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ABSTRACT 

The foremost objectives of the particular study are to assess the working of the most popular RANS 

turbulence closure model in simulating river flows. For that reason, ANSYS-FLUENT package was 

used considering the simulation of uniform flows in straight channel with several different RANS 

turbulence closure models. Two approaches were used for the turbulent region and near-wall region, 

which are the standard k-ϵ model and a k-ω model respectively. On the other hand, Reynold Shear 

Model (RSM) is also studied upon and its pros and cons are taken into consideration with respect to 

the models like k-ϵ model and k-ω model. In comparison to the newly conducted experimental data 

under controlled system, models using ANSYS–FLUENT, a Computational Fluid Dynamics (CFD) 

code, are found to give suitable results. Computational Fluid Dynamics (CFD) is frequently used to as 

technique to investigate flow structures in developing areas of a flow field for the determination of 

velocity, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD 

model along with the two equations isotropic eddy viscosity model and Reynold stress model (RSM) 

is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface 

flow or open channel flow by using Volume of Fluid (VoF) in multiphase scheme and viscous 

(laminar) scheme by comparing the data observed in by the UK Flood Channel Facility (FCF). 
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1. INTRODUCTION  

Foretelling the maximum water levels and discharge is a difficult but important factor for engineers in 

flood modelling. The fundamental link between discharge and water level is important, since flood 

risk maps should give and accurate estimate of water levels and possible inundation areas (Knight 

2013). Determining the stage-discharge relationship for channels with complex cross section, like 

compound channel, is not a simple matter (Knight and Shamseldin 2006; Knight et al. 2010). The 

modeler needs adequate turbulence data and complete awareness of the flow behavior for unfailing 

predictions of stage-discharge relationships. 

Practitioners, in general, still use 1D model such as shallow water equation for evaluating flow 

conditions in real time setups, where a roughness coefficient accounts for all 3D effects (Morvan et al. 

2008), making it specific and obliquely increasing uncertainty. Recently, a more often 2D (streamwise 

and lateral directions) models are being used. They unambiguously can clearly account variations in 

the cross-section shape and area, which includes floodplain flow and meandering channels (Wright 

2001). Despite that, the roughness coefficients still bear some uncertainty, since they have to account 

for all the vertical processes that are not modeled (Morvan et al. 2008). These can be relevant when 

secondary flow (i.e. flow circulations transverse to the main downstream flow direction also known as 

helical flow) is important, like the ones occurring in converging diverging channel, channel bends, 

floodplain/channel interactions and to a lesser extent in straight channels (Wright 2001). Although, 

the 3D models use in real time scenario i.e. river configurations is still not common, both the 

increment of computational competence and the requirement of more physically based predictions 

will generate urgency for their use in the near future. Moreover, 3D models offer more consistent 

estimates of bed shear stress and other more useful information, such as the three-dimensional flow 
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field important for mixing processes (cf. Lane et al. 1999). In this context, the use of CFD commercial 

codes seems more probable to occur, rather than the use of research codes developed in the academia. 

Mainly, because the former are user-friendly and incorporate most of the turbulence closure models, 

starting from the simplest one- or two-equation models to a more advanced large eddy simulation 

(LES). It is important to notice that the majority of commercial codes stemmed from aerodynamics 

industrial applications. They often present additional shortcomings, like “hidden” default strategies 

(Knight 2013), using default values for the empirical coefficients that sometimes cannot be changed. 

Nevertheless, commercial models have demonstrated their ability in simulating laboratory open-

channel flows, giving results in good agreement with the experiments (Morvan et al. 2002, Morvan 

2005). Even so, their validation within river flow configurations is still far to be considered fully 

accomplished. The user will have to face a unwarranted choice about the model that should be taken 

into consideration, even if a CFD commercial package is accessible. The choice is completely swings 

between the accuracy of the results and the computational resource availability. Time required for the 

computation always plays a key role in the selection of the model. At present, the use of LES and 

Direct Numerical Simulation, DNS (this one is not usually available in commercial packages), can be 

discarded, due to the large quantity of data to manage and to the exceptionally high computational 

time required. This leaves as viable alternatives the models based on Reynolds Averaged Navier-

Stokes (RANS) equations coupled with a turbulence closure model. Within this “family” of models, 

one can choose from less demanding one- or two-equation models to the more demanding models 

based on Reynolds stress transport equations. 

 

1.2. Objectives and methodology 
 

The main objectives of the present study are: 

i) To provide users of commercial CFD packages modeling guidelines regarding RANS turbulence 

model and their computational domain modeling approach; 

ii) Also to provide users of commercial CFD packages a clear picture of the performance of most 

common RANS turbulence closure models in simulating river flows; 

 

To achieve these objectives 3D simulations of FCF data Phase A series 1 datasets were used and 

performed using the commercial package ANSYS-FLUENT. The simulated experiments correspond 

to straight trapezoidal channel configuration with high flow stages (relative depth, defined as the 

relation between the flow depth in the floodplain and the one in the main channel, equal to 0.092 and 

bed slope S=0.00103). Since the main focus was on accuracy vs. computational time required for 

different turbulence closure models, it was decided to start with the less time demanding, and most 

used, k-model and then continue with the use of more complex and time demanding turbulence 

closure models. At the end, two different turbulence models were used, which are, in increasing order 

of complexity: RSMmodel and RSM-basedmodel. Shear stress transport model (SST) that uses a 

mixture of both k-and k-models is adopted and only velocity contour is shown to explain the 

nature of isotropic modeling. 

2. MODELLING APPROACH 
 

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical methods to 

solve fluid flow governing differential equations by means of computer-based simulations. The 

fundamental bases of almost all CFD problems are the Navier-Stokes equations. One of the earliest 

types of calculations resembling modern CFD are those by Lewis Fry Richardson (1881-1953). For 

these calculations he used finite difference approximations and divided the physical space into grid 

cells. Although they were not fully accurate, these calculations together with Richardson's book 

(1965) set the basis for modern CFD.  

The structure of ANSYS-CFX can be presented as a system of five cells (Table 1). 

 

 

 

 



Table 1. Structure of ANSYS-FLUENT 
 

ELEMENT OF CODE Cell Function 

 Geometry Generation of the geometry 

Pre-processor Mesh Grid Generation 

 

 Setup Definition of initial and boundary 

conditions and turbulence model 

Solver Solution Definition of the run and monitoring 

of the convergence  

Post-processor  Visualization of the results and their 

treatment 

 

After the geometry has been defined the next step is to mesh the computational domain. The objective 

of meshing is to divide the domain into a number of smaller elements (control volumes). The accuracy 

of a CFD solution partially depends on the number of cells and on the quality of the mesh. Optimal 

meshes are often non-uniform: finer in areas where high velocity gradients occur and coarser in 

regions with relatively little change (Versteeg and Malalasekera 2007). When creating the mesh, one 

should keep in mind that balance should exist between the accuracy of a solution through the number 

of grid elements generated and its cost in terms of necessary computer hardware and calculation time. 

The most basic form of mesh classification is based upon the connectivity of the mesh: structured 

(Figure 1(a)) and unstructured (Figure 1(b)). The structured mesh is considered when cells (nodes) are 

arranged in rows and columns (not necessary equally spaced, but following the same pattern as the 

geometry), thus, limiting the type of elements to quadrilaterals (for 2D geometries) and hexahedrons 

(for 3D geometries). Unstructured mesh is considered when cells and nodes are not arranged in rows 

and columns (Figure 1(b)). In unstructured meshes for 3D geometries the next types of elements can 

be generated: prisms, pyramids and tetrahedrons. Tetrahedral mesh might use up to six times as many 

elements as hexahedral one, thus resulting in more computationally expensive mesh for the same 

number of nodes (Chu et al. 2009). The disadvantages of structured grid are that it is limited to simple 

geometries and it is time consuming to create a high quality mesh, while unstructured grid can be 

generated very fast for very complex geometries.   

 

 
 

 

 

The next and final step of the pre-processing is to create input required by the Solver, such as fluid 

properties, initial and boundary conditions, turbulence model, numerical scheme for the advection 

term, convergence criteria and monitoring. The component that solves the CFD problem is called 

Solver.  

The numerical algorithm consists of the following steps: 

1. The governing differential equations of fluid flow are integrated over all the (finite) control 

volumes of the region of interest. 

2. Discretization - the integral equations are converted into a system of algebraic equations. 

3. The system of algebraic equations is solved iteratively. 

 

An iterative approach is required because of the non-linear nature of the equations. The solution is 

converged when so-called residuals - measures of the overall conservation of the flow properties - are 

Figure 1. Represntation of structured and unstructred grid (adapted from 

https://www.nas.nasa.gov/Software/FAST/RND-93-010.walatka-clucas/htmldocs/chp_16.surferu.html) 

 

a

. 

b 



very small. A moderate-large number of iterations are usually required to reach a converged solution. 

In the present study the simulations were stopped when the convergence criteria were met. The level 

of convergence was evaluated based on average values of the residuals. Typically for practical 

simulations the aim is to decrease the residuals to an order of 10-4. However, depending on the class 

of problem under investigation, it may be necessary to decrease the residuals further to 10-6 or even 

more (Knight et al. 2005). 

The Solver produces a results file that is then passed to the post-processor where the resulting 

solution can be visualized and analyzed. At the end of the simulation the user has to judge whether the 

results are “good enough”. It can be done by comparing the numerical results with the experimental 

data. 

 

2.1. Discretization and solution theory 

 

The CFD algorithms based on discretization of the computational domain stand on four numerical 

solution techniques: finite difference, finite volume, finite element and spectral methods. There are 

also some CFD algorithms in the field of numerical simulation that do not require discretization of the 

simulation domain, which are called mesh-free methods. CFX uses Finite-Element-based Finite 

Volume method (FVM). In this variant, the control volumes are vertex-centred, where the solution 

variables are calculated and stored at the vertices (nodes) of the mesh. This type of mesh is called 

non-staggered, or co-located, grid. The Finite Element (FE) basis comes from the use of shape 

functions (also known as trial functions, interpolation functions or basis functions, (Chung 2002), 

common in FE techniques, to describe the way a variable changes across each element. The objective 

of the FVM is the transformation of the partial differential equations into the system of algebraic 

equations, which then should be solved. The process of the discretization consists of two steps: 

discretization of the computational domain and discretization of the equations.   

 

All the conservation equations can be written in the same general convection-diffusion form: 
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where   is any variable of interest,    is the diffusion coefficient, and    is a source term. 

After the computational domain has been discretized, governing equations (1) are integrated over each 

control volume. 
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where V and S denote volume and surface regions of integration, respectively, and     are the 

differential Cartesian components of the outward normal surface vector. Equation (2) represents the 

flux balance in a control volume. The next step in the numerical algorithm is to discretize the volume 

and surface integrals from equation (2). Volume integrals are converted into surface integrals using 

Gaussian divergence theorem. Surface integrals are discretized at the integration points (   ) located 

at the center of each surface segment within an element and then distributed to the adjacent control 

volumes. The surface integrals are locally conservative because they are equal and opposite for 

control volumes adjacent to the integration points.  

After discretizing the volume and surface integrals the integral equation (2) becomes: 

 

∑                 ∑     
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where the subscript ip denotes evaluation at an integration point (summations are over all integration 

points of the control volume),     is the discrete outward surface vector,            is the mass flow 

Convection term Diffusion term 

term 
Source 

term 



rate across the surface of the control volume estimated at the integration point,     denotes the value 

of the variable at the integration point, V is the control volume and   
̅̅̅̅  is the average value of    

throughout the volume. 

 

2.2. Numerical differentiation schemes 

 

There are many differencing schemes available, but more accurate schemes tend to be less robust or 

slower. Some of the differencing schemes offered by CFX are described in this section. The advection 

term requires the integration point values     to be approximated in terms of the nodal values of ϕ. 

The advection schemes implemented into ANSYS CFX can be written in the next form: 

 

              ⃗          (4) 

 

where      is the value at the upwind node and  ⃗ is the vector from the upwind node to the ip. 

The choice of β and ϕ yields different schemes as described below.  

 

The central differencing scheme is one of the schemes that has been used widely to represent the 

diffusion terms in steady diffusion problems. It can be obtained by setting β to 1 and ϕ to the local 

element gradient. The central differencing scheme has second order accuracy, but it not able to 

identify the flow direction, which makes it not suitable for general purpose flow calculations, and thus 

creating the need for other schemes. This type of schemes allows to reproduce steep spatial gradients 

more accurately than first order schemes, but they generate non-physical oscillations (numerical 

dispersion) in regions of rapid solution variation.  

 

The particular choice of β = 0 yields the upwind differencing scheme. The convected value of ϕ at a 

cell face is taken to be equal to the value at the upstream node, i.e.        . The upwind 

differencing scheme is only first-order accurate but it accounts for the flow direction. The scheme is 

very robust, but it will introduce diffusive discretization errors that tend to smear steep spatial 

gradients. These errors are referred as a false diffusion. The false diffusion is most serious when the 

grid lines are inclined at 45º to the flow direction (Patankar 1980). In high Reynolds number flows, 

false diffusion can be large enough to produce physically erroneous results (Leschziner 1980, Huang 

et al. 1985). However, the amount of false diffusion can be reduced by refining the mesh size and by 

aligning the grid lines with the flow direction (Patankar 1980). Although, the upwind differencing 

scheme is not entirely appropriate for accurate flow calculations, it is very robust and is the best 

scheme to start the calculations with. 

 

2.3. Pressure-velocity coupling 

 

Transport equations for each velocity component (momentum equations) can be derived from the 

general transport equation (1) by replacing variable ϕ by u, v and w, respectively. Every velocity 

component appears in the momentum equations and also must satisfy the continuity equation. 

Pressure gradients appear in all three momentum equations, thus the pressure field needs to be 

calculated in order to be able to solve these equations. These equations are hard to solve due to non-

linear terms in momentum equations and interdependence of the pressure term in all equations. If the 

flow field is compressible, the continuity equation may be used as the transport equation for density 

and the energy equation - for temperature. The pressure may then be obtained from density and 

temperature. However, if the flow is incompressible, the pressure is independent of density. So there 

is no explicit equation for pressure. The so-called pressure-velocity coupling algorithms are used to 

derive equations for the pressure from the momentum equations and continuity equation. A widely 

used pressure-velocity coupling algorithm is the SIMPLE (Semi Implicit Method for Pressure Linked 

Equations) algorithm proposed by Patankar and Spalding (1972). It is an iterative procedure for the 

calculation of pressure and velocity fields. Many CFD books describe the SIMPLE algorithm in detail 

(Patankar 1980, Ferziger and Peric 2001, Versteeg and Malalasekera 2007 and others), thus it will not 

be presented here. There are also improved versions of SIMPLE algorithm such as SIMPLER 



(SIMPLE Revised) algorithm of Patankar (1980), SIMPLEC (SIMPLE Consistent) algorithm of Van 

Doormal and Raithby (1984) and PISO (Pressure Implicit solution by Split Operator method) 

algorithm proposed by Issa (1986) which have been implemented in numerous CFD codes. 

 

2.4. Boundary conditions and near-wall modeling 
 

When solving the Navier-Stokes (or RANSs equations coupled with a turbulence model) and 

continuity equations, appropriate initial and boundary conditions have to be applied. The process of 

solving the fluid flow can be seen in a simplified way as the extrapolation of a set of data defined on a 

boundary contour or surface into the domain interior (Versteeg and Malalasekera 2007). Thus, it is of 

extreme importance to specify correctly physically realistic boundary conditions, otherwise it will 

lead to incorrect results. In this subchapter a brief description of the next types of boundary conditions 

used in the present study will be presented: 

Inflow boundary (inlet) 

Outflow boundary (outlet) 

Periodic boundary conditions (PBC) 

Wall 

At inflow boundary the distribution of all flow variables, ϕ, needs to be specified. In CFX the 

magnitude of the uniform profile of the inlet velocity, U, is specified and the direction is taken to be 

normal to the boundary. The turbulence intensity, I=
√  ̅   ̅   ̅     

√        
⁄    is selected to 

be 5%at the inlet. Thus, turbulence kinetic energy is calculated using:  

 

       
 

 
               (5) 

and the turbulence dissipation is calculated using: 

 

          
  

  
           (6) 

 

where          . 

 

It is very important to place outflow boundary at the appropriate location such that the conditions 

downstream have no influence on the solution. Thus, outlet should be placed far away from the inlet 

or any geometric obstacles such that the flow reaches a fully developed state. At the outlet, the 

gradients of all variables (except pressure) are zero in the flow direction.  

 

 

3. RESULT & DISCUSSION 

 

3.1. Velocity Profile of Depth Average Velocity 

 

The Velocity profile of depth average velocity is simulated numerically with k-ϵ, k-ω , SST K-ω, RSM  

and RSM-ω based turbulence models and the FCF Phase A Series 2 data having depth ratio 0.092 

have been validated with the results and the plots are shown respectively. The figure shown is non-

dimensional and Ud/U* is plotted against vertical co-ordinates and X/T is plotted against horizontal 

co-ordinates. Where Ud is depth average velocity, U* is the shear velocity and T is the top width. 

   √                  (7) 

where S is the bed slope of the channel. 

A practically constant value of U*=0.04080 is obtained using equation 7, while value of T=10 is 

obtained through channel geometry. 
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Analyzing the results presented in fig. 2 one can conclude that, both K-ϵ and K-ω both model give 

similar results and with good agreement with experimental data mainly in main channel section. 

While in floodplain both the model gives overestimated result but the similar results are obtained. 

The above two equations model (i.e. K-ϵ and K-ω model) are both performs well but K-ϵ  gives better 

estimation in the fully turbulent region  while K-ω performs better near wall regions.  

 

 

 

In the main channel both RSM and RSM-ω based models (fig. 2) give overestimated over side wall 

while over the bed it is slightly underestimated. But both the model gives almost similar result and 

results are closer to the experimental data. Another conclusion is that in the flood plain and in the 

middle of the main channel the results seems almost independent of the turbulence model and show 

good agreement with the experimental data, except near the free-surface in both fig. 1 and fig. 2.  In 

total Reynold Stress Models (RSM) are thus more complicated than the eddy viscosity models. They 

provide a more accurate representation of the turbulence and are valid over a wider range of flows.  

3.2 Isovel Lines  
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Figure 2. Measured and Simulated (K-ϵ and K-ω models) of depth average velocity in the main 

channel  and flood plain at cross section Y=40m. 

Figure 3. Measured and Simulated (RSM and RSM-ω based models) of depth average velocity in 

the main channel and flood plain at cross section Y=40m. 



The Isovel lines obtained numerically with RSM, RSM-ω based and Shear Stress Transport K-ω 

turbulence model in cross-section Y=40m are presented in fig. 4. 

 

 

 

 

 

 

The isovel lines of SST K-ω model (fig. 4c) moving significantly upward near upper surface of side 

bank as a result of finer meshing. Meanwhile, the isovel lines of RSM, RSM-ω based and SST K-ω 

(Fig. 4a, 4b & 4c respectively) do not bulging upward on the side bank interface because they assume 

isotropic turbulence and therefore cannot reproduce the secondary flow. 

a

) 

b

) 

c

) 

Figure 4. Contour of velocity m/s obtained numerically in cross-section Y=40m with turbulence model: a) 

RSM; b) RSM-ω based ; c) SST K-ω model 



10. CONCLUSIONS 

The numerical simulation of the experimental results with different turbulence model which are 

isotropic allowed to verify that the depth average velocity profile and isovel produced gives 

acceptable results. Using isotropic models velocity profile predicted in the interface region doesn’t 

show secondary cell generation. Isotropic models underestimate velocities over the bed region while 

over interfaces (i.e. side bank) it overestimates it. In the main channel K-ϵ and K-ω model gives better 

result in comparison to other two models and in the floodplain all models give similar results but it is 

more overestimated in RSM and RSM-ω based. Two equation models (K-ϵ and K-ω) have proven that 

they perform reasonably well for wide range of flows of engineering interests, with some limitations 

that they may be accounted with the use of special bounding or damping function. Their major 

advantage is the simplicity, and the low computational cost compared to more complex models, such 

as RSM or LES (Large Eddy Simulation).  

 

 

 

Notation 

Symbol       Description    Unit 

 ̅     Time-averaged streamwise velocity    [m/s] 

 ̅     Time-averaged spanwise velocity    [m/s] 

 ̅      Time-averaged vertical velocity    [m/s] 

C     Volume fraction      [-] 

g     Gravitational acceleration     [m/s
2
] 

i     Stands for local values in the ith cell or node  [-] 

I     turbulence intensity      [-] 

ip     Integration point     [-] 

k     Turbulence kinetic energy     [m
2
/s

2
] 

S      Bed slope       [-] 

S    Source term       [-] 

t     Time        [s] 

U     Instantaneous streamwise velocity    [m/s] 

u*     Friction velocity      [m/s] 

u
’     Streamwise fluctuation velocity     [m/s] 

up     Upwind       [-] 

V     Instantaneous spanwise velocity    [m/s] 

v
’      

Spanwise fluctuation velocity     [m/s] 
 



W     Instantaneous vertical velocity     [m/s] 

w
’     Vertical fluctuation velocity     [m/s] 

x     Cartesian coordinate in the streamwise direction  [m] 

y     Cartesian coordinate in the spanwise direction   [m] 

z     Cartesian coordinate in the vertical direction   [m] 

nj     Discrete outward surface vector    [-] 

ρ     Density of the fluid      [kg/m
3
] 

    Secondary current term      [N/m2] 

    Diffusion coefficient      [-] 
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