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Abstract—In this paper, we consider Generalized Gaussian

(GG) distribution to model the additive noise source in under-

water acoustic (UWA) communication. Since communication in

oceanic medium is dominated by both prevailing and spontaneous

noise sources, we model the resultant noise distribution as

mixture of GG distribution. Owing to the complexity in optimal

detector design with GG noise model, we apply expectation

maximization (EM) algorithm to decompose the resultant channel

distribution in terms of weighted sum of Gaussian density

functions. By having multiple antennas at the receiver, we also

exploit spatial diversity to improve error performance at the

receiver. In this context, we compute decision boundary for

detecting the binary phase shift keying (BPSK) modulated signal.

In addition, we also discuss variation in decision boundary under

various signal to noise ratio (SNR) levels observed at receiver

front end. Finally, we compare the detector performance under

new decision boundary with traditional detectors and validate

the approach by showing improvement in symbol error rate

performance.

Index Terms—Underwater Acoustic Communication, General-

ized Gaussian Statistics, Expectation Maximization Algorithm,

Detector Design

I. INTRODUCTION

Advancements in underwater communication will enable

practical and efficient realization of several applications under

sea water. These applications include collection of oceano-

graphic data, military surveillance, disaster prevention etc [1].

The challenges in design of suitable communication system are

attributed to some of the unique characteristics of underwater

medium. Firstly, due to high attenuation of electromagnetic

waves in water medium, underwater communication is gener-

ally enabled by acoustic waves [2]. However, low propagation

speed of acoustic waves results in large multi-path delay

spread and hence there is severe inter symbol interference at

the receiver [3] [4]. Further, additive noise in the underwater

acoustic (UWA) channel is significantly different from wire-

less channel. The UWA communication in oceanic medium

is affected by prevailing noise sources like, surface waves,

thermal noise, turbulence etc. [5] and spontaneous sources

like marine life, shipping traffic, underwater explosives, off-

shore exploration etc. [6]. Due to dominance of different

noise sources in various acoustic spectrum bands, the additive

noise follows a decaying power spectral density [4]. This

makes standard Gaussian distribution to be unsuitable for its

statistical characterization. For example, in spectrum range of

1Hz to 100Hz there is dominance of seismic noise, while in

range of 10Hz to 100KHz there is dominance of noise due to

merchant ships [4]. Since most communication systems are

designed assuming additive white Gaussian noise (AWGN)

model, in this paper we investigate a new receiver design

technique to improve the communication system performance

in UWA environment.

The noise source in UWA communication can be character-

ized by several non Gaussian models, like Middleton model,

Gaussian Gaussian model, Generalized Gaussian (GG) model

etc. each having its own limitations. Middleton models are

generally used to model electromagnetic interference (EMI)

and dont have irreducible form [7]. Similarly, Gaussian Gaus-

sian models are not able to capture the shape and tail of actual

noise distribution [8]. In this work, we choose GG distribution

to model UWA channel noise source as by adjustment of

distribution parameters, the model can be easily adapted to

super Gaussian and sub Gaussian densities [9].

The UWA channel noise is modeled by GG distribution in

[10] to derive an analytical expression for probability of error

performance. The authors have considered BPSK, QPSK, and

M-ary PAM modulation schemes and analyzed the receiver

performance under various Kurtosis values. In this paper,

we consider mixture of GG distribution as channel noise in

UWA communication is generated by several prevailing and

spontaneous noise sources. We also exploit spatial diversity

to improve the probability of error performance. The spatial

diversity is achieved by considering multiple antennas at the

receiver. Here we assume that antennas are placed sufficienty

apart so that observed channel noise at corresponding antennas

is statistically independent.

Considering simplicity in design, a linear detector which

is optimal for noise with Gaussian distribution can be used.

However, its performance is expected to degrade as GG

statistics move away from Gaussian statistics. Similarly, a sign

correlator based receiver can be used; but it performs better

only if supplied with odd copies of same transmitted signal

[8]. Sub-optimal linear detectors based on optimal nonlinear

function can be also used, but it performs poorly at high SNR

values [7]. In this work, we simplify the detector design by

application of expectation maximization (EM) algorithm to



decompose the channel noise density function in terms of

weighted sum Gaussian density function. In this context, we

compute decision boundary for detecting BPSK modulated

signal. Assuming receiver is supplied with two copies of

transmitted signal, the decision boundary is in two dimensional

space. Compared with traditional detectors, our simulations

indicate that the proposed detector has superior symbol error

rate performance.

II. NON GAUSSIAN UWA CHANNEL MODEL

The Generalized Gaussian Distribution (GGD) [9], apart

from mean and variance is characterized by another parameter

called shape parameter which relates to its Kurtosis. The

probability distribution function of a stochastic process N with

GG statistics is represented as:

fN−GG(n) =
β

2αΓ(1/β)
exp{−(|n− µn|/α)β} (1)

where, µn is the mean, Γ(·) is the standard Gamma function,

and α, β are the scale and shape parameters, respectively. The

corresponding variance σ2
n and kurtosis Kurt[N ] of N are

defined as,

σ2
n =

α2Γ(3/β)

Γ( 1
β
)

kurt[N ] =
Γ(1/β)Γ(5/β)

Γ(3/β)2
.

By selecting proper shape parameter (or Kurtosis), the GG

distribution can be used to statistically model UWA acoustic

noise in various scenarios. For example, low kurtosis values

can be used for modeling noise due to propeller cavitation

and high kurtosis values can be used to model noise due

to snapping shrimps, breaking waves etc. Similarly, kurtosis

value of 2.5 and 3.5 can be used to model ship transit noise

and noise due to surface wave agitation respectively [11]. In

addition, it can be noted that for β = 2 (Kurt[N ] = 3),

the distribution expression in equation (1) becomes standard

normal distribution with mean µn and variance σ2
n = α2

2 .

III. UWA COMMUNICATION SYSTEM MODEL

For simplicity in analysis, we assume signaling via binary

phase shift keying modulation technique. The generalization

to other modulation techniques can be obtained by straight

forward modification in the analysis. The effect of multipath

fading is not considered in this analysis and will be covered

in our future work. We further assume there is one transmit

antenna and N receive antennas for receiving multiple copies

of transmitted signal. The received signal at any time instant

t and at kth receive antenna is given by,

rk(t) = s(t) + nk(t), k = 1, · · ·N (2)

where, s(t) ∈ {±B} and nk(t) is the noise sample observed

at kth receive antenna. Since nk is assumed to be modeled

as mixture of GG distribution, the resultant noise distribu-

tion is highly complex and mathematically intractable. So

we first decompose the distribution off additive noise into

weighted sum of Gaussian distribution with appropriate mean

and variances. This is achieved by expectation maximization

(EM) algorithm which consists of alternate iteration between

two steps: expectation step and maximization step. Thus, the

distribution of noise observed at kth receive antenna can be

expressed as,

p(nk) =

∞
∑

m=0

αmg(nk;µm, σ2
m) (3)

where αm is the weight, µm is the mean, σ2
m is the variance

of mth Gaussian distribution component g(·; ·, ·). With the

assumption that noise samples observed at receive antennas

are independent of each other, the joint distribution of noise

vector n = [n1, · · ·nN ] can be expressed as,

p(n) =
N
∏

k=1

∞
∑

m=0

αmg(nk;µm, σ2
m). (4)

IV. DETECTOR DESIGN

In this section we discuss the optimal and proposed sub-

optimal detector design for the given received signal vector

r = [r1, · · · rn].
A. Optimum Detector

Let us consider a binary hypothesis testing criteria in

which hypothesis H0 represents transmitted symbol −B and

hypothesis H1 represent transmitted symbol B. Further, de-

noting conditional distribution of received sample rk assuming

hypothesis H0 as p(rk/H0) and hypothesis H1 as p(rk/H1);
the optimum detector to compute test statistics is expressed

as,

Γ(r) =

∏N
k=1 p(rk|H1)

∏N
k=1 p(rk|H0)

RH1

H0
1 (5)

Here we have assumed that transmitted symbols are equi-

probable. Substituting equation (4) in equation (5), the log

likelihood ratio test is expressed as,

ln(Γ(r)) =

N
∑

k=1

ln









∑

∞

m=0
am√
2πσ2

m

e
−

(rk−B−µm)2

2σ2
m

∑

∞

m=0
am√
2πσ2

m

e
−

(rk+B−µm)2

2σ2
m









RH1

H0
0

(6)

Since optimum detector is very complex to be implemented,

in next sub-section we discuss sub-optimal detector design.

B. Sub-optimal Detector Design

As discussed in section III, the additive noise in UWA

channel can be decomposed into infinite number of Gaussian

components. Since weights of large number of Gaussian com-

ponents will be close to zero, we can approximate the channel

distribution by finite number of Gaussian components. For

simplicity in analysis, we further assume that noise distribution

can be well approximated by two Gaussian components, i.e.,

p(nk) ≈ α0g(nk;µ0, σ
2
0) + α1g(nk;µ1, σ

2
1). (7)

An illustration of such simplification is shown in Figure

1. Here we assume that UWA noise is due to two noise
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Fig. 1. Approximation of Generalized Gaussian Distribution by two Gaussian
Components

Fig. 2. Conditional distribution of received signal under Hypothesis H0 and
H1

sources, each of which is modeled as GG distribution with

mean µgg0 = 2;µgg1 = 4, variance σgg20 = 1;σgg20 = 2,

and shape parameters β0 = 2;β1 = 2.77. The resultant

noise distribution is shown in Figure 1. After applying EM

algorithm, the resultant noise distribution can be approximated

by two Gaussian components with following parameters:

α0 = 0.4142, α1 = 0.5788; µ0 = 4.8562, µ1 = 6.8283;

σ2
0 = 1.9075, σ2

1 = 2.1844.

Next, if we consider that only one copy r1 of transmitted

signal is present then the conditional distribution of received

signal under different hypothesis can be expressed as,

P (r|H1) = α0g(n1; +B + µ0, σ
2

0) + α1g(n1; +B + µ1, σ
2

1)
P (r|H0) = α0g(n1;−B + µ0, σ

2

0) + α1g(n1;−B + µ1, σ
2

1)
(8)

Figure 2 shows the conditional distribution of received

signal under assumption of different hypotheses. The decision

boundary Z0 is the threshold point which decides whether

decision should be in favor of +B or −B and is computed

by equating log likelihood functions, i.e.,

l0(r1|H0) + l1(r1|H0) = l0(r1|H1) + l1(r1|H1). (9)

Fig. 3. Two dimensional decision region for two copies of received signal

The log likelihood functions lm are defined as,

lm(rk|H0) = ln(αm/σm)− [rk−µm+B]2

2σ2
m

lm(rk|H1) = ln(αm/σm)− [rk−µm−B]2

2σ2
m

(10)

where, subscript ’m’ represents the mth Gaussian component

and subscript ’k’ represents copy of transmitted signal re-

ceived at kth antenna. Further, our analysis assume that mean

µ0 < µ1. On solving equation (9), the decision boundary Z0

is expressed as,

Z0 =
µ0/σ

2
0 + µ1/σ

2
1

1/σ2
0 + 1/σ2

1

. (11)

Next, consider the scenario when receiver is with two

copies of transmitted signal r = [r1, r2]. Since we have

assumed that the copies of received signal are independent

of each other, there is a two dimensional decision region. In

addition, the distribution of received samples are centered at

(±B−µ0,±B−µ0), (±B−µ1,±B−µ0), (±B−µ0,±B−µ1)
and (±B − µ1,±B − µ1) respectively. Thus, decision region

can be divided in four quadrants as shown Figure 3.

It can be observed from the Figure 3 that in first and

third quadrant both r1 and r2 give decision in favor of

+B and -B, respectively. So there is no conflict in decision

from two copies of received signal. However, for second and

fourth quadrant there is conflict in the decision and hence

the decision boundary needs to be reanalyzed. For second

quadrant, the decision boundary can be computed by equating

the corresponding log likelihood functions,

l0(r1|H0) + l1(r1|H0) = l0(r2|H1) + l1(r2|H1) (12)

After simplification we get,

r21

(

1
σ2
0
+ 1

σ2
1

)

− 2r1

(

−B+µ0

σ2
0

+ −B−µ1

σ2
1

)

+ (−B+µ0)
2

σ2
0

+ (−B+µ1)
2

σ2
1

= r22

(

1
σ2
0
+ 1

σ2
1

)

− 2r2

(

B+µ0

σ2
0

+ B−µ1

σ2
1

)

+ (B+µ0)
2

σ2
0

+ (B+µ1)
2

σ2
1

(13)

The decision boundary for fourth quadrant is symmetric to

second quadrant and considering the noise distribution pre-

sented in Figure 1, the complete decision region is shown in

Figure 4.



Fig. 4. Decision boundary with two receive antennas

V. DISCUSSION ON DECISION BOUNDARY

The decision region in second and fourth quadrant of figure

4 can be divided in two halves: linear region: if r1 > r2 and

decision from r1 is −B, r2 is +B, the final decision is for

B, and vice-versa; Nonlinear region: if r1 > r2 and decision

from r1 is −B, r2 is +B, the final decision is for −B, and

vice-versa. For this typical characteristic, once again consider

equation (13) defined to compute decision region in second

quadrant. For a given values of observed received signal, i.e.,

r = [r1r2], at high SNR
(−B+µ0)

2

σ2
0

,
(−B+µ1)

2

σ2
1

are the dominant

terms on left side and
(B+µ0)

2

σ2
0

,
(B+µ1)

2

σ2
1

are the dominant

terms on right side of the equation. Thus, at high SNR equation

(13) can be approximated as,

(−B+µ0)
2

σ2
0

+ (−B+µ1)
2

σ2
1

− 2r1

(

−B+µ0

σ2
0

+ −B−µ1

σ2
1

)

= (B+µ0)
2

σ2
0

+ (B+µ1)
2

σ2
1

− 2r2

(

B+µ0

σ2
0

+ B−µ1

σ2
1

) (14)

which follows a linear boundary region. Thus, for given value

of r1 and r2, with the increasing value of SNR, there is

increase in linear boundary region as shown in Figure 5.

VI. SIMULATION RESULTS

Firstly, we discuss simulation result which validates our

approach to decompose the UWA channel noise into Gaus-

sian components by EM algorithm. Here we assume BPSK

signaling and UWA noise modeled by mixture of two GG

distribution with parameters: mean µgg0 = 2;µgg1 = 4,

variance σgg20 = 1;σgg20 = 2, and shape parameters β0 =
2;β1 = 2.77. The approach for GG noise generation is similar

to [9] with different shape parameters. Figure 6 shows the

comparison of symbol error rate performance under following

detection schemes with the assumption that receiver has only

one copy of transmitted signal:

• Gaussian detector with average threshold: In this de-

tection mechanism, receiver assumes additive channel

noise to be Gaussian distributed with average mean µ =

Fig. 5. Variation in decision boundary with SNR
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Fig. 6. Detector performance comparison with single antenna reception

(µgg0 + µgg1)/2 and variance σ2 = (σgg20 + σgg21)/2.

Thus, the decision boundary is simply given by threshold

(µgg0 + µgg1)/2.

• Gaussian detector with likelihood based threshold: In this

detection mechanism, receiver assumes additive channel

noise to be mixture of two Gaussian distribution with

mean µ0 = 2;µ1 = 4 and variance σ2
0 = 1;σ2

0 = 2. The

decision boundary in this case can be computed using

equation 11.

• Detector with EM decomposition: In this detection mech-

anism, receiver first decomposes the resultant distribution

function formed by two GG components into weighted

sum of Gaussian densities. The two significant Gaussian

destinies have weights α0 = 0.4142;α1 = 0.5788,

mean µ0 = 4.8562, µ1 = 6.8283 and variance σ2
0 =

1.9075;σ2
1 = 2.1844. The decision boundary after this is

computed by equation 11.

It can be observed that Gaussian detector with average thresh-

old is the simplest detector, but it has very poor symbol error
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Fig. 7. Detector performance comparison with multiple antenna reception

rate performance. The performance is improved in Gaussian

detector with likelihood based threshold where GG distribution

is considered same as Gaussian distribution with same mean

and variance parameters. The proposed Detector with EM

decomposition shows superior performance compared to other

two detectors as the resulting additive noise distribution of

UWA communication is suitably approximated by mixture

of Gaussian densities. Similar, observations can be inferred

from Figure 7 where receiver is provided with two copies

of transmitted signal. Here, threshold for decision boundary

is computed by equation (13) and decision region is followed

from Figure 4. Once again it can be verified that Detector with

EM decomposition following decision region of Figure 4 give

the superior performance compared to other two detectors.

Another observation can be made from Figures 6 and 7 is re-

garding convergence of symbol error rate curves for Gaussian

detector with likelihood based threshold and Detector with EM

decomposition at high SNR. This observation is in accordance

with our discussion in section V, where for high SNR the

decision region in quadrant 2 and 4 follow linear boundary.

Thus, at high SNR, performance improvement obtained by

EM decomposition becomes marginal and both Gaussian

detector with likelihood based threshold and Detector with EM

decomposition give similar performance. Finally, we verify

the performance improvement obtained by exploiting spatial

diversity at the receiver. Figure 8 shows symbol error rate

performance for UWA noise modeled by mixture of two GG

distribution with parameters: mean µgg0 = 2;µgg1 = 4,

variance σgg20 = 1;σgg20 = 2, and shape parameters β0 =
6;β1 = 8. It can be observed that by having two copies of

transmitted signal, there is improvement in symbol error rate

performance.

VII. CONCLUSION

In this work we have computed close form expression of

decision boundary for detecting binary phase shift keying

(BPSK) modulated signals in underwater acoustic (UWA)
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Fig. 8. Performance improvement via spatial diversity

channel. The additive noise is modeled as mixture of GG den-

sities and further approximated by weighted sum of Gaussian

densities using Expectation Maximization (EM) algorithm. In

order to improve the error performance, spatial diversity is

exploited by having multiple antennas at receiver. The simula-

tion results validate the approach by indicating improvement in

BER performance when compared with traditional detectors.
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