In the present investigation, nano-Y$_2$O$_3$ dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys with nominal composition of W$_{79}$Ni$_{10}$Mo$_{10}$(Y$_2$O$_3$)$_{1}$ (alloy A) and W$_{74}$Ni$_{10}$Ti$_{5}$Nb$_{10}$(Y$_2$O$_3$)$_{1}$ (alloy B) (all in wt.%) were synthesized by mechanical alloying (MA) for 20 h followed by spark plasma sintering (SPS) at 1000°C, 1200°C and 1400°C for alloy A and at 1400°C for alloy B, respectively for 5 min at 75 MPa pressure. Microstructure evolution and thermal behavior of milled powders and consolidated samples, were examined by scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Minimum crystallite size of 29 nm and 23 nm, and maximum lattice strain of 0.44% and 0.491% were observed for alloy A and B, respectively milled for 20 h. The dislocation density for both alloys significantly increased after 10 h of milling and marginal increase was exhibited at 20 h of milling. The density, hardness, compressive strength and wear resistance increased with increase in SPS temperature for alloy A and maximum values of 99%, 10.91 GPa, 2.24 GPa, 1.28×10^{-15} m3/N m (wear rate), respectively were obtained for 1400°C sintered sample. However, alloy B sintered at 1400°C achieved higher hardness (11.89 GPa), compressive strength (2.26 GPa) and wear resistance (wear rate: 1.14×10^{-15} m3/N m) owing to finer crystallite size and precipitation of higher volume fraction of hard NbNi and Ni$_3$Ti intermetallic phases (Fig 1. (b)) as compared to single hard MoNi intermetallic phase in alloy A (Fig. 1(a)). The hardness and strength of both the alloys are 2-3 times higher than the recently investigated W based alloys. The considerable improvement in the mechanical property for both alloys was attributed to dispersion strengthening mechanism contributed by the nano-Y$_2$O$_3$ dispersoids precipitated at the grain boundaries. The wear test results confirm that abrasive wear is the dominant wear mechanism in both the alloys. Observation of increased texture intensity as a function of SPS temperature for (110), a harder orientation, also confirmed the increase in hardness in alloy A with increase in SPS temperature. A regular decrease in residual stress with increase in SPS temperature was observed for both alloys. However, the alloy B had a higher residual stress compared to alloy A, both sintered at 1400°C.

Keywords: W based alloys, Mechanical alloying, Spark plasma sintering, Hardness, Wear, Texture.
Fabrication and characterization of nano-Y_2O_3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering

23rd International Symposium on Metastable, Amorphous and Nanostructured Materials

ISMAMANAM 2016.

by

Prof. Anshuman Patra

5th July, 2016

(Nara Kasugano International Forum, Nara-city, Japan)

Prof. A Patra, R. Saxena
Prof. S.K. Karak, Prof. S. K. Sahoo

Department of Metallurgical and Materials Engineering
NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA
ROURKELA-769008

Prof. T. Laha

Department of Metallurgical and Materials Engineering
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
KHARAGPUR-721302
BRIEF OUTLINE

• Aims and Objective
• Introduction & Background
• Materials and Method
• Result & Discussions
• Conclusions
• References
Aims and Objective

• To fabricate nanostructured W based alloys through Spark Plasma Sintering (SPS).

• Investigate the physical, mechanical and texture behavior of the fabricated alloy.
• To fabricate alloy for Defense application.
Introduction & Background

- Any other application?
 1. Radiation Shielding
 2. Aviation counterweights
 3. High rigidity tooling components

Radiation Shielding

Aviation counterweights
Introduction & Background

Why Tungsten?

Pros.
- High Melting point (3420°C).
- High hardness (9.8 GPa), MOE=407 GPa.
- Good thermal conductivity (1.74 W/cm K), low coefficient of thermal expansion.
- Low-activating metal in radiation environment with low sputtering yield.

(W.F. Smith, McGraw-Hill, 1993)

Cons. with Tungsten
- High ductile brittle transition temperature.

(Anshuman Patra, Microscopy and Analysis, 26 (5), (2012))
Introduction & Background

Why alloy addition?

- To improve fabricability and effective utilization of Tungsten.
- Ni imparts liquid phase sintering and improve plastic flow properties.
- To improve the high temperature strength by Mo and Nb addition.
- Addition of Ti also contributes to enhanced densification and strength, though it increases the DBTT of W.
- Y$_2$O$_3$ addition to reduce the grain growth and improve strength and hardness and wear resistance.
Introduction & Background

Why Nanostructuring?

- To lower the sintering temperature.
 \[\text{(R malewar et.al, J. Mater. Res., 22 (2007))} \]

- To improve the mechanical properties.
 \[\text{[H. Glieter, Acta. Mater., 48 (2000)]} \]
Materials & Methods

Elemental powders (W, Ni, Mo Nb, Ti, Y₂O₃)

High Energy Ball-Mill (20 h)

Nanostructured Alloy Powder

Characterization (XRD, SEM, TEM)

SPS (1000°C, 1200°C, 1400°C, 5 min holding)

Characterization [XRD, SEM, TEM, Density, Hardness, Strength, Wear, Texture]
Materials & Methods

Mechanical Alloying

Mechanism of MA

- Elemental powders of W, Ni, Mo, Nb, Ti (purity 99.5%, Sigma Aldrich)
- Initial particle of 100-150 µm
- Y₂O₃ (<50 nm)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Composition (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Alloy A</td>
<td>79</td>
</tr>
<tr>
<td>Alloy B</td>
<td>74</td>
</tr>
</tbody>
</table>

- FRISTSCH planetary ball mill, Tungsten carbide vials and 10 mm tungsten carbide balls
- 300 rpm, 10:1 (ball to powder weight). Wet milling with toluene (Process control agent to prevent particle agglomeration)
Materials & Methods
Spark Plasma Sintering
Materials & Methods

<table>
<thead>
<tr>
<th>Equipment and Method</th>
<th>Parameters measured</th>
</tr>
</thead>
</table>
| XRD (X-Pert High Score, Origin, Powdill) | 1. Crystallite size, Lattice strain, Lattice parameter, Dislocation density, phase evolution of milled powder
2. phase evolution in sintered product. |
| SEM/TEM | 1. Morphology, compositional, indexing of milled and consolidated product. |
| Archimedes’s principle | Density/porosity measurement, Sartorius Density Measuring Kit |
| Hardness | Hardness and Elastic Modulus evaluation (MTS) |
| Ball on plate wear tester | Wear study (load = 20 N, time = 10 mins, speed= 25 r.p.m) |
| Instron-SATEC KN600 | Compressive strength study at room temperature |
| Bruker D8 Advance XRD system with Co Kα radiation.
1. Labotex 3.0
2. Panalytical X’Pert Stress software | 1. Texture analysis.
2. Residual stress analysis. |
Materials & Methods

Wear Measurement:

Ball on Plate Wear Tester
Results and Discussion

Fig. 1. XRD pattern of powder (alloy B) milled for different times (0, 5, 10, 20 h)
Results and Discussion

\[B \cos \theta = \frac{(0.94\lambda)}{d} + \epsilon \sin \theta \quad (1), \quad d= \text{crystallite size}, \ \epsilon= \text{lattice strain}, \ B= \text{full width at half maxima.} \quad [\text{B. D. Cullity, Elements of X-ray diffraction, 1978.}] \]

\[\rho_d = 2\sqrt{3} \frac{(\epsilon^2)^{1/2}}{D \times b} \quad (2), \quad \text{Burger Vector}, \ b = \frac{(a\sqrt{3})}{2} \ (\text{BCC}), \ D = \text{crystallite size}, \ \epsilon = \text{lattice strain}, \ a= \text{lattice parameter.} \quad [\text{Y. H. Zhao, Acta. Mater, 49 (2001)}] \]

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Milling time (h)</th>
<th>Crystallite size (nm)</th>
<th>Lattice strain (%)</th>
<th>Dislocation density ((10^{16}/\text{m}^2))</th>
<th>Lattice Parameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>103.2</td>
<td>0.17</td>
<td>2.08</td>
<td>0.31645</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60.1</td>
<td>0.26</td>
<td>5.47</td>
<td>0.31653</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>44.6</td>
<td>0.36</td>
<td>10.19</td>
<td>0.31656</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>34.8</td>
<td>0.4</td>
<td>14.53</td>
<td>0.31636</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>29.4</td>
<td>0.44</td>
<td>18.93</td>
<td>0.31630</td>
<td></td>
</tr>
<tr>
<td>Alloy B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75.8</td>
<td>0.15</td>
<td>2.50</td>
<td>0.31645</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55.7</td>
<td>0.27</td>
<td>6.12</td>
<td>0.31658</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>46.1</td>
<td>0.39</td>
<td>10.69</td>
<td>0.31660</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>33.1</td>
<td>0.46</td>
<td>17.57</td>
<td>0.31637</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>23.2</td>
<td>0.49</td>
<td>26.71</td>
<td>0.31627</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. SEM micrograph of powder morphology of alloy B at different milling time (a) 0 h, (b) 5 h, (c) 10 h, and (d) 20 h.
Fig. 3. (a) Bright Field TEM image of 20 h milled alloy B (b) corresponding SAD pattern.
Fig. 4. Thermal analysis of 20 h milled powder a) alloy A b) alloy B

Activation energy (Q)= 110.13 KJ/mol

Activation energy (Q)= 95.44 KJ/mol
Results and Discussion

Formation of Hard Brittle intermetallic MoNi in alloy A, NbNi, Ni₃Ti in alloy B

Fig. 5. XRD pattern for a) alloy A and b) alloy B milled for 20 h and spark plasma sintered at different temperature for 5 min.
Fig. 6. FE-SEM micrographs of a) alloy A and b) alloy B, SPS at 1400°C for 5 min.
Results and Discussion

Fig. 7. EDS pattern of a) Alloy A b) Alloy B milled for 20 h and SPS at 1400°C for 5 min.
Fig. 8. Bright Field HRTEM image of alloy B milled for 20h and SPS at 1400°C for 5min.
Results and Discussion

Fig. 9. (110) pole figure of alloy A and alloy B at different SPS temperatures: (a, b & c) Alloy A sintered at 1000°C, 1200°C & 1400°C respectively; (d) Alloy B sintered at 1400°C. The contour levels are at 0.8, 1.0, 1.5, 2.0, 2.2 and 2.4 times random.
Results and Discussion

Fig. 10. Residual stress developments in alloy A and alloy B at different SPS temperatures.
Results and Discussion

Measurement of Sinterability for alloy A and alloy B

\[\rho_s = \frac{W_a}{W_{sat} - W_{susp}} \times \rho_w \, \text{gm/cm}^3 \] \hspace{1cm} (3)

\(W_a \): weight of the sintered sample in air. \(W_{sat} \): weight of the sample with all the open porosity saturated with water, \(W_{susp} \): weight suspended in water. \(\rho_w \): density of water. \[\text{[N. Ozkan et al., J. Eur. Ceram. Soc., 14 (1994)]} \]

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Temperature (°C)</th>
<th>Weight of sample in air (gm)</th>
<th>Soaked weight (gm)</th>
<th>Suspended weight (gm)</th>
<th>Sintered density (gm/cm³)</th>
<th>Theoretical density (gm/cm³)</th>
<th>% Sinterability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy A</td>
<td>1000</td>
<td>2.03</td>
<td>2.04</td>
<td>1.907</td>
<td>15.263</td>
<td>15.65</td>
<td>97.53</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.23</td>
<td>1.24</td>
<td>1.160</td>
<td>15.375</td>
<td>15.65</td>
<td>98.24</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>1.23</td>
<td>1.25</td>
<td>1.171</td>
<td>15.569</td>
<td>15.65</td>
<td>99.48</td>
</tr>
<tr>
<td>Alloy B</td>
<td>1400</td>
<td>1.47</td>
<td>1.49</td>
<td>1.38</td>
<td>13.364</td>
<td>13.43</td>
<td>99.51</td>
</tr>
</tbody>
</table>
Results and Discussion

Fig. 11. Variation of hardness of SPS treated alloy A and alloy B

Fig. 12. Compressive stress strain curve of alloy A spark plasma sintered at 1000°C, 1200°C, 1400°C and SPS treated alloy B at 1400°C for 5 min.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>SPS Temp (°C)</th>
<th>Compressive strength (max) (GPa)</th>
<th>%Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy A</td>
<td>1000</td>
<td>2.19</td>
<td>19.63</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2.21</td>
<td>21.74</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>2.24</td>
<td>23.95</td>
</tr>
<tr>
<td>Alloy B</td>
<td>1400</td>
<td>2.26</td>
<td>23.07</td>
</tr>
</tbody>
</table>
Results and Discussion

Fig. 13. FE-SEM micrograph of compression tested fracture surface of (a) alloy A (1000°C SPS), (b) alloy A (1200°C SPS), (c) alloy A (1400°C SPS) d) alloy B (1400°C SPS).
Results and Discussion

\[\text{Sliding Distance (S. D)} = \left(\frac{R}{60} \right) \times t \times 2\pi r \] \hspace{1cm} (4)

Fig. 14. Variation of Wear depth with sliding distance of SPS treated alloys A and B.
Results and Discussion

Fig. 15. SEM of worn surface of (a) alloy A (1000°C SPS),
(b) alloy A (1200°C SPS), (c) alloy A (1400°C SPS) d) alloy B (1400°C SPS).
Results and Discussion

Table 3. Variation of wear rate with composition and SPS temperature

\[
\text{wear rate (K)} = \frac{\text{wear volume (Q)}}{\text{(Applied load} \times \text{sliding distance)}}
\]

<table>
<thead>
<tr>
<th>Alloy</th>
<th>SPS Temperature (°C)</th>
<th>Load (N)</th>
<th>Maximum wear depth (µm)</th>
<th>Sliding Distance (m)</th>
<th>Track radius (mm)</th>
<th>Wear Volume (m3) $\times 10^{-12}$</th>
<th>Wear rate (m3/Nm) $\times 10^{-15}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>30</td>
<td>247.53</td>
<td>3.12</td>
<td>4</td>
<td>8.60</td>
<td>8.05</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>30</td>
<td>125.85</td>
<td>3.12</td>
<td>4</td>
<td>2.24</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>30</td>
<td>98.06</td>
<td>3.12</td>
<td>4</td>
<td>1.36</td>
<td>1.28</td>
</tr>
<tr>
<td>B</td>
<td>1400</td>
<td>30</td>
<td>23.92</td>
<td>3.12</td>
<td>4</td>
<td>1.21</td>
<td>1.14</td>
</tr>
</tbody>
</table>
Conclusions

- Minimum crystallite size of 23 nm, maximum lattice strain and dislocation density of 0.49%, \(26.71 \times 10^{16}/m^2\) respectively has been achieved in 20 h milled \(W_{74}Ni_{10}Nb_{10}Ti_{5}(Y_2O_3)_{1}\) alloy.

- The lattice parameter of W in all the alloys expands at 10 h of milling owing to severe stress assisted plastic deformation and contract beyond 10 to 20 h of milling due to atomic diffusion of the solute elements to lesser or higher extend.

- The activation energy for recrystallization is lower in 20 h milled \(W_{74}Ni_{10}Nb_{10}Ti_{5}(Y_2O_3)_{1}\) alloy owing to higher deformation during milling as compared to \(W_{79}Ni_{10}Mo_{10}(Y_2O_3)_{1}\) alloy.

- Texture intensity increases with increase in SPS temperature and Ti addition. Texture for both alloys is harder in (110) orientation of W as compared to other orientation.
Conclusions

- The % densification of $W_{74}\text{Ni}_{10}\text{Nb}_{10}\text{Ti}_{5}(\text{Y}_2\text{O}_3)_1$ and $W_{79}\text{Ni}_{10}\text{Mo}_{10}(\text{Y}_2\text{O}_3)_1$ alloy is comparable and increases with increase in SPS temperature in $W_{79}\text{Ni}_{10}\text{Mo}_{10}(\text{Y}_2\text{O}_3)_1$ alloy due to enhanced interparticle bonding at higher temperature.

- The higher hardness (11.89 GPa), strength (2.26 GPa) of $W_{74}\text{Ni}_{10}\text{Nb}_{10}\text{Ti}_{5}(\text{Y}_2\text{O}_3)_1$ alloy is attributed to finer crystallite size and superior sinterability and higher content of hard intermetallic phases.

- Ti and Mo addition increases and decreases the DBTT of W respectively and results in reduced elongation of $W_{74}\text{Ni}_{10}\text{Nb}_{10}\text{Ti}_{5}(\text{Y}_2\text{O}_3)_1$ alloy as compared to SPS treated $W_{79}\text{Ni}_{10}\text{Mo}_{10}(\text{Y}_2\text{O}_3)_1$ alloy at 1400°C.

- The wear rate of $W_{74}\text{Ni}_{10}\text{Nb}_{10}\text{Ti}_{5}(\text{Y}_2\text{O}_3)_1$ alloy is substantially lower as compared to $W_{79}\text{Ni}_{10}\text{Mo}_{10}(\text{Y}_2\text{O}_3)_1$ alloy due to superior hardness, strength of the surface layers and predominant hindrance of dislocation movement by NbNi, Ni$_3$Ti intermetallic phases.
Acknowledgements

• The research work was supported by TEQIP II NIT Rourkela.

• I am thankful Prof. T. LAHA, and Mr. P. Karmakar, Metallurgical and Materials Engineering, IIT Kharagpur for helping in spark plasma sintering of the alloy.

• Prof S. Das, Prof. R. Mitra, T. Paul, Amit Das for supporting TEM sample preparation and study.