Physical Sciences

Bi₂Fe₄O₉ as a potential candidate for multiple state memory and magnetic field sensor application

A. K. Singh^{*}

¹ Department of Physics and Astronomy, National Institute of Technology, Rourkela-769008, Odisha, India. *E-mail: singhanil@nitrkl.ac.in

Keywords: Magneoelectric coupling, magnetic field sensors, magnetization, dielectric constant

Abstract

Phase pure polycrystalline $Bi_2Fe_4O_9$ is prepared using the conventional solid state reaction route. X-ray diffraction (XRD) reveals $Bi_2Fe_4O_9$ to possess an orthorhombic crystal structure with space group '*Pbam*'. Optical characterization confirms $Bi_2Fe_4O_9$ to be a direct band gap material with $E_g \sim 1.5$ eV. Magnetization measurement shows compound to be antiferromagnetic (AFM) with AFM transition temperature ~150 K. The dielectric response of the compound was recorded in the temperature range 10-300 K with the probing frequency from 500 Hz-5 MHz. Here, we report remarkable magnetic field tunable dielectric properties of polycrystalline $Bi_2Fe_4O_9$ near its AFM transition temperature. Thus, $Bi_2Fe_4O_9$ can be further stimulated for various other magnetic field sensors, multiple state memory and other ferroelectric applications.

Bi₂Fe₄O₉ as a potential candidate for multiple state memory and magnetic field sensor application

Anil K. Singh

Multifunctional Material Science Lab Department of Physics and Astronomy National Institute of Technology Rourkela Odisha-769008 Email: singhanil@nitrkl.ac.in

Abstract

Phase pure polycrystalline $Bi_2Fe_4O_9$ is prepared using the conventional solid state reaction route. X-ray diffraction (XRD) reveals $Bi_2Fe_4O_9$ to possess an orthorhombic crystal structure with space group 'Pbam'. Optical characterization confirms $Bi_2Fe_4O_9$ to be a direct band gap material with Eg ~ 1.5 eV. Magnetization measurement shows compound to be antiferromagnetic (AFM) with AFM transition temperature ~150 K. The dielectric response of the compound was recorded in the temperature range 10-300 K with the probing frequency from 500 Hz-5 MHz. Here, we report remarkable magnetic field tunable dielectric properties of polycrystalline $Bi_2Fe_4O_9$ near its AFM transition temperature. Thus, $Bi_2Fe_4O_9$ can be further stimulated for various other magnetic field sensors, multiple state memory and other ferroelectric applications.

Plan of talk

Introduction

Experimental techniques used

Results and discussion

Introduction

Multiferroics

Multiferroics are rare materials that exhibits two or more switchable states such as polarization, magnetization, or strain and possibly exhibiting coupling among them. *Spaldin, Science 309, 391 (2005)*

 $\overrightarrow{P} = \overrightarrow{Ae_{ij}} \times \left(\overrightarrow{S_i} \times \overrightarrow{S_j}\right)$

S_i, S_j: magnetic moments
e_{ij}: unit vector connecting site I, j
P: polarization
J_s: spin current

Department of Physics, NIT Rourkela, Odisha

Phys. Rev. Lett. 96, 067601 (2006)

Examples of Multiferroics

The most promising multiferroic materials are the Perovskites having structure like ABO₃. d-shell electrons plays the important role. e.g. $SrTiO_3$, $BaTiO_3$, $PbVO_3$ etc.

Bi and Pb Perovskites : lone pair plays the role. e.g. BiMnO₃, BiFeO₃

Hexagonal magnanites: Same formula as perovskite has. But different crystal and electronic structure e.g. YMnO₃.

 \succ Ferroelectricity due to magnetic ordering e.g. Ni₃V₂O₈.

Recently discovered RMn₂O₅ and CdCr₂S₄

Applications of Multiferroics

Magnetic field Sensors
 [Appl. Phys. Lett. 88, 62510 (2006), Nat. Mater. 7, 94 (2009)]

✓ Data storage, and recording [J. Appl. Phys. **103**, 07F506 (2008), J. Appl. Phys **102**, 44504 (2007)]

✓ Quantum electromagnet [Science 312, 1481(2006)]

✓ Solar cells [Science 324, 64 (2009), Appl. Phys. Lett. 95, 62909 (2009)]

Microelectronics
 [J. Phys.: Condens. Mater 17, L39 (2005)]

✓Transducers

✓ Detectors (SONAR) :

✓ Filter probes and filters

Spintronics applications

Scarcity of multiferroics: why?

There are some limiting factors that prevent a material to be simultaneously ferromagnetic and ferroelectric :---

✓ Symmetry: There are 122 no. of Shubnikov point groups. Among these 31 are allowed for electric polarization P, and 31 are allowed for magnetic polarization M & 13 point groups are common to both.

✓ Electric property: Ferroelectric materials must be an insulator and Ferro magnets are often metal. So it is difficult to exist both these ferroic properties in a same material.

✓ d⁰-ness:Ferroelectric material have d⁰ configuration but ferromagnetism needs partially d-filled orbital. Again contradiction.

Size of the cations:

✓ Magnetism versus d-orbital Occupancy: The existence of d-electrons on the B-site cations reduces the tendency of perovskite oxides to display the ferroelectricity.

Scarcity.....

Structural distortion: Ferroelectric materials must undergo a phase transition that does not have a center of symmetry (achieved in perovskite ferroelectrics). For a cation with certain d-orbital occupancy, the tendency to undergo a J-T distortion is strong and likely to be dominant structural effect. This subterfuges the non-centro symmetric structure.

Two Phase composite multiferroics e.g. $PbZr_{1-x}Ti_xO_3$ and $Tb_{1-x}Dy_xFe_2$ have been successfully tried out. YMnO3 is a better candidate because it contains heavy and easily oxidized elements and it is free from elements such as Pb and Bi

Motivation

• Is it possible to observe multiferroic property in a spin frustrated material very near to room temperature?

•What is the microscopic origin of the coupling between electric and magnetic order in frustrated magnetic system?

• Are the bulk properties giving some kind of indication for the application of $Bi_2Fe_4O_9$?

• How doping will affect the ME coupling in pentagon spin frustrated $Bi_2Fe_4O_9$?

Experimental techniques used

Sample preparation

- Solid state reaction
- Sol gel

Crystal and magnetic structure

- X-ray diffraction
- Neutron diffraction

Surface morphology and compositional study

- Scanning electron microscopy
- Energy dispersive spectroscopy

Optical characterization

- UV-Visible spectroscopy
- Raman spectroscopy

Magnetic characterization

SQUID

Department of Physics, NIT Rourkela, Odisha

Magnetoelectric coupling study

Magneto-dielectric study

Thermodynamic measurement

PPMS

Ferroelectric characterization

- PE measurement
- CV measurement

Crystal structure

- Orthorhombic structure
- Space group *Pbam*
- Two formula units per unit cell
- \circ T_N = (265 ± 3) K

• Magnetic moment = 4.95 μ_B , compared with the value of 5 μ_B for the Fe³⁺ free ion.

• There are four octahedral Fe ions on the sides of the cell and the remaining four tetrahedral Fe ions are in the interior.

Sample preparation

O Polycrystalline samples of $Bi_2Fe_4O_9$ were prepared by conventional solid state reaction process at 850 °C at ambient pressure for 12 hours.

 $O Bi_2O_3 + 2Fe_2O_3 \longrightarrow Bi_2Fe_4O_9$

O To ensure the stoichiometry, homogeneity and density of the pallets, the grinding and sintering process was repeated thrice.

XRD, FESEM, EDS and XPS Data

DSC, and **SQUID** Data

UV-visible spectroscopy and Heat capacity Data

Dielectric, ME coupling, PE measurement

ROURKELA

Electric Field (kV/cm)

Neutron diffraction results

ROURKELA

High temperature dielectric and conduction mechanism

A. K. Singh et al., J Mater Sci: Mater Electron, 2015.

Conclusion

 $A Bi_2 Fe_4 O_9$ shows novel magnetoelectric property very near to room temperature.

✤ BFO has a great potential to be used as a magnetic field sensor as its ME coupling at room temperature is ~ 8% for 1.4 T magnetic field.

✤Its semiconducting properties enables us to use this material for solar cell application.

BFO can also be used as multiple state memory application.

References

- 1. A. K. Singh, et al.; Appl. Phys. Lett 92, 132910 (2008).
- 2. A. K. Singh et al. Euro. Phys. Lett. 86, 57001 (2009).
- 3. A. K. Singh et al., J. Appl. Phys. 106, 014109 (2009).
- 4. A. K. Singh et al., Phys. Rev. B 81, 184406 (2010).
- 5. B. Sahu et al., AIP Conf. Proc. 1665, 140043 (2015).
- 6. S. R. Mohapatra et al., J Mater Sci: Mater Electron. 10, 4203 (2015).

✤Dr. S. D. Kaushik, UGC-DAE-CSR Mumbai for ND and SQUID measurement.

✤Dr. R. J. Choudhri for XPS measurement.

♦Mr. S. R. Mohapatra and Mr. B. Sahu (Ph. D students)

♦DST and BRNS for funding the research projects.

THANK U FOR YOUR KIND ATTENTION