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Abstract—Practical environment is always endowed with high
impulsive noise in addition to Gaussian noise. Traditional methods
like least square method are very limited in their performance
for estimating the parameter of interest. To address such problem
a robust distributed block diffusion Huber algorithm is proposed
in this paper.
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I. INTRODUCTION

Distributed algorithms are employed in large geographic
area in order to reduce the burden of centralized processor
and minimize the cost of communication, thus booming the
lifetime of the sensor networks. These distributed sensors are
well equipped with computation ability, memory, processor
and trans receiver antennae [1]. Based on the mode of commu-
nication among these sensor nodes they are broadly classified
into incremental, and diffusion type. In large geographic area,
dynamically determining of proper Hamiltonian path is not
feasible, and for failure of a single sensor node the whole
network fails to achieve the desired estimation [2]. For, such
reason the diffusion mode of cooperation is given emphasized
in this paper. In diffusion mode of cooperation [2]–[5] each
of the sensor node communicates among it’s neighborhood
for estimation of the global parameter [3] following two basic
steps (1) adapt (2) combine. Based on the steps followed they
are referred as ATC (Adapt Then Combine) or CTA (Combine
Then Adapt).

In addition to Gaussian noise, the data in practical envi-
ronment are always corrupted by impulsive noise [6]. These
impulsive random noises are generated in the environment due
to electromagnetic interference, co-channel interference, node
failure, presence of non-linearities, saturation effect of sensor
nodes and are in general termed as outliers. These outliers
have a heavy tailed noise distribution for which the traditional
least square methods become much sensitive and they fail to
estimate the global parameter of interest.

So, to address such issues a robust algorithm is proposed
to work in a distributed environment using block diffusion
mode of cooperation among the sensor nodes. Implementa-
tion of diffusion algorithm in block method [7], [8] reduces
communication cost among the nodes by block size L. Robust
algorithms are broadly classified into three categories [9] a)

L-estimator b) M-estimator c) R-estimator. The Huber a M-
estimator type, basically refered as maximum likelihood type
estimator under least favorable distribution. A Huber adaptive
filter [10]–[12] minimizes a Huber’s objective function which
is a hybrid of both l1 and l2 norm. This adaptive filters down
weights the outliers present in data as l1 norm and behaves
like a least square for rest of the signal.

Capital letters are used for matrices and small letters for
vectors and scalars. All vectors are column vectors except for
regression vectors, which are row vector throughout. L denotes
for block length of data and M denotes for filter order. The
superscript (.)T represents the transpose of a matrix or a vector.
The notation col{...} stands for a vector obtained by stacking
the specified vectors. Similarly, we use diag{...} to denote the
(block) diagonal matrix consisting of the specified vectors or
matrices. The trace of a matrix is denoted by Tr(.), expectation
is denoted by E[.] and ⊗ denotes Kronecker product.

II. PROBLEM FORMULATION

Consider N number of sensor nodes in a network. The
objective of the network is to estimate the global parameter
using the sensor node data. Each node k collects a scalar
measurement yk(i) and regression data vector xk,i. Both the
input regressor and desired data in block format is given as

Xk,i = col
{

xk,(i−1)L+1, xk,(i−1)L+2, . . . . . ., xk,iL
}

(1)

yk,i = col {yk (i−1)L+1, yk (i−2)L+2, . . . . . . ,yk(iL)}
(2)

with dimensions L×M and L×1 respectively over successive
time instant i ≥ 0 and for L denotes the block size. With the
linear regression model the unknown global parameter w0 of
M × 1 across all the nodes in the network is given by relation

yk,i = Xk,iw
0 + vk,i (3)

where vk,i is the associated model noise. For the noise to
be Gaussian noise with zero mean and variance σ2

v,k , the
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problem using least square method as linear function of the
nodes in the network.

min
w

N
∑

k=1

E|yk,i −Xk,iw|2 (4)

For the presence of outliers in the desired data, the noise can
no further considered to be Gaussian for which traditional least
square methods will fail to estimate the parameter. So, there
is a need of a robust algorithm to overcome these outliers and
to better estimate the global parameter. A Huber algorithm is
a robust M-estimator that minimizes the Huber loss function.

JHuber =

L
∑

i=1

ρ
(

ri/σi

)

(5)

where ri is the residual error and σi is the corresponding scale
factor and L is block length. ρ (.) is a real-valued function that
is even and nondecreasing for positive residuals, and ρ (0) = 0.
For the Huber M-estimator the ρ function is given by

ρ (r) =

{

1
2r

2 for |r| ≤ γ
γ |r| − 1

2γ
2 for |r| > γ

(6)

where γ is the threshold value. The ρ function is not strictly
convex function. The derivative ∂ρ

∂r
is an odd function defined

as score function ϕ (r) is given as

ϕ (r) =

{

r for |r| ≤ γ
γ.sgn (r) for |r| > γ

(7)

The weight function
[

ϕ (r)/r

]

for Huber M-estimator is

given by

q (r) = ϕ (r)/r =

{

1 for |r| ≤ γ
γ.sgn (r)/r for |r| > γ

(8)

Incorporating the diffusion mode of cooperation into the nodes,
we can write the local cost function at any node as

J loc
k =

∑

l∈ℵk

cl,kJ
Huber
l (9)

where, cl,k is the element-wise entry of data diffusion matrix
C. By completion-of-squares argument method [3], the local
Huber cost function can be defined as

J loc
k =

∥

∥w − wloc
k

∥

∥

2

Γk
+ residue (10)

for Γk =
∑

l∈ℵk

cl,kRl and Rl is the autocorrelation matrix of

node l. For ρ value of γ |r| − 1
2γ

2, we take |r| = sgn (r) .r ≈
r. tanh (kr) for k ≫ 1. Upon Taylor series expansion of
hyperbolic tangent and excluding higher order terms this can
be easily analysed similar to least square method to obtain the
above equation (10). The global cost function defined as linear
sum of individual local cost function of each node

JG =

N
∑

l=1

J loc
l (11)

So, now the global cost function using (9) and (10) can be
expressed as

JG′

=
∑

l∈ℵk

cl,kJ
Huber
l +

N
∑

l 6=k

∥

∥w − wloc
l

∥

∥

2

Γl
(12)

The presence of the term wloc
l tells for every node should have

access to optimal local weight estimate, which again restricts
the idea of distributed network. So, wloc

l is replaced with an
intermediate weight estimate that is available at node l as ψloc

l .
So, now the fully distributed cost function is defined as

Jdist =
∑

l∈ℵk

cl,kJ
Huber
l +

N
∑

l 6=k

bl,k‖w − ψl‖2 (13)

for the covariance matrix taken as Γl = bl,kIM .

III. STEEPEST DESCENT APPROACH

The global parameter can be estimated iteratively using
gradient approach of steepest descent method as

wk,i = wk,i−1 − µk

[

∇wk,i−1

(

Jdist(wk,i−1)
)]

(14)

with the gradient of Huber cost function is defined as
∂JHuber

k

∂w
= −XT

k,i.ϕk,i (r). Replacing this gradient value to
the equation (14) the overall diffusion method can be derived
[3], which is a fused form of both CTA and ATC strategies,
and is given as

φk,i−1 =
∑

l∈ℵk

a1,lkwl,i−1 (15)

ψk,i = φk,i−1 + µ′
k

∑

l∈ℵk

cl,k.X
T
l,iϕl,i (r) (16)

wk,i =
∑

l∈ℵk

a2,lkΨl,i (17)

for µ′
k is small positive block step-size and a1,lk, clk, a2,lk are

non-negative entries of the N ×N matrices with (A1, C,A2)
respectively. The coefficients a1,lk, clk, a2,lk are zero, wherever
l is not connected the node k is l /∈ ℵk, where ℵk denotes the
neighborhood of node k. For ATC implementation A1 = I
taken and for CTA implementation A2 = I is taken and for
noncooperation implementation all the coefficients are taken
to be I .

The matrices (A1, C,A2) are either left or right stochastic
i.e.

AT
1 1N = 1N ,A

T
2 1N = 1N , C1N = 1N (18)

Following assumptions are assumed for mean stability anal-
ysis of the algorithm: (i) input is independent and identically
distributed Gaussian distribution; (ii) any two sensor nodes
spatial correlation of data is zero; (iii) the outliers present
in the system are independent of the input data and also
independent of the noise present in the system; (iv) the system
noise is independent and identically distributed with Gaussian
distribution; (v) the probability density function of noise plus
outliers data is continuous;. The initial assumption states to
consider the input regressor Xk,i independent of wl,j for all
l and for j ≤ i − 1, reasonably valid for sufficiently small
step-sizes.



Defining the error vectors by subtracting from the optimal
global weight w0 we have

φ̃k,i−1 = w0 − φk,i−1

Ψ̃k,i = w0 − Ψk,i

w̃k,i = w0 − wk,i

(19)

The adaptive equation (16) now with the error vector is now
represented as

ψ̃k,i = φ̃k,i−1 − µ′
k

∑

l∈ℵk

cl,k.X
T
l,iϕl,i (r) (20)

Globalising all the vectors and matrices we have

ψ̃i
∆
= col

{

Ψ̃1, ψ̃2, ..., ψ̃N

}

w̃i
∆
= col {w̃1, w̃2, ..., w̃N}

φ̃i
∆
= col

{

φ̃1, φ̃2, ..., φ̃N

}

ϕi (r) = col {ϕ1,i (r) , · · · , ϕN,i (r)}
µ′ ∆

= diag {µ′
1IM , µ

′
2IM , ..., µ

′
NIM}

XT
i = diag

(

XT
1,i, · · · , XT

N,i

)

(21)

So, equation (20) is rewritten in global format as

ψ̃i = φ̃i−1 − µ′C.XT
i ϕi (r) (22)

Multiplying A2 both sides and equating to (17), and taking
their expectation we get

E [w̃i] = A2E
[

φ̃i−1

]

− µ′A2C.E [Hi] (23)

where, Hi = XT
i ϕi (r). Solving for E [Hi] which is exactly

an expectation over {vi, X, ηg} [10] written as E{Xi,vi,ηg} [Hi]
for ηg denoting Gaussian noise sequence with variance σ2

g .

E{X,v,ηg} [Hi] = E{X,v,ηg}
[

XT
i ϕi (r)

]

= E{v} [H1]
= E{v}

[

E{X,ηg}
[

XT
i ϕi (r)

]

|v
] (24)

which gives Hi ≈ AH

(

σ2
e,k

)

Dα,kR
G
x φ̃i−1. The parameter

are defined[10] as AH

(

σ2
e,k

)

=
∞
∫

−∞

ϕ(e)√
2πσe

exp
(

− e2

2σ2
e

)

de,

αi =
∞
∫

0

exp (βεi)
(

gi

(

β̃
))−3/2

dβ, where, gi

(

β̃
)

=
(

1 + 2β̃Rx,ij

)

and σ2
e,k = E

[

vTi,kRx,kvi,k

]

+ σ2
g . The auto-

correlation matrix is given as Rx,k = E
[

XT
k,i.Xk,i

]

.

Equation (23) is now rewritten as

E [w̃i] = A2E
[

φ̃i−1

]

− µA2C.AH

(

σ2
e,k

)

Dα,kR
G
x E

[

φ̃i−1

]

(25)
with these new globalising matrix

Dα,k = diag {α1,k, · · · , αm,k}
DG

α = diag
{

AH

(

σ2
e,1

)

Dα,1, · · · , AH

(

σ2
e,N

)

Dα,N

}

RG
x = diag {Rx,1, · · · , Rx,N}

(26)
we rewrite (25) as

E [w̃i] = A2

[

I − µ′C.DG
αR

G
x

]

A1E [w̃i−1] (27)

E [w̃i] = A2SA1E [w̃i−1] (28)

IV. CONDITION FOR MEAN STABILITY

For convergence to occur in mean the coefficient of the
matrix S must be stable, i.e. ρ (S) < 1. The matrix AT

1 and
AT

2 are right stochastic matrices, so the matrix S is stable
whenever

[

I − µ′C.DG
αR

G
x

]

is stable. With this the upper
bound of block-step-size µ′ to guarantee the convergence of
E (w̃i) to steady state value must satisfy the condition

∣

∣I − µ′CDG
αR

G
x

∣

∣ < 1 (29)

0 < µ′ <
2

C.DG
αR

G
x

(30)

which can be further written for step-size as maximum eigen
value of data at each node

0 < µk <
2

L.λmax

(

N
∑

l=1

cl,k

(

Rx,lAH

(

σ2
e,l

)

Dα,l

)

) (31)

Huber’s M-estimator robust algorithm (15)-(17) is com-
pared with the traditional block diffusion algorithm defined in
[7], given as

φk,i−1 =
∑

l∈ℵk

a1,lkwl,i−1

ψk,i = φk,i−1 + µ′
k

∑

l∈ℵk

clk.X
T
l,i (yl,i −Xl,i.φk,i−1)

wk,i =
∑

l∈ℵk

a2,lkψl,i

(32)

V. SIMULATION AND RESULTS

The size of unknown global vector w0 is chosen to be
m = 4 and the weights are considered to be normalized as
equals to [1/2, 1/2, 1/2, 1/2]. The regressor Xk,i is chosen to
be Gaussian with zero mean and unit variance. A 30dB of
measurement noise is added to each node. The block size L
is chosen to be 20, number of samples taken is 4000 and the
block step size µ′ is selected to be 0.01. The threshold γ is
taken to be 1 for implementing Robust Huber algorithm.

Combination of noise and outliers in the desired data
can be modeled [13] as (1− p) 1√

2πσ2
v

exp
(

−
(

v2
/

2σ2
v

))

+

p 1√
2πσ′2

v

exp
(

−
(

v2
/

2σ′2
v

))

where, p is the probability of

occurrence of the outliers in the desired data which can be
obtained from the percentage of the outliers values,σ2

v is the
variance of the noise and σ′2

v is the ratio of variance of the out-
liers to noise variance. For simulation outliers variance taken
as 25. Implementing robust block diffusion algorithm all the
coefficients A1, C,A2 are chosen as A1 = I , C =metropolis
and A2 =relative degree. Similarly for noncooperation mode
of diffusion adaptation all the coefficients are chosen as
identity matrix (I).

Huber’s robust block diffusion algorithm is simulated on
two different types of network shown in Fig. 1 and their
simulation plots for Mean Square Deviation (MSD) is plotted
for 10% and 50% of outliers taking 50 independent experi-
ments. Overall MSD is computed by taking average over all
the experiments and all the nodes in the network.

Fig. 2 shows the overall MSD plots and the node-wise
MSD plots for 10% and 50% of outliers for network structure



(a) (b)

Fig. 1: A network showing (a)7 sensor node (b)20 sensor node.

of 1a. The plots clearly shows the Huber’s robust block dif-
fusion algorithm outperforms the traditional diffusion method.
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Fig. 2: Overall MSD plots for outliers of (a)10% (b)50% and
Node-wise MSD plots for outliers of (c)10% (d)50% of the
network Fig. 1a.

Fig. 3 shows the overall MSD plots and the node-wise
MSD plots for 10% and 50% of outliers for network struc-
ture of 1b. Similar to the 7 node network this 20 node
network demonstrates better steady state of the Huber’s robust
block diffusion algorithm compared to the traditional diffusion
method.

VI. CONCLUSION

From the simulation results it is clear that the traditional
method is completely outperformed by the robust Huber’s
diffusion algorithm in the presence of outliers. Condition for
mean stability of Huber’s block diffusion is derived. In both
the network condition Huber’s method shows a better steady
state performance.

REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” in 2001 IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2001. Pro-

ceedings.(ICASSP’01)., vol. 4. IEEE, pp. 2033–2036, 2001.

20 40 60 80 100 120 140 160 180 200
−40

−30

−20

−10

0

10
Plot for overall MSD

Block no.

M
S

D
(d

B
)

 

 

classical Diffusion

classical no−coperation Diffusion

Huber Diffusion

Huber no−coperation Diffusion

(a)

20 40 60 80 100 120 140 160 180 200
−40

−30

−20

−10

0

10
Plot for overall MSD

Block no.

M
S

D
(d

B
)

 

 

classical Diffusion

classical no−coperation Diffusion

Huber Diffusion

Huber no−coperation Diffusion

(b)

2 4 6 8 10 12 14 16 18 20
−40

−35

−30

−25

−20

−15

−10

−5

0

5
Plot for MSD node−wise

Node number

M
S

D
(d

B
)

 

 

classical Diffusion

classical no−coperation Diffusion

Huber Diffusion

Huber no−coperation Diffusion

(c)

2 4 6 8 10 12 14 16 18 20
−40

−35

−30

−25

−20

−15

−10

−5

0

5
Plot for MSD node−wise

Node number

M
S

D
(d

B
)

 

 

classical Diffusion

classical no−coperation Diffusion

Huber Diffusion

Huber no−coperation Diffusion

(d)

Fig. 3: Overall MSD plots for outliers of (a)10% (b)50% and
Node-wise MSD plots for outliers of (c)10% (d)50% of the
network Fig. 1b.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans-

actions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.

[3] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” IEEE Transactions on Signal Processing, vol. 58,
no. 3, pp. 1035–1048, 2010.

[4] C. G. Lopes and A. H. Sayed, “Diffusion Least-Mean Squares Over
Adaptive Networks.” in ICASSP (3), 2007, pp. 917–920.

[5] C. G. Lopes, “Diffusion adaptive networks with changing topologies.”
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, 2008. ICASSP 2008, 2008.

[6] K. Furutsu and T. Ishida, “On the theory of amplitude distribution of
impulsive random noise and its application to the atmospheric noise,”
Journal of the Radio Research Laboratories (Japan), vol. 7, no. 32,
1960.

[7] S. Kumar, A. K. Sahoo, and D. P. Acharya, “Block diffusion adaptation
over distributed adaptive networks under imperfect data transmission,”
in 2014 Annual IEEE India Conference (INDICON), Dec 2014, pp. 1–5.

[8] A. Khalili, M. A. Tinati, and A. Rastegarnia, “An incremental block
LMS algorithm for distributed adaptive estimation,” in 2010 IEEE

International Conference on Communication Systems (ICCS). IEEE,
2010, pp. 493–496.

[9] P. J. Huber, Robust statistics. Wiley, New York, 1981.

[10] S. C. Chan and Y. Zhou, “On the Performance Analysis of a Class of
Transform-domain NLMS Algorithms with Gaussian Inputs and Mix-
ture Gaussian Additive Noise Environment,” Journal Signal Processing

Systems, vol. 64, no. 3, pp. 429–445, Sep. 2011.

[11] H. Dai and N. K. Sinha, “A robust off-line output error method for
system identification,” IEEE Transactions on Industrial Electronics,
vol. 39, no. 4, pp. 285–292, Aug 1992.

[12] P. Petrus, “Robust Huber adaptive filter,” IEEE Transactions on Signal

Processing, vol. 47, no. 4, pp. 1129–1133, Apr 1999.

[13] T. Hettmansperger and J. McKean, Robust Nonparametric Statistical

Methods, ser. Kendall’s Library of Statistics: An Arnold Publication
No. 5. Arnold, 1998.

[14] V. J. Mathews and S. H. Cho, “Improved convergence analysis of
stochastic gradient adaptive filters using the sign algorithm,” IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 35, no. 4,
pp. 450–454, 1987.

[15] A. H. Sayed, Fundamentals of adaptive filtering. John Wiley & Sons,
2003.


