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Abstract—We consider the designing of a new set of uniquely
decodable codes for uncoded synchronous overloaded CDMA
system that exists for arbitrary values of spreading gain (code
length). A fast and recursive method of construction is proposed
where the orthogonal Hadamard matrix of least dimension (two),
as the basis of construction regularizes a ternary pattern which is
further leveraged to attain a rich simplicity in decoder design. The
simplicity gained in designing of the proposed Comparison Aided
Decoder (CAD) is prominent enough to neglect the marginal
sacrifice in Bit Error Rate (BER) as compared to the optimum
Maximum Likelihood Decoder (MLD) for noisy transmission.
Despite its low complex nature, the detection retains it uniquely
decodable (errorless) attribute in the absence of noise. Moreover,
for large dimension of the proposed matrices, the loading capacity
of the system as compared to the conventional CDMA gets a two
fold enhancement.

I. INTRODUCTION

THE lack of coexistence of the overloaded dimension,
and orthogonality within a single code space drives the

motivation towards the involvement of Uniquely Decodable
Codes (UDC) sets (matrices) in Code Division Multiple Access
(CDMA), where the overloaded dimension of a code matrix
refers to the number of codes (signatures) being greater than
the spreading gain or code length or total number elements
(chips) in a code sequence. A matrix C is considered as
uniquely decodable over X , if for X1 6= X2 the inequality
CX1 6= CX2 is true, where X1 and X2 denote two different
input vectors. In other words, a Uniquely Decodable (UD)
matrix is injective in nature or there exists one-to-one mapping
between the input and output.

The fact that boosts the gravity of the UD matrices is the
domain of its application that not only gets limited to the block
coding for T-user multiple access channel [1]–[5] but also have
homogeneous employment in CDMA [6]–[12]. Particularly,
the use of ternary UD matrices [1]–[6] in the context of multi-
user coding has drawn significant attention even if they are
of less importance in the coin-weighing problem [13]. For
recursive construction based ternary [1]–[3], [6] and binary
[9], [11] matrices Ck

Nk×Mk
, the overloading factor (total sum

rate) denoted as β = (Mk/Nk) is shown to be asymptotically
equal to that of the maximal achievable sum rate Ssum(k), as
the value of Mk increases i.e.;

β ∼ 1/2 (log2Mk) as Mk →∞

where Ssum(k) =
Mk∑
f=0

(
Mk

f

)
2Mk

log2
2Mk(
Mk

f

) .

Although such constructions theoretically facilitate a large
capacity, their decoding for noisy transmission has always
been a greater challenge to deal with. For noisy channel, the
proposed decoders stand ineffective to provide an acceptable
error performance. In general, the factor that implicitly affects
the efficiency of the whole system is the decoder, which must
be simple in design and perform intrinsically better for noisy
environment. Therefore, for such matrices, use of optimum
Maximum Likelihood Decoder (MLD) [14] is obviously the
only solicited option. However, the sheer impracticality asso-
ciated with its implementation due to the catastrophic rise in
complexity over the linear decoders makes it imperative to
look for its suitable substitutes. Ironically, the design of such
detectors to meet an acceptable level of Bit Error Rate (BER)
in conjunction with the dramatic reduction in complexity is
usually challenging and has drawn the attention of many
researchers in the past [15], [16].

More recently, new binary, and ternary UD constructions
have been proposed for CDMA systems, where the focus is
on designing of feasible decoders for better error performance
at the cost of sacrificing the asymptotic equality between
β and Ssum(k). In [7], [10], [17], a two-stage Simplified
MLD (SMLD) is proposed for tensor product based matrix
construction where additional users are usually kept to a suit-
able minimal value in order to have better error performance.
This is because for noisy channel, the effect of the Multiple
Access Interference (MAI) becomes more prominent, even if
its impact remains silent in the absence of noise. Likewise, in
[6], [18], a highly simplified Logical Decoder (LD) [18] for
a class of ternary code sets relies on the Analog to Digital
Converter (ADC) to alleviate the effect of noise. For the
use of ADC in retaining the constellation of noisy received
signal close to that of transmission, the range of constellation
values of the transmitted vector must be finite and predictable.
For its embodiment in decoding section, all that required is
the availability of a regularized and advantageous geometric
pattern among the elements (non-zero and zero) of the matrix.

In this paper, we propose a new set of UDC, whose method
of construction is fast and recursive. Unlike the UDC sets in
[1], [2], [5]–[7], [9], [11], [12], the proposed design being
fully governed by a basis set follows a column overlapping978-1-5090-2361-5/16/$31.00 c© 2016 IEEE



Fig. 1: Proposed matrices for H2 as the basis set (a) (C1)
T (β=1) (b)

(C2)
T (β=1.33) (c) (C3)

T (β=1.5) (d) (C4)
T (β=1.6)

mechanism as shown in Fig. 1. Orthogonal Hadamard matrix
of smallest dimension i.e., H2 is considered as the basis. Such
a construction hierarchy interestingly approves its existence
for arbitrary values of spreading gain and thus expanding its
scope towards optimizing the rate-capacity trade off1. In deed,
it is the ternary pattern evolved in code space followed by the
unique encoding capacity of the Hadamard matrix that prompts
the decoder to achieve the errorless recovery in the absence of
noise. For noisy channel, where the systems in [1]–[5], [11],
[12] and [7], [8], [10], [17] relies on the optimum MLD and
SMLD respectively, use of comparison driven based logic for
decoding dramatically reduces the overall complexity.

II. SIGNATURE MATRIX DESIGN

The synchronous CDMA system using the proposed code
matrix with index-k (i.e. Ck or CNk×Mk

) can be modeled as

Y = Rk + n (1)

where Rk = ACX is the noiseless received vector for
A = INk×Nk

= Identity Matrix with diagonal elements rep-
resenting the amplitudes assuming the system to be perfectly
power controlled. XMk×1 ∈ {±1, 0}Mk is the input column
vector, and n denotes the power spectral density of AWGN
channel. Following relation describes the recursive logic for
construction of Ck from Ck−1

Ck
Nk×Mk

=

∣∣∣∣ Ck−1
(Nk−1)×(Mk−2) 1(Nk−1)×2
01×(Mk−2) [ 1 −1 ]

∣∣∣∣ for k ∈ Z+ (2)

where C1 = H2 = basis matrix for construction (Fig. 1 (a)) and
Mk, Nk as a function of the matrix index (k) can be defined
as

Nk = k + 1, Mk = 2k .

This is easy to verify that with increase in value of k the rise
in the value of β is observed, such that with k approaching to
infinity and value of β =

(
2k
k+1

)
tends to two. For simplicity

in further analysis, all signatures in Ck can be classified into
k different classes for N1 < N2 < · · · < Nk, such that

Ck = [C1 |C2 |...|Ck] (3)

1rate-capacity trade off refers to the proportional reduction in transmission
rate incurred due to the selection of code matrix with higher spreading gain
(Nk) for enhanced user capacity (Mk).

where Ca for a = 1, 2, ..., k represents the class with effective
spreading gain2 Nef = Na. The uniqueness in construction
also lies in the subset based relationship between the matrices
of consecutive index that can be alternately defined by the
following recursive logic.[[

Ck−101×(Mk−2)

]
|Ck

]
= Ck (4)

The proposed code set Ck in (2) is uniquely decodable
over a set of m input symbols ψ = {ξ1, ξ2, · · · ξm} such that
ψ ⊂ {α1,α2, · · · , αn, ᾱ} for ᾱ being the linear combination
over the set of Algebraically Independent Numbers3 (AIN)
{α1,α2, · · · , αn}. In the next section, assuming input system
to be binary (ψ = (1,−1)), we show the proposed decoding
to errorless for noiseless application.

III. COMPARISON AIDED DECODER (CAD)

In this section, design of the proposed decoder is ex-
plained where the system is assumed to be fully loaded i.e.
X ∈ {±1}Mk . Prior to that, we study the pattern of MAI.
This is because the quality of recovery of an user in a CDMA
system is mostly influenced by the extent of MAI, for which
the level of net cross-correlation is usually considered as
a metric. In the proposed construction (Fig. 1), we aim to
realize this pattern straight from the expression of the recurrent
construction explained by (4).

In (4), the zero vector 01×(Mk−2) adjoined to Ck−1 for
construction of Ck splits Rk into two unequal sections. The
first Nk−1 chips carry the data of the Mk−1 users common
to Ck and Ck−1 whereas the last chip have the data of the
users of class Ck only. Equivalently, a section of the spread
data of the class Ck exists in the last most and first Nk−1 =
(Nk − 1) chips of Rk with zero MAI and MAI from Ck−1

respectively. Recursively, similar logic also holds for the lower
indexed matrices Ca for 1 < a ≤ (k − 1).

Please note the difference between Ca and Ca i.e. Ca is a
subset of the matrix Ca e.g.; Ca = [C1 |C2 |...|Ca]

Before defining the decoding algorithm for noisy
transmission in Table I, we present the following theorem to
prove errorless behavior of the decoder in absence of noise.
First, we propose Lemma 1 that will supplement the proof in
Theorem 1.

Lemma 1:The first non-zero element encountered during
the traversal from chip-Nk to chip-1 of the transmitted total
sum vector Rk suffices for the errorfree decoding of the last
class in Ck i.e., Ck.

For the proof, please refer to Appendix A

Theorem 1: For the proposed UDC matrix Ck, the
decoded input vector X̂ ∈ {±1}Mk from Rk is errorfree.

2Effective Spreading Gain (Nef ) of a signature (ternary) in Ck indicates
the total number of chips occupied by the non-zero elements (i.e. 1 or -1).

3For an algebraically independent set, the linear combinations of the
numbers with integer coefficients become zero.



Fig. 2: Sequential Flow Diagram for CAD (Table I)

Proof : For proof, we carry an induction on k. From (1)
and (3), the noiseless vector Rk is the summed contribution
of the received vectors from k-different classes of Ck e.g.,

Rk =
k∑

a=1
RNa

for RNa
= AaCaXa (5)

where Aa = Ih×h, Xa ∈ X = [X1X2 · · ·Xk]
T . In Lemma 1,

we have shown that the last class of the proposed matrix Ck

i.e., Ck can be extracted from Rk without any error (X̂k =
Xk). In fact, this itself is the first stage of decoding (i = 1).
Next, estimation of its interference on other existing classes is
evaluated as I = CkX̂k. The estimated interference I is then
subtracted from Rk to produce Rk−1 such that

[Rk−1 0] = [Rk − I] .

Conceptually, following the recursive structure in (4), Rk−1

denotes the received vector for Ck−1 =
[
C1|C2| · · · |Ck−1

]
e.g., Rk−1 = Ak−1Ck−1X(Mk−2)×1. Since the last class
of Ck−1 is Ck−1, the newly generated vector Rk−1 if
exposed to the proposition of Lemma-1 will result in the
errorless decoding of Xk−1. This becomes the second stage
of decoding (i = 2). Without loss in generality, this sequence
of Detection (of a class)-Estimation (of its MAI on other
classes)-Cancellation (of the estimated MAI) is to be continued
until the class C1 gets retrieved from the respective decoding
vector R1 = A1C1X1 in kth stage of decoding (i = k). This
completes the proof. For better organization of the analysis,
i is used to indicate the decoding stage and also termed
as decoding index. �

From Theorem 1, we derive the steps corresponding to
decoding of the noisy vector Y and present it in Table I. Figure
2 shows the respective flow diagram.

IV. COMPUTATIONAL COMPLEXITY

From step-2 of CAD, the prevailing pattern among the
signatures of each class can be exploited to make the esti-
mation of Ii void of multiplications. Therefore, the overall
complexity gets limited to comparisons and additions only.
Here, we consider the noiseless case for estimation of the
complexity. For noisy scenario, the variation is highly marginal
depending on the error introduced at ADC (in step-1) for
YAD 6= Rk.

For calculation of the total number of comparisons (PX ),
the input vector X can be split based on the decision making

TABLE I

CAD Algorithm

Step 1: Allow Y in (1) to pass through a (Mk + 1)-ary ADC to deliver
YAD =

[
y1y2 · · · yNk

]
where yj ∈ {0,±2,±4, · · · ,± (2Nk − 2j + 2)} for 1 < j ≤ Nk

and
Range (y1) = Range (y2)

Step 2: For stage-i (1 < i ≤ k), Find
• Ii = Ck−i+2X̂k−i+2 =

[
U1×(Nk−i) V

]
where

(
x̂2Nk−2i−1, x̂2Nk−2i

}
∈ X̂k−i+2

U =
(
x̂2Nk−2i−1 + x̂2Nk−2i

)
,

and
V =

(
x̂2Nk−2i−1 − x̂2Nk−2i

)
• Y i

AD =
[
yi
1y

i
2 · · · y

i
Nk−i+1

]
e.g.,[

Y i
AD0(h−1)×1

]
=
[
Y i−1
AD − Ii

]
(For i = 1, Y 1

AD = YAD , I1 = 0Nk×1)

Step 3: For Y i
AD

If yi
1 = 2(Nk − i)

then
[
x̂1, x̂2 · · · x̂2Nk−2i−1, x̂2Nk−2i

]
= [1]2Nk−2i,

Else If yi
1 = −2(Nk − i)

then
[
x̂1, x̂2 · · · x̂2Nk−2i−1, x̂2Nk−2i

]
= [−1]2Nk−2i

Thus, X is completely decoded
and no need of any further stages. Otherwise, follow Step 4.

Step 4: For Y i
AD , traverse from its chip− (Nk − i + 1) to chip− 1 and

decipher chip− p, such that Y i
AD(p) 6= 0 and verify the following.

If Y i
AD(p) = 2 or 4

then
(
x̂2Nk−2i−1, x̂2Nk−2i

)
= (1, 1)

Else if Y i
AD(p) = −2 or − 4

then
(
x̂2Nk−2i−1, x̂2Nk−2i

)
= (−1,−1)

Go to Step-2 and repeat the sequence of steps for stage-(i + 1).

Finally, X̂ =
[
X̂1X̂2 · · · X̂k

]T
is the decoded input vector

steps i.e.; X = {Xstep−3|Xstep−4}. In other way, k = p +
q, where p and q indicate the number of classes included in
Xstep−3 and Xstep−4 respectively. Thus,

PX = PX(step−3) + PX(step−4). (6)

In (6), PX(step−3) = 1, if and only if X contains a series
of 1 or −1 for consecutive classes starting from X1 i.e.,
{X1} = 12×1or − 12×1 , {X1, X2} = 14×1or − 14×1,
{X1, X2, X3} = 16×1or−16×1, . . ., {X1, X2, X3, . . . , Xk} =
1Mk×1or − 1Mk×1 for which p = 1, 2, 3, . . . , k respectively.
Otherwise, PX(step−3) = 0. Unlikely, the value of PX(step−4)
is the sum of all the comparisons needed for each stage individ-
ually, where step-4 is required for decoding. So, inclusion of
more classes to Xstep−3 in turn minimizes the number of calls
made to step-4 (i.e., q) and thus simplifies the overall decoding.
Interestingly, for Xstep−3 = X i.e., PX = 1, QX = 0 which
implies that only a comparison decides for the input vector X̂ .

Similar to PX , total number of additions (QX) is also
input combination variant. However, the noteworthy point is
that addition operation is demanded only for the decoding of
the q consecutive classes of Xstep−4. As evident from Table



TABLE II: CAD versus MLD: Complexity Analysis

Decoder Size Multiplications Additions (QX ) Comparisons (PX )

CAD 4x6 Nil 12.19 6.75
8x14 Nil 27.58 21.64

MLD 4x6 184 201 64
8x14 104686 124690 16384

(a) (b)

Fig. 3: BER versus (Eb/N0) performance (a) of the Proposed Matrix
(CAD and MLD) for C3, C7 with size (4× 6), (8× 14) (b) of CAD for

C31, C63 with size (32× 62), (64× 126)

I, decoding in such case is achieved by the joint contribution
of step-2 and step-4. Where step-2 is meant for estimation and
cancellation of the interference, step-4 process the outcome of
step-2 to offer the final decision. Thus, we can express QX as

QX = QIE +QIC (7)

where QIE= number of additions for Interference Estimation

(IE) = 2q. QIC =
q∑

e=1
Nk−e+1= number of additions involved

in q stages of Interference Cancellation (IC). For better per-
ception of the overall simplicity of CAD, a comparative study
of complexity with respect to optimum MLD is presented in
Table II.

From the above analysis, we realize that it is the simplicity
of construction, and pattern of the orthogonal Hadamard set
(H2), which leads to the swiftness of the decoder, as shown
in Table II.

V. SIMULATION RESULTS

In this section, the BER vs (Eb/N0) performance for
AWGN channel is discussed. The system is assumed to be
BPSK modulated and perfectly power controlled. Table II
presents the overall complexity, where PX in (6) and QX in
(7) are calculated for each of the 2Mk combinations of X and
averaged.

From Fig. 3 (a), the error performance of CAD shows a lag
of ≈ 0.5 dB in signal to noise ratio (SNR) at a BER of 10−4.
The loss incurred, if compared with the extensive lowering in
complexity (in Table II), is worthy to be overlooked. Moreover,
unlike optimum MLD, no need of multiplication is demanded
for CAD. Along with, the degradation in average BER with
respect to the increase in value of β (from 1.5 to 1.75) reported
by the curves is highly marginal .

In Fig. 3 (b), the BER performance of CAD for high
dimensional matrices C31 and C62 sized as (32 × 62) and
(64 × 126) (β = 1.94 and 1.97) are shown. Although the
level of BER subjected to the significant increase in value
of β increases, the rise as compared to that of the lower
dimension is found to be negligible. Furthermore, the use of
ADC at the decoder (Fig. 2) aims at minimizing the error
(YAD 6= Rk). At high value of (Eb/N0), the decoder prohibits
the BER performance from deviating significantly. This is
because at this level of (Eb/N0), the constellation of the noisy
received signal becomes close to that of the noise less case i.e.,
YAD ≈ Rk.

VI. CONCLUSION

In this paper, we have shown that, there prevails a particular
set of ternary uniquely decodable codes for overloaded syn-
chronous CDMA that substantiates its existence for arbitrary
values of rate factor. Additionally, the uniqueness of employing
a binary (Hadamard) matrix as the basis not only made the
overall construction simplified but also empowered it to double
its capacity i.e. β ≈ 2. Due to the comparison driven logic, the
swiftness of CAD improved dramatically. We also proved the
errorfree nature of recovery for noiseless transmission. Despite
having the significant simplicity (Table II), the deviation in
error performance as compared to the optimum MLD is
highly marginal. Simulation results also verify the noteworthy
competence of its BER performance for large dimensional
code sets.

APPENDIX A

According to (5), the following expressions can be explic-
itly inferred for RNa

∈ {±2, 0}Na corresponding to class Ca.

RNa(Na) = Xa(1)−Xa(2) (8)

RNa(Na) = Xa(1) +Xa(2) (9)

where 1 ≤ a ≤ k and Xa(b) for b = 1, 2 represents the two
users of Ca. Recall that Na denotes the length of the non-zero
sequence of the signatures in Ca. Hence, RNa(Na) refers to
the last non-zero chip of the sum vector for Ca. For remaining
(Na − 1) number of chips with non-zero signal levels, the
constellation pattern can be predicted as

RNa
(Na) = 0 ⇒ RNa

(c) = 2 or− 2
RNa

(Na) = 2 or− 2 ⇒ RNa
(c) = 0

(10)

where c = 1, 2, ..., (Na − 1).

With these preliminaries, now, we intend to trace the
variation in constellation values among all the Nk non-zero
chips of the transmitted total sum vector Rk. Note that our
focus is to correctly decode the last class of the whole matrix
only i.e., Ck. Now, we deduce the following relation in (11) to
define the constellation value at chip-(Nk − s) of Rk, which
is a function of the sum vectors of participating classes such
that

Rk(Nk − s) =

s∑
t=0

R(Nk−t) (Nk − s) (11)

Onwards, the proof to show X̂k = Xk is based on
induction on s. So, we present Table III as an expanded



TABLE III: Study of constellation pattern of the total sum vector Rk(Nk − s) in (11), as a function of the sum vector of the individual constituent classes,
subjected to variation in value of s (0 ≤ s ≤ 3)

s RNk
(Nk − s) RNk−1

(Nk − s) RNk−2
(Nk − s) RNk−3

(Nk − s) Rk(Nk − s) Status of Decoding

0 2 / -2 - - - 2 / -2 Y
0 - - - 0 N

1

2 0 / 2 - - 2 / 4 Y
-2 0 / -2 - - -2 / -4 Y
2 -2 - - 0 N
-2 2 - - 0 N

2

2 0 0 / 2 - 2 / 4 Y
-2 0 0 / -2 - -2 / -4 Y
2 0 -2 - 0 N
-2 0 2 - 0 N

3

2 0 0 0 / 2 2 / 4 Y
-2 0 0 0 / -2 -2 / -4 Y
2 0 0 -2 0 N
-2 0 0 2 0 N

overview of the expression in (11) with an intention to study
the pattern of constellation of Rk subjected to all possible
constellation values of the sum vectors of constituent classes,
for specific values of s. Following an uniform approach of
analysis, we start with s = 0 and proceed till s = k. However,
the information in Table III covers for the first four values of
s (0 ≤ s ≤ 3) in a top to bottom chronology. This is because,
our objective is just to study the pattern of the constellation
for different values of s. To accomplish this consideration of
the first four value of s are sufficient, since similar behavior
in the pattern can be expected for higher values of s too.

The rows corresponding to a particular value of s carry all
possible combinations of the sum vector from (s+ 1) classes
contributing to the level of Rk(Nk − s). The contents of the
last (rightmost) column indicates the status of decoding: un-
ambiguous or ambiguous, denoted by ”Y” or ”N” respectively.
The symbol (-) has been used to mark the specific classes, not
contributing to the final sum Rk(Nk − s).

As evident, with the increase in value of s the number
of classes or class wise sum vectors leading to Rk increases.
Following a possible approach, the decoding analysis for ”Y”
or ”N” can be switched to a next value of s, if and only if
there appears an ambiguity (”N” in Table III) with respect to
its present value. In the following, we explain the proposed
analysis to be made for each value of s. An elaborated
overview of the whole analysis with respect to s is discussed
below.

For s = 0, if Rk(Nk) = RNk
(Nk) = 2 and -2 then

(Xk(1), XNk
(2)) = (1,−1) and (−1, 1). Thus, decoding

is errorless (unambiguous), as shown by ”Y” in first row of
for s = 0. In contrast, For s = 0, if Rk(Nk) = 0 then there
exists an ambiguity for (Xk(1), Xk(2)) = (1, 1) or (−1,−1),
shown by ”N” in second row for s = 0. To resolve this, s is
to be incremented by 1, such that for s = 1 and Rk(Nk) = 0

Rk(Nk − 1) = RNk
(Nk − 1) +RNk−1(Nk − 1) (12)

According to (10), now, value of RNk
(Nk − 1) =

2or − 2, since Rk(Nk) = 0. Under such conditions, if
(RNk

(Nk − 1), RNk−1(Nk − 1)) becomes (2, 0), (2, 2), (-
2, 0), (-2, -2) further leading to R(Nk − 1)= 2, 4, -
2, -4, then

(
X̂Nk

(1), X̂Nk
(2)
)

= (1,1), (1,1), (-1,-1)
and (-1,-1) respectively, shown by ”Y”, where as for

(RNk
(Nk − 1), RNk−1(Nk − 1)) = (2,-2) and (-2,2), R(Nk−

1) = 0 asserts an ambiguity, reported by ”N” (see Table III,
s = 1). To overcome this, s is again incremented by 1, such
that for s = 2 and Rk(Nk) = Rk(Nk − 1) = 0

Rk(Nk − 2) = RNk
(Nk − 2) +RNk−1(Nk − 2)+

RNk−2(Nk − 2)
(13)

Following (10), since RNk−1
(Nk − 1) = 2 or -2 implies

RNk−1
(Nk−2) = 0 (also see Table III, s = 2), the expression

in (13) becomes

Rk(Nk − 2) = RNk
(Nk − 2) +RNk−2(Nk − 2) (14)

The resulting expression in (14) has complete similarity to that
of (12). Hence it is trivial to expect the analysis for decoding
from (14) to be identical to that of (12).

From Table III, we note that for higher values of s(> 1),
the analysis aiming for the unambiguous decoding although
involves more number of classes (> 2), the final sum element
of Rk carries a value equal to the addition of sum vectors
of two class only, one of which is always the last class Ck,
by default. Therefore, for a given transmitted vector Rk, this
is feasible to decipher the input vector of the last class (X̂k)
following the construction and analysis of equations similar
to (12) and (14). Furthermore, this process continues till s =
(Nk − 1), unless a non-zero level of constellation is found for
Rk(Nk − s) i.e., X̂k is decoded. In particular, when all last
(Nk − 1) chips of Rk fails to offer the unambiguous recovery
due to the absence of non-zero elements i.e., for s = Nk − 2
and Rk(Nk) = Rk(Nk − 1) = . . . = Rk(2) = 0, there always
exists a non-zero element at Rk(1) that leads to the correct
decoding. Thus, feasibility of the errorless decoding for the
last class in Ck is verified. �
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