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Abstract—Virtual Machine (VM) placement is an important
research area for power conservation in data centers. In this
paper, we introduce a hybrid queuing model for VM placement
for data centers to improve total placement time and earn more
revenue. For the large data center management smaller placement
times lead to greater quality of service (QoS) experienced by
an user of the cloud infrastructure. Similarly, the larger the
number of VMs that can be placed in a server racks, higher
the justification of the placement cost. We thus propose a ILP,
that provides maximum justification of the revenue earn along
with minimizing placement time. In addition, we also study the
rate of loss of VM placement requests and total utilization of the
system as the arrival rate of VMs increase.

Keywords—Cloud computing, Virtual machine, Placement time,
Revenue.

I. INTRODUCTION

Cloud computing is an emerging technology that uses the
Internet and centrally located remote servers for maintenance
of data and applications. Among all key technologies, virtual-
ization enables dynamic sharing of physical resources in cloud
environments [1]. Through virtualization, physical resources
such as: CPU, memory, disk space are made available to
applications on-demand [2].

The process of mapping VMs onto Physical Machines
(PM) is known as VM placement. It is an important approach
for improving energy efficiency and resource utilization in
a cloud infrastructure.A Cloud Service Provider (CSP) will
try to accommodate maximum number of VM requests onto
data centers to earn his maximum revenue. Revenue can be
defined as the cost incurred to map or place one VM on to a
specific server. This cost is generally negotiated between the
user and the Cloud Service Provider (CSP) during service level
agreements (SLA). To maximally earn the revenue, the CSP
aims to accommodate as many VMs as possible. However,
placing VMs on a server takes time - the placement time.
This metric is crucial to the success of a CSP in accruing
subscribers. A longer placement time might lead to frustrated
users. Additionally, longer placement times may not meet the
client’s technical requirements. The importance of appropriate
placing of VMs on a data center has been addressed by
several researchers [3], [4]. In this work, we analysis the total
placement time for different sets of VM request arrival rates.
We also consider the rate of arrival request loss during re-
questing processing in the system for placement. We proposed

a queuing theory based mathematical model to address the
previously mentioned issue. The proposed model was analyze
and verified using simulation. Proposed model, simulation
results and conclusion are describe in following sections.

II. PROPOSED MODEL

In this paper, we propose a hybrid multi-system VM
placement model for cloud data center, shown in figure 1.In
this model the VM placement requests will pass through two
distinct system facilities namely, CSP system and Data Center
(DC) system. CSP system is describe as a single server system
associated with a Broker queue (BQ). VM placement requests
will arrive at CSP system trough the BQ. After being processed
from the CSP system, it will be assigned to a DC system. Each
DC system has its own DC queue and have it’s own a multi-
server system. Note that the processing rate/departure rate at
the CSP has a direct implication on the arrival rate of these
requests to the DCs. Also note that there are multiple DCs (the
number of DCs might vary) to which these requests will be
distributed over.

Fig. 1. Schematic Diagram of VM request flow for cloud model

Let λn be the arrival rate of n VM requests to the BQ in
the CSP. Let µn be the service rate of the CSP. Let us also
assume that the system functions under identical conditions.

Let Pn be defined as the steady state probability of n VM
requests arriving at the CSP system at a given time t. From
the generalized model of queuing theory, Pn is a function of
λn and µn, which can be calculated as:

Pn =

(

λn−1...λ0

µn...µ1

)

P0, n = 1, 2, ... (1)

where, P0 can be found from
∑∞

n=0 Pn = 1 i.e. the sum state
probability of all states is equal to 1. Note that, System =



queue+ servicefacility. Let Rs and Rq denote the expected
number of VM requests in the system and the queue respec-
tively. Thus, Rs = E[VM(s)] and Rq = E[VM(q)]. Obviously,
Rs > Rq .

Additionally let Ts and Tq represent the expected waiting
time of VM placement requests in the system and the queue
respectively. Thus Ts = E[WT(s)], Tq = E[WT(q)], where WT
represents WaitTime. In steady state, the probability of having
n VM placement requests in the system, denoted by Pn can
be used to compute Rs and Rq in the following manner:Rs =
∑∞

n−1 nPn and Rq =
∑∞

n=c+1 (n− c)Pn, where c denotes
the number of parallel servers in the system. In our model
c can take the value of 1 or m. if λeff denotes the effective
arrival rate of VM placement requests in the system, then from
Little’s Theorem [5] we have Rs = λeffTs and Rq = λeffTq.
Where, λeff is the effective arrival rate in the system.

Note that λeff = normal λ when all placement requests
arrive successfully to the system and no request is dropped by
the network due to unfavorable system condition. Otherwise,
Ts = Tq +

1
µ

and we can relate Rs to Rq by multiplying both

side of the last formula by λeff , which together with the

little formula gives, Rs = Rq +
λeff

µ
. By the definition, the

difference between the average number in the system Rs and

the average number in the queue Rq , c = Rs − Rq =
λeff

µ
.

Service facility utilization = c
c
.

A. Broker Queue System

We model the CSP system as the classic Broker Queue
(BQ) from Queuing theory [5]. The BQ that we consider, has
a single server model with finite system limit. The arrival rate
of VM placement requests to this queue is denoted by λ. The
requests are processed at a rate (service rate) µ per unit time.
The system has an upper limit of accommodating upto (N-
1) placement requests in the queue. Thus the N th placement
request and beyond is discarded.

Thus we have,

λn =

{

λ, n = 0, 1, ..., n− 1
0, n = N, N + 1

µn = µ, n = 0, 1, ...
(2)

Using ρ = λ
µ

, the generalized model yields Equation 1.

Pn =

{

ρnP0, n ≤ N
0, n > N

(3)

Pn =

{

(1−ρ)ρn

1−ρN+1 , ρ 6= 1
1

N+1 , ρ = 1
, n = 0, 1, ..., N (4)

The value ρ = λ
µ

, need not be less than 1 for this model,

because the VM placement request arrival rate is bounded at N
requests in the system at any pont in time t, i.e λeff . Because
VM request will be lost there are N in the system.

We can write arrival loss rate as ,

λlost = λPN

λeff = λ− λlost = λ(1 − PN )
(5)

In this case, λeff < µ. The expected number of VM request
in the BQ system is computed as,

Rs =
N
∑

n=1
nPn

= ρ[1−(N+1)ρN+NρN+1]
(1−ρ)(1−ρN+1) ; ρ 6= 1

(6)

or,

Rs =
N
∑

n=1
nPn

= N
2 ; ρ = 1

(7)

We can find Ts = Rs/λ; Tq = Ts − 1/µ ; Rq = λTq and
c = Rs −Rq

B. Data Center Queue System

The Data Center Queue system comprises of m parallel
number of service facilities. The DCQ system follows the BQ
system. The departure rate from BQ will be the arrival rate of
DCQ split over the m servicing facilities; where m is the total
number of data center associated with CSP. The system limit
is finite and equal to N ′. The minimum queue size is N ′− c′.
VM placement request arrival rate at each of the individual
m data centers is assumed to be λ′ and the service rate to
be µ′. The effective arrival rate λ′

eff < λ′ because system

limit is N ′. The system DC has following characteristic: (i.)
The VM placement request arrivals occur in batches following
the Poisson arrival model with mean rate λ′. (ii.) The requests
are served in the DCQ system and leave the system following
a Poisson model with mean rate µ′. (iii.) Number of parallel
servers is c.

From the general queue model and equation 2 we can
define λ′

n and µ′
n. Substituting λ′

n and µ′
n in the general

expression of queuing theory and noting τ = λ′/µ′;

P ′
n =

{

τn

n! P
′
0, 0 ≤ n ≤ c′

τn

c′!c′n−c′
P ′
0, c′ ≤ n ≤ N ′ (8)

Next, we compute R′
q for the case where τ

c′
6= 1 as similar to

the equation 6 and for τ/c′ = 1, then

R′
q =

τc (N ′ − c′) (N ′ − c′ + 1)

2c′!
P0,

τ

c′
= 1 (9)

To determine T ′
q and hence T ′

s and R′
s, we compute the

value of λ′
eff , similarly as in Equation 5

λ′
lost = λ′PN

λ′
eff = λ′ − λ′

lost = (1− PN )λ′ (10)

Recall from Figure 1 that all VM placement requests
undergoes service at two queue systems, namely the BQ
followed by one of the m DCQs. The arrival rate of these
requests at the BQ follows a Poisson process with mean rate
λ and service/departure rate µ. The arrival rate (λ′) of these
requests to the DCQ is thereby a functionality of µ and the
number of data center servers. Thus, for m data center servers,
λ′ = µ/m. Total placement time for any VM request may be
calculated from the following equation:

T = (Ts + Tq) + (T ′
S + T ′

q) (11)



C. Deployment Cost Optimization

A VM which is placed in server rack, is defined by
three tuples VMi.A, VMi.C and VMi.B. Where, VMi.A
is deployment cost for ith VM, which includes, hardware
resource rent, placement charges and future maintenance cost.
VMi.C denotes resource requirements of VMi. VMi.B is an
assignment variable and it is 1 if VMi is placed in a server.
With a higher arrival rate of VM requests and we intend to
minimize the loss rate of requests (denoted by λlost) which
will in turn lead to higher number of successful placements of
VMs into servers thereby increasing the deployment cost. The
objective function for maximizing the total deployment cost
earned from active servers is outlined below (Equation 12).

Maximize

|VM|
∑

i=1

VMi.A × VMi.B (12)

The deployment cost can be maximized by placing more
number of VMs onto less number of active servers.

Subject to:

|VM|
∑

i=1

VMi.B = 1

|VM|
∑

i=1

VMi.C × VMi.B ≤ Sj ; ∀j

(13)

III. SIMULATION & RESULTS

The model has been simulated using MATLAB 7.0 on a
workstation computer with Intel(R) core(TM)2 Duo cpu of
3.00 GHz and 4.00 GB memory. In our numerical study, we
varied the arrival rate of the VM placement requests (λ) and
studied its effect on different performance metrics namely
the expected waiting time of these requests in the queue and
the system in both BQ and DCQ, system utilization and lost
requests.
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Fig. 2. Analytical results

In Figure 2a,we vary the value of λ from 0 to 40 within
a fixed interval of time and study its impact on the placement
time in milliseconds. The graph shows a logarithmic increase
in placement time with increasing λ values. However we see an
exponentially increasing placement time when lambda values

start growing beyond 35 arrivals/unit time. This is because
with such high lambda values, the waiting time in queues
also increase substantially. In Figure 2b, the ratio of λloss

is decreases with increasing arrival rate. It is observed that
for higher value of λ i.e. 35 and more, the λloss value are
proportionally low. In Figure 2c, it is clearly observed from
the graph that when the λ is increased i.e. the queue load
is increased for system, the system-utilization is constant for
higher VM placement request arrival rate. Figure 2d concludes
that for higher VM request arrival rate (λ), the probability of
more VM placed in serve racks also increases. Another reason
is for higher value of λ the proportion of λloss is also decrease.
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Frist Fit Decreasing (FFD)

Proposed

Fig. 3. Total placement time vs. arrival rate

Figure 3 shown a comparative analysis with FFD [6]. The
total placement time is better for proposed model than FFD.

IV. CONCLUSION

In this paper we addressed the issue of accommodating
the maximum possible VMs on a server racks in a cloud
infrastructure. We modeled the problem using a hybrid queuing
system.Our aim was to study the effect of increasing placement
requests on total placement time, deployment cost, request loss
rate and total system utilization. We compared our result with
FFD and the proposed technique is out perform.
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