-fields are set to negative values.

3 Algorithms

In this section, we detail our proposed EACP and MSLP algorithms. Both the algo-

rithms are based on reservation mechanism. However, they differ from the traditional
reservation mechanism in the following aspects. First, no explicit release of the reserved
resources takes place. Second, unlike the traditional reservation mechanism where re-
sources are reserved only when they are free, our proposed algorithms looks ahead to
find the time at which the required resources are available and reserves the resources

from that point of time. Third, to overcome the high reservation latency, the trans-
mission and reservation at a node is overlapped. Resources (source node transmitter,
receiver of destination node, and a data-channel) are reserved for a duration which is
determined at the time reservation request is made, and is different for different reserva-
tion requests. The reserved resources can be requested for reservation by another node

after the requested period. This does not necessitate an explicit release of the reserved
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resources. Two nodes can make reservation requests for the same resources during the
same token cycle but for different times. Transmitter of the source and receiver of the
destination are tuned to the same data-channel before communication between them
takes place. In other words, a lightpath is dynamically established between the source
and destination along the reserved data-channel and remains in place until the trans-

mission is completed. Availability of fast tuning lasers reported in [24 - 27] makes it
possible to set up lightpaths dynamically; this is in line with the upcoming technology.

Both the algorithms give priority to a node having a high priority request in reserving
a destination node and/or data-channel. Process of reservation begins when a node
receives the token and completes when the node receives back the token. High priority

requests are always successful in making reservation whereas a low priority request may
or may not be successful. A low priority reservation request is un-successful when a
node having a high priority request de-reserves it. A low priority request is de-reserved
at a node by setting s field of the slot corresponding to that request to zero. De-
reserved requests are not processed at subsequent nodes. To avoid starvation of low
priority requests, the priority of such requests is upgraded to a high after the failure

of certain number of reservation attempts. A request whose priority has been changed
to high is treated as a new request to the node, so that the previously arrived high
priority requests are served first. Each period of transmission is determined at the time
reservation request is made. Duration of transmission for which a request is made is
monitored at each node for the last TP .

Both the algorithms have the following modules: Send, Receive, Token processing,
and Interrupt modules. While Send, Receive, and Interrupt modules are identical for
both the algorithms, the algorithms differ in Token processing module. The function of
each of the modules is explained below.

Send module: If a node’s req made queue is non-empty and the transmitter, Tx, of
the node is FREE, then the node invokes its send module. The front element of the
req made queue is removed and the status of the transmitter, Tx, is set to BUSY. The
transmitter is tuned to the data-channel specified in the dc field of the removed element
at the time specified in the tt field of that element. Once the transmitter of the node is
tuned to the specified data-channel, transmission from the node begins and continues for

a duration specified in the td field of the element. After transmission is completed, status
of the transmitter, Tx, is set to FREE, and another transmission process begins. Note
the transmitter of the node is tuned to the specified data-channel only at the specified
time even-though status of the transmitter is set to BUSY . Successful reservation
requests are added in the req made queue in the order in which the successful requests

are made.

Receive module: Analogous to the send module, if a node’s req rec queue is non-
empty and receiver, Rx, of the node is FREE, then the node invokes its receive module.
The front element of the req rec queue is removed and status of the receiver, Rx, is

set to BUSY . Receiver is tuned to the data-channel specified in the dc field of the
removed element at the time specified in the tt field of that element. Once the receiver
of the node is tuned to the specified data-channel, node starts receiving information and
continues for a duration specified in the td field of the element. After the transmission
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is completed, status of the receiver, Rx, is set to FREE, and another transmission
process begins. Note receiver of the node is tuned to the specified data-channel only at
the specified time even-though status of the receiver is set to BUSY .

Interrupt module: A reservation request destined to a node is added in req rec queue

of that node. A low priority request that is added to req rec queue may or may not
be successful in making reservation. Such low priority requests that are not successful
in making reservation and are added to the req rec queue of the destination node must
be removed from the req rec queue or appropriate action must be taken such that the
un-successful request is not processed. Later we show that a low priority request that is

unsuccessful in making reservation and is added to the req rec queue of the destination
node is either removed from the req rec queue or is not processed by the receive module.
Interrupt module is invoked to terminate the processing of a unsuccessful request by the
receive module.

Token processing module: When a node receives the token it invokes its token

processing module. Following actions are taken by the token processing module. First, if
the request made by the node is successful then following actions take place: it sets the
s field of its own slot to zero; it updates the available time of its transmitter, destination
node receiver and the reserved data-channel; it adds the request to its req made queue; it
sets the rm vector of its own slot to a negative value. Second, all high priority requests

are checked to find if any high priority request has modified any low priority request. If
such a request exists, the values of DAT and CAT vectors modified by the low priority
request are set to the previous values. If the modified low priority request exists in the
req rec queue of the node then it is deleted from the queue. If the receive module has
removed the request from the req rec queue then Interrupt module is invoked. Third,

values of DAT and CAT vectors are updated. If the buffers are non-empty, then a
high priority burst is selected if it exists else a low priority burst is selected. Then it
finds the destination identity of the burst which has the maximal waiting time, and
the earliest available data-channel in case of EACP and a data-channel with minimum
scheduling latency in case of MSLP is selected. The maximum of the available time
among the node’s transmitter, destination node’s receiver and the selected data-channel

is found. Let this time be t
′

and this gives the time at which all the required resources
- source node’s transmitter, destination node’s receiver, and the selected data-channel -
are available at the same time. The node can reserve the resources at t

′
. Let t be the

time at which the node has received the token and its reservation process is completed
at t + TP . Then, t

′
< t + TP implies the required resources are available before the

reservation is completed. But a node can reserve the required resources only after its
reservation request is completed i.e., on or after t + TP . Therefore, if t

′
< t + TP the

value of t
′

is set to t
′

= t+TP . Control information is written at the slot allotted to the
node in the token and the token is sent to the successor node. When the destination node
receives the token, it adds the request in its req rec queue. When the source receives

back the token its reservation process is completed and if the request is successful it is
added in its req made queue.

In the following subsections, we write pseudocode for both the algorithms.
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3.1 EACP - Algorithm

Perform the following Cases at each node i

CASE: if (req made queue is non-empty and Tx = FREE) invoke Send module.

CASE: if (req rec queue is non-empty and Rx = FREE) invoke Receive module.

CASE: Invoke Token processing module when node i receives the token.

3.1.1 Send module

1. Remove the front element of the req made queue. Let it be req made(l).

2. Tx ← BUSY

3. if (current time ≥ req made(l) · tt)

• Tune the transmitter to data-channel, req made(l) · dc

4. if (current time ≥ req made(l) · tt+ tu)

• Transmit data to node, req made(l) · di

5. if (current time ≥ req made(l) · tt+ tu + tp + req made(l) · td)

• Tx ← FREE

3.1.2 Receive module

1. Remove the front element from the req rec queue. Let it be req rec(l). Add a
copy of it to req rec

′
queue.

2. Rx ← BUSY

3. if (current time ≥ req rec(l) · tt)

• Tune the receiver to data-channel, req rec(l) · dc

4. if (current time ≥ req rec(l) · tt+ tu)

• Receive data from the source

5. if (current time ≥ req rec(l) · tt+ tu + tp + req rec(l) · td)

• Rx ← FREE

3.1.3 Interrupt module

1. Stop processing the request

2. Rx ← FREE
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3.1.4 Token Processing module

1. Examine sloti(s, d, c, tc, D, p, rm) of the token. if (s = 1) then do the following

• sloti(s← 0, rm← a negative value)

• Add reservation request in req send queue of node i.

• DAT [d]← CAT [c]← DAT [i]← tc + tu + tp +D

[The values of DAT and CAT vectors are updated for successful reservation
requests]

2. For all slotj 6=i(s, d, c, tc, D, p, rm) of the token, if (s = 1 and p = 1) do the following

• while (rm[k].sn ≥ 0){

– switch(rm[k].sn ≥ 0){

∗ case 0 or N − 1 :
if (i ≥ mod(rm[k].sn+ 1, N) and (i ≤ mod(j − 1, N)){

· DAT [rm[k].dn]← DAT
′
[rm[k].dn]

· CAT [rm[k].wc]← CAT
′
[rm[k].wc]

· if (rm[k].dn = i) delete the reservation request if exists in the
req rec queue node i else invoke interrupt module

· break

} // end of if, and also end of Case 0 or N-1

∗ default :
if (i ≥ mod(rm[k].sn+ 1, N) or (i ≤ mod(j − 1, N)){

· DAT [rm[k].dn]← DAT
′
[rm[k].dn]

· CAT [rm[k].wc]← CAT
′
[rm[k].wc]

· if (rm[k].dn = i) delete the reservation request if exists in the
req rec queue node i else invoke interrupt module

· break

} // end of if, and also end of Case default

} // end of switch

} // end of while

[Low priority requests that are de-reserved by high priority requests are ei-
ther removed from req rec queue of the node if exist or the transmission
corresponding to the requests is dropped.]
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3. DAT
′ ← DAT , and CAT

′ ← CAT

4. For all slotj 6=i(s, d, c, tc, D, p, rm) of the token, if (s=1) do the following

• if ( tc + tu + tp +D > DAT [d])

– DAT [d]← CAT [c]← tu + tc + tp +D

• if (p = 1)

– DAT
′
[d]← DAT [d]

– CAT
′
[c]← CAT [c]

[Values of DAT and CAT vectors are updated for all requests and the values
of DAT

′
and CAT

′
vectors are updated for high priority requests.]

5. if node i’s buffer is empty goto Step 27.

6. if node i has no high priority bursts to transmit goto Step 20.

7. Find a burst with maximum waiting time. Let the destination identity of the burst
be x.

8. For all slotj 6=i,x(s = 1, d = x, p = o) do the following

• add the wavelength requested by node j to Sλ

• de-reserve the request of node j

• add node j to Si

• record the destination node, data-channel and tuning time of node j’s reser-

vation request in rm vector of slot i .

• DAT [x]← DAT
′
[x], CAT [c]← CAT

′
[c]

[Low priority request for destination node x is de-reserved. Values of DAT
and CAT vectors are restored to their previous values.]

9. if (Sλ 6= φ) do the following

• DAT [x]← DAT
′
[x];

• CAT [λm]← CAT
′
[λm] for all λm ∈ Sλ

10. Find the earliest available data-channel k ← {m : CAT
′
[m] is minimum for m←

1, · · · ,W − 1 }.

11. For all slotj(s = 1, d 6= x, c = k, p = 0) do the following

• add node j to S
′
i

• de-reserve the request of node j

• record the destination node, data-channel and tuning time of node j’s reser-

vation request in rm vector of slot i .

• DAT [x]← DAT
′
[x], CAT [c]← CAT

′
[c]
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[Low priority request for data-channel k is de-reserved. Values of DAT and
CAT vectors are restored to their previous values.]

12. while (Si 6= φ) do the following

• remove a node j from Si

• if the request of node j is related with another request from node n do the
following

– de-reserve the request of node n

– add node n to S
′
i

– record the destination node, data-channel and tuning time of node n’s
reservation request in rm vector of slot i .

– DAT [x]← DAT
′
[x], CAT [c]← CAT

′
[c]

[De-reserve all requests that are related to a low priority request that is de-
reserved for want of destination node.]

13. while (S
′
i 6= φ) do the following

• remove an element j from S
′
i

• if the request of node i is related with another request from node n do the
following

– de-reserve the request of node n

– add node n to Si

– record the destination node, data-channel and tuning time of node n’s
reservation request in rm vector of slot i .

– DAT [x]← DAT
′
[x], CAT [c]← CAT

′
[c]

[De-reserve all requests that are related to low priority requests; such requests
are de-reserved for want of data channel.]

14. if (Si 6= φ) goto Step 12.

15. τt ← DAT [i], τd ← DAT [x], τc ← CAT [k]

16. τ ← max(τt, τd, τc). This gives the earliest time at which transmitter of source

node i, receiver of destination node x and data channel k are available at the same
time.

17. if (τ < current time+ TP ) τ = current time+ TP

18. Calculate duration of transmission D.

19. Prepare sloti(s← 1, d← x, c← k, tc ← τ,D, p← 1, rm) goto Step 27.

20. Find a burst with maximum waiting time. Let the destination identity of the burst
be x.

21. Find the earliest available data-channel k ← {m : CAT [m] is minimum for m ←
1, 2, ...,W − 1 }.
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22. τt ← DAT [i], τd ← DAT [x], τc ← CAT [k]

23. τ ← max(τt, τd, τc)

24. if (τ < current time+ TP ) τ = current time+ TP

25. Calculate transmission duration, D

26. Prepare sloti(s← 1, d← x, c← k, tc ← τ,D, p← 0, rm)

27. For all slotj 6=i(s, d, c, tc, D, p, rm) of the token, if (s = 1 and d = i) do the following

• Add the request of node j in req rec queue of node i.

28. Send the token to the successor node.

3.1.5 Simulation of EACP Algorithm

We illustrate the reservation process in EACP algorithm with the following example.
For simplification, we consider a 4-node ring network and two data-channels. Available
time of the transmitter and the receiver of each node, and data-channels is shown in
Table-1. Traffic at each node, at some point of time t, is shown in Fig. 2, and the same
is tabulated in Table-2. The entry bi(x, y) corresponding to row m and column n of
Table-2 indicates that source m has a burst of i− th priority (zero for low and one for

high) to transmit to destination n. Duration of transmission of the burst is indicated by
x, and y indicates the time at which the burst has arrived at node m destined to node n.
We choose the following quanta of values for our example: tu = 2, propagation delay of
token between a pair of adjacent node to be 5, and the processing delay of token at each
node is assumed to be negligible. Computed value of TP = 20 and tp = 10 (computed

as in [12]).

Node 0 1 2 3
Transmitter 45 40 110 47
Receiver 40 47 45 110

CAT[λ1] = 47, CAT[λ2]= 110

Table 1: Available time of transmitters and receivers of nodes, and data-channels.

Node 0 1 2 3
0 b0(4, 23)
1 b0(10, 23)
2 b1(25, 33)
3 b1(10, 25) b0(25, 35)

Table 2: Traffic (as depicted in Figure 2) at different nodes in tabular form.
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Figure 2: Illustration of traffic (as given in Table 2) at different nodes in the ring.

Let t = 40, and node 0 receives the token at time t. Suppose the token has no
reservation request. Contents of DAT and CAT vectors at node 0 remain unchanged
after processing the token. Node 0 selects the destination node 2 and data channel,
λ1. Following computation is performed: τt = DAT[0] i.e., 45, τd = DAT [2] i.e., 45,

τc = CAT [λ1] i.e., 47, τ = max (τt,τd, τc) i.e., 47. τ < t + tu + TP so value of τ is
set to t + TP i.e., 60. Control information is written in slot0(s = 1, d = 2, c = λ1, tc =
τ,D = 4, p = 0, rm) of the token and the token is sent to node 1.

Node 1 updates values of DAT and CAT vectors at its node as shown in Table 4.
Before updating, a copy of DAT and CAT vectors is stored in DAT

′
and CAT

′
vectors,

respectively as shown in Table 3.

DAT
′
[0] = 40, DAT

′
[1] = 40, DAT

′
[2] = 45, DAT

′
[3] = 110

CAT
′
[λ1] = 47, CAT

′
[λ2] = 110

Table 3: Contents of DAT
′

and CAT
′

vectors at node 1.

DAT[0] = 40, DAT[1] =40, DAT[2] = 76, DAT[3] = 110

CAT[λ1] = 76, CAT[λ2] = 110

Table 4: Contents of DAT and CAT vectors at node 1.

Node 1 selects destination node 0 and data-channel λ1, and performs the following
computation as stated earlier: τt = 40, τd = 40, τc = 76, τ = 76. Control information
is written in slot1(s = 1, d = 0, c = λ1, tc = τ,D = 10, p = 0, rm) of the token and the
token is sent to node 2.

Node 2 selects destination node 1 and data-channel λ1. The requests from node 0
and node 1 are de-reserved at node 2, and are recorded in the rm vector of slot2 of the

14



token (requests from node 0 and node 1 are of low priority and request data-channel
λ1 which is selected by node 2 having a high priority request). Values of DAT and
CAT vectors after processing the token are shown in Table 5. Following computation
is performed: τt = 110, τd = 47, τc = 47, τ = 110. Control information is written in
slot2(s = 1, d = 1, c = λ1, tc = τ,D = 25, p = 1, rm) of the token and the token is sent

to node 3. Values of DAT and CAT vectors at node 3 after processing the token are
shown in Table-6.

DAT[0] = 40, DAT[1] = 47, DAT[2] = 110, DAT[3] = 110

CAT[λ1] = 47, CAT[λ2] = 110

Table 5: Contents of DAT and CAT vectors at node 2.

DAT[0] = 40, DAT[1] = 147, DAT[2] = 45, DAT[3] = 47

CAT[λ1] = 147, CAT[λ2] = 110

Table 6: Contents of DAT and CAT at node 3.

Node 3 selects destination node 0 and data-channel λ2. Following computation is
performed: τt = 47, τd = 40, τc = 110, τ = 110. Control information in slot3(s =
1, d = 0, c = λ2, tc = τ,D = 10, p = 1, rm) of the token and the token is sent to node
0. When Node 0 receives the token, it finds its reservation request not successful, and

makes another reservation attempt. Values of DAT and CAT vectors after processing
the token are shown in Table 7.

DAT[0] = 45, DAT[1] = 147, DAT[2] = 45, DAT[3] = 110

CAT[λ1] = 147, CAT[λ2] = 132

Table 7: Contents of DAT and CAT vectors at node 0.

Request from node 3 is entered in req rec of node 0. Node 0 selects destination node

2 and data-channel λ2, and performs the request operation as explained earlier. When
node 1 receives the token values of DAT [2] and CAT [λ1] elements are restored to the
previous values by setting DAT [2] = DAT

′
[2], and CAT [λ1] = CAT

′
[λ1]. Note that

the request of node 0 was de-reserved at node 2 and node 1 has updated the parameters
corresponding to this request which needs to be restored back before processing further

for correct operation of the algorithm. Values of DAT and CAT vectors at node 1 after
processing the token are shown in Table 8. Request from node 2 is entered in req rec
queue of node 1.

Reservation process continues as explained above. Before a node updates values
of its DAT and CAT vectors copies of the vectors are stored in DAT

′
and CAT

′

vectors, respectively so that these can be restored back to the previous values if the
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DAT[0] = 132, DAT[1] = 40, DAT[2] = 148, DAT[3] = 110

CAT[λ1] = 147, CAT[λ2] = 148

Table 8: Contents of DAT and CAT vectors at node 1.

request becomes un-successful. In the above example, we have illustrated working of
the algorithm for node 1 only.

3.2 MSLP Algorithm

In EACP algorithm, a node selects the earliest available data-channel. This may give

rise to higher scheduling latency and lower wavelength utilization, if the destination
node is available at a time much later than the data-channel availability. To reduce
the scheduling latency and give higher wavelength utilization we propose the MSLP
algorithm that selects a data-channel with minimum scheduling latency. We expect
this strategy to give rise to higher wavelength utilization and lower delay in most of

the cases. We illustrate, in the following paragraphs with an example, the difference
between EACP and MSLP algorithms.

Suppose a node wishes to transmit and the destination is available at time dt. Let
the system has three channels c1, c2 and c3 and they are available at time tc1, tc2 and
tc3, respectively such that the following condition tc1 < tc2 < tc3 < dt holds. In EACP

algorithm, the node selects the earliest available data channel c1 and the scheduling
latency on the data channel is dt − tc1. In MSLP algorithm, the minimum scheduling
latency channel c3 is selected for transmission. The scheduling latency on channel c3 is
dt − tc3 which is less than the scheduling latency on channel c1.

Next, we illustrate another situation where MSLP has advantage over EACP. Let us
consider a situation where node a wishes to communicate with node c, and node b wishes

to communicate with node d. Let tc and td be the time at which destination nodes c and
d, respectively will be available. Suppose the following condition tc1 < td < tc2 < tc3 < tc
holds and node a receives the token. In EACP, node a selects the earliest available data
channel c1. When node b receives the token it selects data channel c2. In this case, the
transmission from node b has to be delayed till data channel c2 is available. However, in

MSLP the node a selects minimum scheduling channel c3, and node b selects channel c1,
thereby reducing the transmission delay from node b; thus giving rise to better channel
utilization.

Working of both ECAP and MSLP algorithm remains the same other than the
channel selection strategy. MSLP algorithm selects minimum scheduling latency data-

channel in step 10 and 21 of the token processing module. Except steps 10 and 21 of the
Token processing module, MSLP algorithm remains exactly the same as that of EACP
algorithm.
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4 Correctness of the Algorithm

In the following subsections, we illustrate correctness of the algorithm that: (i) Destina-

tion and data-channel collisions never occur, (ii) Transmitter of the source and receiver
of the destination are tuned to the same data-channel precisely at the same time, (iii)
Reservation requests made by a node do not overlap in time, (iv) Reservation requests
received by a node do not overlap in time, (vi) Low priority requests that are unsuccess-
ful in making reservation and are added in the req rec queue of the destination node are

either removed from the req rec queue or are not processed by the receive module, and
(v) If a low priority request is de-reserved at a node having high priority request, then
the parameters that are updated at that node corresponding to the de-reserved request
are correctly restored back to previous values.

For the correctness illustrations for the cases (i) – (v), see [11]. The remaining

illustrations for cases (vi) and (vii) are given below.

4.1 Low priority requests that are unsuccessful in making reservation and are
added in the req rec queue of the destination node are either removed from
the req rec queue or are not processed by the receive module

Let node x make low priority reservation request destined to node y, which is de-reserved
by node z having high priority request. Suppose node y has entered the request from

node x in its req rec queue before node z de-reserves the request. In the rest of this
sub-section, we show that the request of node x is either not processed, or removed from
the req rec queue of node y. We consider the following two cases:

Case 1: The receive module of node y has removed the request of node x from req rec

queue of node y.
We know that when a request is removed from the req rec queue of a node, a copy

of it is added to the req rec
′

queue of that node. This is done in step 1 of the receive
module. When node y receives back the token, the req rec

′
queue is checked for the

de-reserved request of node x. If the de-reserved request of node x is at the end of the
req rec

′
queue, it indicates the receive module of node y has most recently removed the

request of node x from the req rec queue of node y. So, the Interrupt processing module
is called, which stops processing the request from node x and sets the receiver of node
y to FREE. Thus the request from node x is not processed further.

Case 2: The receive module of node y has not removed the request of node x from

req rec queue of node y.
When node y receives back the token, the de-reserved request of node x is deleted

from the req rec queue of node y. This is done in step 2 of the token processing module.
Hence, the de-reserved request is not available for processing.
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4.2 If a low priority request is de-reserved at a node having high priority re-
quest, then the parameters that are updated at that node corresponding
to the de-reserved request are correctly restored back to previous values

We consider different cases to show that the parameters updated by de-reserved requests
are restored back to previous values, giving correct operation of the algorithms.

Case 1: Suppose nodes s1 and s2 have requests destined to node d, and priority of
requests be low and high respectively. Let node s1 receive the token at t and make reser-
vation request. Let λ1 be the selected data-channel. The intermediate nodes between
nodes s1 and s2 (both exclusive) update values of DAT [d] and CAT [λ1] elements at
their nodes when they receive the token as mentioned in step 4 of the token processing

module. A node makes a copy of the values of DAT and CAT vectors at its node in
DAT

′
and CAT

′
vectors, respectively before updating the values of DAT and CAT

vectors. This is done in step 3 of the token processing module.
Let node s2 receive the token at t

′
where t < t

′
< t+ TP . Node s2 has high priority

request destined to node d. Request from node s1 is de-reserved at node s2. Both the

algorithms give priority to node having high priority request in reserving the destination
node. Node s2 records the de-reserved request from node s1 in its control information
field that is in the rm vector of slot2 of the token. This is done in step 8 of the token
processing module. A de-reserved request is not processed by other nodes.

When the intermediate nodes between s1 and s2 receive back the token values of

DAT [d] and CAT [λ1] elements are restored back to their previous values. This is done
is step 1 of token processing module. Thus, values of DAT and CAT vectors updated at
nodes due to de-reserved low priority requests are restored back to their previous values.

Case 2: Suppose nodes s1 and s2 have requests destined to nodes d1 and d2, and
priority of requests be low and high, respectively. Let node s1 receive the token at t and

make reservation request. Let λ be the selected data-channel. The intermediate nodes
between s1 and s2 (both exclusive) update values of DAT [d1] and CAT [λ] elements at
their nodes when they receive the token (this is done in step 4 of the token processing
module). As already stated a node makes a copy of values of DAT and CAT vectors
at its node in DAT

′
and CAT

′
vectors, respectively before it updates DAT and CAT

vectors.
Let node s2 receive the token at t

′
where t < t

′
< t+TP . Suppose the data-channel

selected at node s2 be λ which is also selected by node s1 having low priority request.
Request from node s1 is de-reserved at node s2. Note both of the algorithms give priority
to nodes having high priority request in reserving a data-channel. Node s2 records the

de-reserved request from node s1 in its control information field. This is done in step 11
of the token processing module.

When the intermediate nodes between s1 and s2 receive back the token values of
DAT [d1] and CAT [λ] elements are restored back to their previous values. This is done
is step 1 of token processing module.

Thus values of DAT and CAT vectors updated at nodes due to de-reserved low
priority requests are restored back to their previous values.
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Case 3: Suppose requests of nodes i and j are related. If request of node i is de-
reserved by a node z having high priority request, then request of node j must be
de-reserved. This is because the transmission from node j follows the completion of
transmission of node i, and duration of transmission of node i may be different from
that of node z.

Suppose nodes s1 and s2 have low priority requests destined to node d1 and data-
channels selected for reservation be λ1 and λ2, respectively. Suppose requests of nodes
s1 and s2 are also related. Suppose node s3 has high priority request to node d3 and
the data-channel selected be λ1. When node s3 receives the token values of DAT [d1],
CAT [λ1] and CAT [λ2] elements are updated appropriately at the intermediate nodes.

Node s3 has a higher priority request, and selected data-channel is λ1 which is also
selected by node s1 having a low priority request. So, the request of s1 is de-reserved
at node s3, this is done in step 11 of the token processing module. Requests from nodes
s1 and s2 are related (by assumption), and request from node s1 is de-reserved at node
s3. This results in de-reservation of the request from node s2 at node s3. This is done
in step 14 token processing module.

The steps 12,13 and 14 of the token processing module de-reserve all the related
requests. All de-reserved requests are recorded in rm vector of the control information
field of the node that de-reserves the requests. In the case that we considered above,
de-reserved requests are recorded in rm vector of control information field of node s3.

Updated values of DAT and CAT vectors are restored back as explained in case 1.

Case 4: Suppose nodes s1 and s2 have low priority requests destined to nodes d1 and
d2, respectively, and λ be the selected data-channel. Suppose requests from nodes s1

and s2 are also related. Let node s3 has high priority request destined to node d1. The
low priority request from node s1 is de-reserved at node s3 (requests of both s3 and

s1 are destined to nodes d1 and d3 having higher priority requests). This is done in
step 3 of the token processing module. Requests from nodes s1 and s2 are related, this
results in de-reservation of the requests from node s2. Steps 14, 15, and 16 de-reserve
all the related requests. All de-reserved requests are recorded in rm vector of the control
information field of the node that de-reserves the requests.

In the case that we considered above, de-reserved requests are recorded in rm vector

of control information field of node s3. Updated values of DAT and CAT vectors are
restored back as explained in case 1.

The above illustrates correctness of both the algorithms.

5 Simulation and Results

In this section we evaluate performance of the proposed node architecture and both the
algorithms by simulation. We measure performance in terms of wavelength utilization,
throughput, wavelength utilization and mean delay; these metrics are first class design
parameters in WDM networks and have been used by many researchers. Wavelength
utilization is the ratio of transmission time to transmission time plus scheduling latency.

Scheduling latency is the difference between the time when a channel becomes free/idle
and the time when transmission begins on the channel. Delay is the time for a request
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to access the data channel. Since packets are not processed at intermediate nodes, so
the time is establishing a lightpath is the sole contributor to delay. Therefore, delay is
the time-difference between a request’s arrival and start of its transmission.

For simulation, we take a 12 node ring network, and consider equally spaced nodes
around the ring for simplicity. We vary number of data-channels from 6 to 8 for collecting

simulation data. We use the following quanta of values in carrying-out the simulation:
capacity of data-channel is 1 Gbps, length of the ring is 96 kms (FDDI ring can span up
to 200 kms [28]), processing time of token at each node is 1 µs, tuning time of transmitter
and receiver is 5 µs (laser with tuning time of 5 ns are reported in the literature see [14
- 17]). Computed value of TP comes out to be 480 µs from the formulation given in

section 2.1. The average propagation delay, tp, between nodes is computed by tp = N/2
×τ where τ is the propagation delay between adjacent nodes [29]. We consider bursty
traffic as the traffic in LANs are reported to be bursty in nature [30]. We consider both
high priority and low priority traffic in our simulation. High priority traffic is generated
with a probability of 0.4. We use M/Pareto distribution for generating bursts of both
low and high priorities [31]. We keep the size of packets in each burst to be fixed at 10

kb per packet and the maximum size of the burst is kept at 48 packets.
For simulation we have considered the following three cases:

• Case 1: Both size and inter-arrivals of bursts are deterministic. We call this
situation as DaDb.

• Case 2: Inter-arrival of bursts to follow an exponential distribution and determin-

istic burst size. We call this situation as EaDb.

• Case 3: Inter-arrival of bursts to follow an exponential distribution and burst size
follows M/Pareto distribution. We call this situation as EaPb.

We define the terms DaDb, EaDb and EaPb using the following notations:

D : Deterministic size,

E : Exponential Distribution,

P : M/Pareto Distribution,

a : Inter-Arrival of burst, and

b : Burst Size.

In the above, the D, P and E are suffixed by a and b, which we use for denoting inter-
arrival of the bursts and burst size, respectively. For example, EaPb implies exponential
inter-arrival of bursts and Pareto distributed burst-size. For deterministic cases, the
size of the burst and the inter-arrival of the bursts are known. We have considered the

deterministic cases for comparison purpose only. However, in real-world scenario neither
the burst size nor the inter-arrival of burst are known in advance. Therefore real-world
scenario is better modeled by EaPb; most of the results presented in the rest of this
section belong to this case.

The rest of the section is divided in two parts. In first part, we include performance
assessment for both the proposed EACP and MSLP algorithms. In second part, we
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Figure 3: Wavelength utilization vs. number of requests for EaPb

include comparison of EACP algorithm with another algorithm which is closest to our
work and was proposed by Fumagalli et al. [8].

5.1 Performance Estimation of EACP & MSLP Algorithms

A. Wavelength utilization vs. number of requests: First, we estimate wavelength
utilization with increase in number of requests for the three cases EaPb, EaDb and
DaDb, respectively, and include plots in in Figures 3, 4 and 5, respectively. From
the plots in Figure 3 for EaPb case (exponential inter-arrival of the bursts and Pareto
distributed burst size), we observe that wavelength utilization for both EACP and MSLP

algorithms increases with increase in the number of requests.
With increase in number of requests the duration of transmission is increased and

there are more requests waiting to be transmitted from a node. However, increase in
wavelength utilization in EACP is marginal with increase in the number of requests.
MSLP algorithm has higher wavelength utilization than EACP algorithm. The higher
wavelength utilization in MSLP is due to the lower scheduling latency channel that it

selects. Similar are the trends for exponential inter-arrival of bursts and deterministic
burst size (EaDb) as shown in Figure 4.

However, for fixed inter-arrival of bursts and fixed burst size (DaDb), we have taken
burst size to be of 30 packets and the inter-arrival of burst to be at 1 ms, for simulation.
It is observed from Figure 5 that the wavelength utilization remains almost constant both

for MSLP and EACP algorithms. The constant nature of the wavelength utilization is
due to the proportionate increase in the scheduling latency with increase in the number
of requests. Again, wavelength utilization is higher for MSLP algorithm than in EACP
due to the reasons stated earlier.

B. Mean delay vs. number of requests: Next, we include plots for mean delay
experienced by high priority requests for EaPb in EACP and MSLP algorithms in
Figure 6 for different number of wavelengths. We have assumed that a request is dropped
if the resources are not available for transmission within 100 ms of its arrival. So the
maximum delay experienced by a request is bounded by100 ms, and the minimum delay
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Figure 4: Wavelength utilization vs. number of requests for EaDb
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Figure 5: Wavelength utilization vs. number of requests for DaDb
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Figure 6: Mean delay vs. number of requests for high priority traffic in EaPb
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Figure 7: Mean delay vs. number of requests for EAC and EACP algorithms in EaPb

is that of a ring latency which is 480 µs in the present case. It can be observed from
Figure 6 that requests experience lesser delays in MSLP than in EACP algorithm. The

lesser delay in MSLP is due to the higher wavelength utilization as shown in Figure 3.
It can also observed from the Figure that with increase in the number of data channel
the delay decreases. This is in accordance with the WDM technology that the delay
experienced decreases with increase in the number of data channels. Similar phenomenon
is observed for the other two case EaDb and DaDb.

To observe the efficacy of the priority based (EACPO and MSLP) algorithms over
non-priority based (EAC) algorithm [11], we include plots, in Figure 7, of the mean delay
experienced by high priority requests in EACP and the mean delay for (any) requests
in EAC. The results clearly shows that the delay experienced by high priority requests
in EACP is lower than the delay experienced by requests in EAC. This shows that the

EACP gives priority to high priority request in transmission, and the priority-based
algorithms work effectively.

C. Blocking probability vs. number of requests: Finally, we include plots, in
Figure 8, for the blocking probability in EACP and MSLP algorithms for varying number
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Figure 8: Blocking probability vs. number of requests for EaPb
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Figure 9: Wavelength utilization vs. burst size for EaPb

of data channels. We compute blocking probability as the fraction of the dropped
requests over the overall requests. We have assumed that a request is dropped if resources

are not available for transmission within 100 ms of its arrival. It can be observed from
the figure that the blocking probability, in MSLP, is lower than that in EACP algorithm.
The lower blocking probability in MSLP is attributed to the low delay experienced by
overall requests in MSLP. We observe form the plots that overall blocking probability
decreases with increase in the number of data channels. This phenomenon is in consistent

with the WDM technology that the request-drop decreases with increase in the number
of data channels.

5.2 Comparison of EACP algorithm with Fumagalli et. al. [8]

In this subsection, we give comparison between EACP and Fumagalli et. al.’s algo-
rithm [8]. We consider bursts of varying sizes for comparison and assume that no burst

is dropped. We include comparison results obtained for wavelength utilization, mean-
delay and throughput. In Figure 9, we include plots for wavelength utilization in EACP
algorithm and in the algorithm proposed by Fumagalli et al. [8]. It is observed from
Figure 9 that the wavelength utilization in our proposed algorithm is much higher than
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Figure 10: Mean delay vs. burst size for EaPb
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Figure 11: Throughput (bps) vs. burst size for EaPb

that of Fumagalli et al. The lower wavelength utilization in [8] is mainly due to the way

it releases the lightpath. For every request served, the wavelength reserved by the node
remains un-utilized for at least one or at most two token cycles and thus giving lower
utilization in [8].

The delay experienced by packets in Fumagalli et al. is lower than our proposed
algorithm as shown in Figure 10. This is mainly due to the differences in node archi-

tectures. In Fumagalli et al. [8], nodes are equipped with an array of fixed transmitters
and receivers. Thus, a node can transmit and receive in more than one data-channels
simultaneously. In our proposed algorithms, each node has a single tunable transceiver
where only a single transmission and reception can take place at the same time, thus
resulting in higher delays. It is widely believed that, with the advances in laser technol-

ogy, the WDM nodes in future networks will be equipped with tunable transceiver(s)
rather than a fixed array of transmitters and receivers.

In Figure 11, we plot throughput in bps for Fumagalli et al.’s algorithm [8] and our
proposed EACP algorithm. We observe that the throughput(bps) for Fumagalli et al. [8]
is higher than the one in our EACP algorithm for the reason stated above. In Figure 10,

it is observed that the mean delay in Fumagalli et al. decreases with increase in burst
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size and there is a corresponding increase in throughput; bps with increase in burst size
is shown in Figure 11. This observation also confirms the fairness of the implementations
of both the algorithms.

Fumagalli et. al. [8] Proposed Algorithms
Number of Token Equal to the number of

data-channels
One

Number of Transmit-
ters and Receivers per
node

Equal to the number
data-channels

Two

Type of transmitter
and receiver

All fixed One tunable and one
fixed

Fiber-Delay Lines Exists at every node None

Channel selection Selects a free channel EACP select earliest
available channel and
MSLP selects a chan-
nel with minimum
scheduling latency

Transmission A node can transmit and
receive on more than one
data-channels at the same
time

A node can transmit on
one data-channel and re-
ceive on another data-
channel at the same time

Header processing Header is processed at
each intermediate node,
and this introduces delay
in the transmission

No processing of header
takes place at intermedi-
ate nodes

Packet Removal A packet is removed by
the source that injected
the packet into the chan-
nel

Packets are automati-
cally removed at the des-
tination node

Synchronization
requirement

None Yes

Table 9: Qualitative comparison of the proposed algorithms with Fumagalli et. al. [8]

The main disadvantage of Fumagalli et al. [8] is that the scheme is not scalable with
the number of used wavelengths. With increase in the number of wavelengths, the num-
ber of transmitters and receivers has to be increased proportionately. Addition of new
transmitter and receiver increases the running cost of the network. With multiple tokens
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in the ring, the token maintenance is not an easy task. Such disadvantages of Fumagalli
et al. [8] are the inherent advantages of our algorithm and are well addressed at the
cost of increased delays. However, for error-free operation in our proposed algorithm all
nodes are required to operate in synchronously in time-domain. This necessitates the
use of a synchronous transport like SONET in the ring which will add to the cost of the

network.
A qualitative comparison of the features of our proposed algorithms and Fumagalli

et. al. algorithm [8] is summarized in Table 9.

6 Conclusions

In this paper, we proposed a node architecture and two algorithms which we called EACP
and MSLP algorithms, respectively to access the shared medium and to provide QoS in
optical ring networks. As desired in any MAC protocol, both the proposed algorithms
are contention-free. The proposed node architecture uses a tunable transceiver and a
fixed transceiver. The tunable transceiver is an emerging device and is in tune with the

advances in laser technology, and makes the scheme scalable. We included performance
of EACP and MSLP algorithms in terms of wavelength utilization, mean delay and
blocking probability. We observed that the MSLP algorithm performs better in terms
of channel utilization and delay because it selects the channel with minimal scheduling
latency. Minimizing the channel scheduling latency increases the channel throughput
and reduces the delay.

We compared our scheme with that of Fumagalli et al. [8]. We found that our scheme
performed better in terms of wavelength utilization. However, the scheme proposed by
Fumagalli et al. [8] has smaller delay and higher throughput in terms of data-rate in
bps; this is mainly due to the difference in node architecture. The node architecture in
our presented scheme has one tunable and fixed transceiver, while that of Fumagalli et

al. [8] has an array of transmitters and receivers resulting in higher data-transfer. The
proposed scheme is in tune with the advances in laser technology. It is widely believed
that in future, nodes of WDM networks will be equipped with tunable transceiver(s)
over an array of fixed transmitters and receivers at a little additional cost.
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