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Abstract: Manufacturing process often requires optimization of machining parameters in order to improve cost 

and production time and also to improve the product quality as well as to increase productivity. In this context, 

present work demonstrates a multi-response optimization problem for selection of optimal cutting parameters 

(optimal process environment) for machining (turning) of nylon 6, as a case study; by using Principal 

Component Analysis (PCA) followed by fuzzed linguistic reasoning in combination with Taguchi’s robust design 

technique. In this study, three controllable process parameters: cutting speed, feed, and depth of cut have been 

considered for obtaining desired Material Removal Rate (MRR) of the process and favorable multiple surface 

roughness features for the machined product; based on L9 orthogonal array experimental design. The study has 

been aimed to search an appropriate process environment for simultaneous optimization of quality-productivity 

favorably. Various surface roughness parameters of statistical importance (of the machined product) have been 

considered as product quality characteristics whereas; MRR has been treated as productivity measure for the 

said machining process. To avoid assumptions, limitations, uncertainties and imprecision in application of 

existing multi-response optimization techniques; Principal Component Analysis (PCA) has been proposed to 

convert correlated responses into uncorrelated quality indices (called individual principal components); next, a 

fuzzy inference system (FIS) has been proposed for meaningful and feasible aggregation of individual principal 

components into an equivalent single quality index, thereby, converting such a multi-objective optimization 

problem into an equivalent single objective optimization situation. A Multi-Performance Characteristic Index 

(MPCI) has been defined based on the FIS output. MPCI has been optimized finally using Taguchi method. The 

study exhibits application feasibility of the proposed approach with satisfactory result of confirmatory test.    

Keywords: Principal Component Analysis (PCA), Taguchi’s robust design, fuzzy inference system (FIS), Multi-

Performance Characteristic Index (MPCI) 

1. Introduction  

Nylon is widely used in a variety of application fields for their outstanding mechanical properties including 

high wear and abrasion resistance, superior strength and stiffness. Nylon's toughness, low coefficient of friction 

and wide size range availability make it an ideal replacement for a wide variety of materials from metal to rubber. 

Therefore, machining aspects of nylon is an emerging area of research. 

Quality and productivity are two important but conflicting criteria in any machining operations. In order to 

ensure high productivity, extent of quality is to be compromised. It is, therefore, essential to optimize quality and 

productivity simultaneously. Productivity can be interpreted in terms of material removal rate (MRR) in the 

machining operation and quality represents satisfactory yield in terms of product characteristics as desired by the 

customers. Dimensional accuracy, form stability, surface smoothness, fulfillment of functional requirements in 

prescribed area of application etc. are important quality attributes of the machined product. Increase in 

productivity results reduction in machining time which may results quality loss. On the contrary, an 

improvement in quality results in increasing machining time thereby reducing productivity. 



Optimization aspects of machining have been amply highlighted in literature [1-5], but to a limited extent. In 

most of the cases optimization has been done on a single objective function and it has been assumed that 

responses are uncorrelated. Literature highlights that Taguchi method is very popular in product/process 

optimization as it requires a well-balanced experimental design i.e. orthogonal array (limited number of 

experiments) which saves experimental time as well as cost. Not only this, Taguchi approach finds optimal at 

discrete levels of the process parameters; which can easily be adjusted in the machine/ setup. The traditional 

Taguchi method is widely used for optimizing the process parameters of a single response problem. 

Optimization of a single response may result unsatisfactory yield for remaining response features. But, overall 

performance of the manufactured product is often evaluated by several quality characteristics/responses. Under 

such circumstances, a unique optimal solution needs to be identified to optimize multiple responses 

simultaneously. In this context, Principal Component Analysis (PCA), a fuzzy expert system [6-8] coupled with 

Taguchi method has been proposed. PCA has been applied to eliminate response correlation thereby converting 

correlated multi-responses into equal or less number of uncorrelated indices called principal components (PCs). 

These PCs have been fed to a fuzzy inference system which works on a rule-base based on input-out mapping 

relationship and provides a single output. This unique FIS output has been termed as Multi-Performance 

Characteristic Index (MPCI). MPCI has been optimized finally by Taguchi method. This procedural concept 

avoids vagueness, uncertainty in assigning response weights. FIS can efficiently take care of this aspect into its 

internal hierarchy.       

 

2. Experimentation 

Experiments have been performed in following steps. 

[1] Checking and preparing the Centre Lathe ready for performing the machining operation. 

[2] Cutting nylon 6 bars by power saw and performing initial turning operation in Lathe to get desired 

dimension of the work pieces. 

[3] Calculating weight of each specimen by the high precision digital balance meter before machining. 

[4] Performing straight turning operation on specimens in various cutting environments involving various 

combinations of process control parameters like: spindle speed, feed and depth of cut. 

[5] Calculating weight of each product (after machining) by the digital balance meter. 

[6] Measuring the machining time to calculate MRR. 

[7] Measuring surface roughness and surface profile with the help of a portable stylus-type profilometer, 

Talysurf (Taylor Hobson, Surtronic 3+, UK) 

 

Samples of nylon 6 bars with dimensions of 15050  (cutting length of 50 mm) have been used as working 

material. Single point HSS Tool of INDOLOV SHRIRAM IK-20 has been used for the machining operation. 

Three cutting parameters (spindle speed, feed, depth of cut) varied in three different levels have been used to 

optimize the machining condition. Table I indicates selected process control parameters and their limits. In the 

present study, interactive effects of process parameters have been assumed negligible. The most suitable array 

based on Taguchi’s method has been found as L9 orthogonal array (Table II). The manually operated lathe 

PINACHO (180 750) of Tussor Machine Tool India Pvt. Ltd. Coimbatore, India has been used for the 

machining. The weight of the work piece has been measured in a high precision digital balance meter: Model: 

DHD 200 Macro single pan DIGITAL reading electrically operated analytical balance made by Dhona 

Instruments. The measured roughness parameters: Rq, Ra, Rt, Rku, Rz, Rsm along with material removal rate 

(MRR) have been shown in Table III. 

3. Data Analysis  

Experimental data (corresponding to Table III) have been converted into corresponding S/N ratios. For all 

surface roughness parameters, a Lower-the-Better (LB) criterion and for MRR, a Higher-the-Better (HB) criterion 

has been selected. These S/N ratios have then been normalized again based on Higher-the-Better (HB) criteria.  

Pearson’s correlation coefficient has been evaluated next. In all cases nonzero values of correlation coefficients 

(Table IV) depict that responses (S/N ratios of all output features) are inter-correlated. In order to avoid response 



correlation, PCA has been applied to convert correlated responses into uncorrelated quality indices called 

principal components (PCs). After finding Eigen values, Eigen vectors and correlation coefficients; factor 

analysis has been carried out to summarize the data structure in a few dimensions of the data and also to explain 

the dimensions associated with large data variability. It has been observed that first five principal components 

(PCs) can satisfactorily explain 99.9% data variation. Therefore, only these PCs have been considered for further 

analysis. Remaining PCs have been ignored. 

Individual principal components (PC1 to PC5) thus computed (Table V) have been normalized next by using 

Higher-the-Better (HB) criteria. Normalized PCs have been fed as inputs in Fuzzy Inference System (FIS) (Fig. 

1). The output of the fuzzy inference system has been defined as MPCI (Table VI). This Multi-Performance 

Characteristic Index (MPCI) has been finally optimized by using Taguchi methodology. Higher- the- Better (HB) 

criterion has been used for optimizing (maximizing) the MPCI (Eq. 1). 
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represents measured response data in ith experiment and n is the total number of trial. 

In calculating MPCI in FIS system, various membership functions (MFs) have been assigned to the five input 

variables: The selected membership functions for input variables are given below.  

 

PC1: “Low”, “Medium” and “High” 

PC2: “Low”, “Medium” and “High”  

PC3: “Low”, “Medium” and “High” 

PC4: “Low”, “Medium, and “High”. 

PC5: “Low”, “Medium, and “High”. 

 

Nine membership functions have been selected for MPCI: “Very very Low”, “Very Low”, “Moderately Low”, 

“Low”, “Relatively Medium”, “Medium”,  “High”, “Very High” and “Very Very High” (Fig. 2). 27 fuzzy rules 

have been explored for fuzzy reasoning (Fig. 3; Table VII). Fuzzy logic converts linguistic inputs into linguistic 

output. Linguistic output is again converted to numeric values (MPCI) by defuzzification method. Numeric 

values of MPCIs have been tabulated in Table VI with corresponding S/N ratio as well as mean. S/N ratios of 

MPCIs have been calculated using Higher-the-Better (HB) criterion. Fig. 4 represents optimal parametric 

combination (N2 f2 d3). Optimal result has been validated by satisfactory confirmatory test. Predicted value of 

S/N ratio of MPCI becomes -2.58814 and predicted mean is 0.645111 (highest among corresponding to all 

entries in Table VI). So, quality has improved using the said optimal setting validated by confirmatory 

experiment.   

 

4. Conclusion 

In this study, PCA and fuzzy rule based integrated optimization module has been developed using five input 

variables (PCs) with single output i.e. MPCI. By this way a multi-response optimization problem has been 

converted into an equivalent single objective optimization problem which has been further solved by Taguchi 

philosophy. The proposed procedure is simple, effective in developing a robust, versatile and flexible mass 

production process. Response correlation is eliminated by PCA analysis. PCs can be aggregated further to 

compute an overall performance index (MPCI). In the proposed model it is not required to assign individual 

response weights. Degree of influence of various process control factors can be investigated easily. Accuracy in 

prediction of the model analysis can be subsequently increased by assigning adequate fuzzy rules as well as by 

increasing number of membership functions in the fuzzy inference system.  This approach can be recommended 

for continuous quality improvement and off-line quality control of a process/product in any manufacturing/ 

production environment. 

The main highlights of this research are given below: 

 

1. Development of an integrated methodological framework for correlated multi-response optimization. A 

case study has been chosen to optimize contradicting requirements of quality and productivity. 



2. The methodology described above seeks to overcome limitations of existing common optimization 

approaches well documented in literature. 

3. The aforesaid concept of multi-response optimization incorporates various aspects that are valid and 

influential in practical field but generally being assumed to impose negligible effect in existing 

optimization practices. 
 

TABLE I: Domain of experiment 

Sl. No. Factors Notation  Unit  Level 1 Level 2 Level 3 

1 Cutting speed  N [RPM] 360 530 860 

2 Feed rate  f [mm/rev] 0.083 0.166 0.331 

3 Depth of cut  d [mm] 2 3 4 

 

TABLE II: Design of experiment 

Sl. No. 
Factorial combination (Coded form) 

N f d 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 

 

TABLE III: Experimental data 

Sl. No. Rq (µm) Ra (µm) Rt (µm) MRR(mm3/min) Rku Rz (µm) Rsm (mm) 

1 1.613333 1.35 8.433333 1436.839 2.406667 7.176667 0.044367 

2 5.013333 4.19 39.8 3992.6746 9.826667 19.96667 0.098433 

3 5.563333 4.76 23.53333 9909.7919 2.066667 21 0.161667 

4 2.333333 1.786667 18.39667 4290.9832 17.9 10.96 0.054667 

5 3.1 2.64 12.63333 7693.0652 2.166667 11.2 0.082433 

6 5.336667 4.653333 20.06667 5298.241 1.803333 18.63333 0.16 

7 1.066667 0.858 6.823333 6048.7008 3.143333 5.046667 0.052667 

8 3.476667 2.976667 13.36667 4762.783 2.19 12.33333 0.081167 

9 4.696667 4.243333 18.03333 18843.154 1.616667 15.9 0.160667 

 

TABLE IV: Check for response correlation 

Correlation  

(between the responses) 
Rq Ra Rt MRR Rku Rz 

Ra 0.998      

Rt 0.848 0.821     

MRR 0.461 0.475 0.254    

Rku -0.165 -0.219 0.347 -0.331   

Rz 0.986 0.976 0.912 0.402 -0.030  

Rsm 0.890 0.903 0.636 0.704 -0.428 0.849 

 

TABLE V: Individual principal components (PCs) 

Sl. No. PC1 PC2 PC3 PC4 PC5 

1 0.852283 -0.1208 0.147181 0.004384 0.000828 

2 4.236844 -1.15717 0.641488 0.189084 -0.08866 

3 4.535799 -1.79554 -0.31347 0.268568 -0.04346 

4 2.135723 -0.625 0.978295 0.060893 -0.05386 

5 2.666602 -1.20492 -0.1642 0.12605 -0.01159 

6 4.268112 -1.53786 -0.36042 0.259788 -0.03239 

7 0.231981 -0.55 0.139251 0.028989 -0.0035 

8 2.844211 -1.06057 -0.13043 0.12451 -0.01086 

9 4.09653 -1.9704 -0.49477 0.257081 -0.0292 

 

 



 
Fig.1: Proposed FIS architecture 

 
TABLE VI: Individual principal components (normalized) and computed MPCI 

Sl. No. Nor C1 Nor PC2  Nor PC3 Nor PC4 Nor PC5 MPCI S/N Ratio MEAN 

1 0.144128307 1 0.43579272 0 1 0.126 -17.9926 0.126 

2 0.930537258 0.439678849 0.77135632 0.69913394 0 0.5 -6.0206 0.500 

3 1 0.09453936 0.12307671 1 0.505095655 0.5 -6.0206 0.500 

4 0.442337943 0.727400519 1 0.21390016 0.388878956 0.334 -9.5251 0.334 

5 0.565688651 0.413862457 0.22440965 0.46053508 0.861232791 0.593 -4.5389 0.593 

6 0.937802435 0.233855969 0.09120439 0.96676559 0.628799392 0.484 -6.3031 0.484 

7 0 0.767949827 0.43040938 0.09313584 0.951635974 0.281 -11.0259 0.281 

8 0.606956428 0.491906358 0.24733464 0.45470581 0.869390309 0.636 -3.9309 0.636 

9 0.897935043 0 0 0.95651894 0.66444663 0.414 -7.6600 0.414 

 

 
Fig. 2: MFs for MPCI 

 

 
Fig. 3: Fuzzy rule base 

 

 

 



TABLE VII: Fuzzy rule matrix 

Sl. No. IF Nor PC1 AND Nor PC2  AND Nor PC3 AND Nor PC4 AND Nor PC5 THEN MPCI 

1 low low low low Low Medium 

2 low low Medium Medium Medium Low 

3 low low High High High Moderately low 

4 low Medium low Medium High High 

5 low Medium Medium High Low Low 

6 low Medium High Medium Medium Moderately low 

7 low High  low High Medium Moderately low 

8 low High  Medium Low High Very low 

9 low High  High Medium Low Very very high 

10 Medium  low low Medium Medium Relatively medium 

11 Medium  low Medium High High Moderately low 

12 Medium  low High Low Low Moderately low 

13 Medium  Medium low High Low Medium 

14 Medium  Medium Medium Low Medium Low 

15 Medium  Medium High Medium High Moderately low 

16 Medium  High  low Medium High Moderately low 

17 Medium  High  Medium Medium Low Very low 

18 Medium  High  High High Medium Very very low 

19 High  low low High High Low 

20 High  low Medium Low Low Medium 

21 High  low High Medium Medium Medium 

22 High  Medium low Low Medium  Medium 

23 High  Medium Medium Medium High High 

24 High  Medium High High Low Relatively medium 

25 High  High  low Medium Low Very high 

26 High  High  Medium High Medium Medium 

27 High  High  High Low  High Medium 

 

 

 
Fig. 4: S/N ratio plot of MPCI (Evaluation of optimal setting) 
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