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A Novel Site Adaptive Propagation Model
Ganapati Panda, Senior Member, IEEE, Rabindra K. Mishra, Senior Member, IEEE, and Smruti S. Palai

Abstract—A site adaptive knowledge guided neural network
(KGNN) propagation model, using Hata model as knowledge
base (KB) is presented. It adapts to measured data with rapid
convergence.

Index Terms—Artificial neural network (ANN), knowledge base
(KB), propagation loss.

I. INTRODUCTION

SPECTRUM of models for radio propagation loss predic-
tion contains closed form empirical formulae on one end

and more accurate computer intensive deterministic methods,
requiring detailed terrain database, on the other end. The use-
fulness of this spectrum to the broader propagation community
is revealed in a recent survey [1]. The preferred one is normally
the empirical formulae, which can be represented in standard
form [2] as written in (1)

(1)

Here, , , , , , and are respectively the path
loss, the base station antenna height, the frequency, the mobile
antenna height, the distance between Tx and Rx antennae, and
the degree of terrain undulation known as intercede range.

The closed form empirical models suffer from two major
disadvantages [3]: 1) impracticality of using large available
data in modeling, and 2) lack of adapting flexibility to various
terrain databases and terrain. The desired characteristics of
radio propagation empirical loss prediction models include
[3]: 1) nonexact analytical formulation, 2) limited accuracy,
3) available quantity of data for modeling is medium, and
4) adaptive flexibility to various terrain database and terrain.
These characteristics closely match those of artificial neural
network (ANN), which is an adaptive and open empirical
model. The complexity of ANN-based models lies somewhere
in the middle of the spectrum of the radio propagation models.
Hence, it has been investigated as a feasible model [3]–[6] to
predict empirical results. However, they are prone to problems
like slow convergence and local minima traps during training
resulting in unpredictable results. Overcoming local minima
problem needs to increase the number of neurons in the hidden
layer and, hence, higher computational complexity.
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Fig. 1. Schematic of the proposed KGNN.

II. KNOWLEDGE GUIDED NEURAL NETWORK (KGNN) MODEL

This letter implants Hata model [8] as knowledge base (KB)
to guide the ANN modifying KBNN concept [10] in an attempt
to minimize the above problems. In this modification, the KB is
taken as a hidden neuron (Fig. 1), whose connecting weights are
fixed as unity. Initially, all other weights are initialized to zero.
Thus, initially, the KGNN output is the Hata models output,
which is an approximation to the desired result. Hence, the error
is near the global minimum. Now by updating the weights, we
reach the global minimum easily, avoiding the local minima.
Weight update employs standard back propagation along with
the learning rate and momentum [9].

III. SIMULATION RESULTS

The proposed model is trained with Okumura’s [7] measure-
ment in Tokyo area assuming a quasismooth terrain

, which led to the Hata model that is being used as the KB
in this work. It is well known that the ANN has Universal gener-
alization capability. This means, it can be trained, validated, and
tested with various data sets of same dimensionality (i.e., the di-
mensions of the respective inputs and outputs remains same). To
be specific for the present problem, if an ANN model can be de-
veloped for a specific terrain, then the same structure can adopt a
new set of weights for another terrain, exploiting its generalized
adaptation behavior. Thus, such models automatically become
site adaptive in nature.

A KGNN was trained with 200 training
patterns. The four input neurons are , , , and . Out of the
five hidden neurons, one is KB and others use activation
function. The activation function for the output neuron is linear.
Its results are compared with a conventional ANN that has the
same structure with all the five hidden neurons having
activation function. The mean square error (MSE) for the Hata,
ANN, and KGNN with respect to measured data are found to be
6.38, 4.42, and 1.51 dB, respectively.

Fig. 2 compares the performance of various models with mea-
sured data. It is observed that the result of the ANN model acts
like a linear curve fitter to the measured data. This may be due
to a lower number of hidden neurons and pure linear transfer
function in the output neuron. It illustrates the fact that in con-
ventional ANN, the hidden layer neurons play an important role
in adapting the nonlinearity of the network output. The more the
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Fig. 2. Comparison between measured, Hata model, ANN, and KGNN (path
profile at f = 1318 MHz, h = 140 m, h = 3 m.).

nonlinearity, the more should be the number of hidden neurons.
Contrary to this, the KGNN follows the measured data more ac-
curately, with the same number of hidden neurons. It is a signif-
icant advantage of adding the KB, which ensures that the output
pattern is followed. Thus, the KGNN model yields more accu-
rate results with addition of a low complexity adaptive neural
structure compared to that of the conventional ANN counter-
part. On the other hand, the simple Hata model also follows the
experimental pattern up to about 20 kms beyond which the de-
viation increases with distance. In the KGNN model, the ANN
part synchronously alleviates the deviation and, hence, better
matching in the former is maintained throughout.

Fig. 3 depicts the MSE of the KGNN and ANN models. The
convergence or learning of the KGNN is observed to be faster
and better. What is important here is the interpretation of this re-
sult vis-à-vis that of Fig. 2. As discussed earlier, the ANN fails
to match with the nonlinearity associated with the experimental
results which is not the case for KGNN. This undoubtedly re-
veals that the ANN has converged to a local minima, where as
the KGNN has converged to the global minimum.

IV. CONCLUSION

This letter has proposed a novel hybrid model consisting of a
KB in parallel with a low complexity ANN structure. Through
exhaustive computer simulation it has been demonstrated that
the proposed hybrid model outperforms the corresponding high

Fig. 3. Mean square training error of KGNN and ANN, with back propagation
training.

complexity ANN model reported in the literature. In addition,
the proposed model offers least MSE and convergence time
compared to its ANN counterpart.
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