Non-linear Channel Equalization using Computationally Efficient
Neuro-Fuzzy Channel Equalizer

Prasanna Kumar Sahu} Dr. Sarat Kumar Patra Siba Prasad Panigrahi*
National Institute of Technology, Rourkela, ORISSA-769 00

ABSTRACT

This paper investigates the problem of channe! equaliza-
tion in digital cellular radio (DCR). These channels are af-
fected by inter symbol interference (ISI) with non-linearity
in presence of additive white Gaussian noise (AWGN). Here
we propose a computationally efficient neuro- fuzzy sys-
tem based equalizer for use in communication channels with
these anamolies. This equalizer performs close to the op-
timum maximum a-posteriori probability (MAP) equalizer
with a substantial reduction in computational complexity and
can be trained with supervised scalar clustering algorithm,
These features can make the equalizer very suitable for mo-
bile communication applications. Simulation studies indi-
cate that this equalizer performs close to optimal equalizer.

1 Introduction: i

The baseband mode! of the Digital communication systems
(DCS) discussed in this paper is presented in Figurel. The
channe! constituite the physical channel through which sig-
nal propapgates, the transmitter and receiver filters and am-
plifiers used in them. The channel suffer from inter sym-
bol interference (IS} due to non-ideal channel characteris-
tics. The problem becomes more severe in the presence of
aditive white Gaussian noise {AWGN). A digital equaliser is
catled for in these circumstances to equalise the channel so
as to recover the signal from the corrupted received signal
with minimum ervor probability. The optimal equaliser deci-
sion function in these circumstances is provided by the max-
imum likelihood sequence estimator (MLSE) implemented
with Viterbi algorithm. Implementation of Viterbi algorithm
needs channel estimate and the equalizer performance im-
proves with increase in decision delay. In mobile commu-
nication environment channel is changing with time and this
limits the equalizer performance. MLSE is computationally
complex and hence symbol-by-symbol spaced equalisers are
often used instead. The most popular form of a symbol-by-
symbol spaces equaliser is an adaptive filter trained with a
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suitable algorithm. Additionaily when communication chan-
nel suffers from non-linearities channel estimation becomes
very difficult and hence the performance of equalizer requir-
ing channel estimation suffers.

AWGN
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1 Sed
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Figure 1: A digital communication system
The communication system discussed here is depicted
in Figure.]l .The information symbol s(k) is transmitted
through a non-linear dispersive channel described by

np—1 ny—1 3
(k)= ais(k— i) + K [Z a;s(k-—i)] +e(k) (1)

i=0 i=0
Here s(k) forms the transmitted signal constellation taken
from a set of alphabet +1/ — 1, r (k) is the received channel

“vector with its ¢ th scalar components dencted by r(k — 1),

1y, is the channel tap length, a; are the channel impulse re-
sponse coefficients, K} forms the non-linear term of third or-
der and other non-linear terms have been neglected, e(k) is -
the AWGN and §(k — d) forms the estimated sample corre-
sponding to transmitted sample s(k~d} and d is the equaliser
decision delay. The non-linearity in a channel can be due
to non-linearities associated with non-linear devices used in
transmitter and receiver.

This channel can also represented by the channel transfer
function

C(z) = H{2) + K1 H*(z) + e(k) )
where
nyp—1 .
H(z)= Y a2 3
i=0

The optimum symbol-by-symbol spaced equaliser deci-
sion function is provided by the maximum a-posteriori prob-
ability criteria and is called Bayesian equaliser. The equaliser
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decision function using a Bayesian equaliser is nonlinear and
hence the performance of linear equalisers is far from op-
timal. For this reason several nonlinear equalisation tech-
niques using artificial neural networks [1], radial basis func-
tions (RBFs)[2] , recurrent neural networks [3], fuzzy filters
[4] have been developed successfully. The work reported in
this paper is an extension of the work reported in [5]. In [5]
fuzzy implementation of Bayesian equaliser was proposed
for linear channels. Here we present the performance of the
same equalizer for non-linear channels. )

The paper is organised in 6 sections. Following the in-
troduction, the RBF equalizer and its fuzzy implementation
is discussed, foliowing this the channel state estimation has
been discussed. Section 4 discusses the neurc fuzzy equal-
izer design while the advantages are discussed next. Simu-
lation results have been presented in section 6 and the last
section provides the concluding remarks.

2 RBF Equaliser and its Fuzzy Implementation [$]

The general symbol decision equalizer 1 is characterised by
equalizer order mn and delay d. The optimal decision function
for this equalizer can be represented as [6]

Zex EEUE c,-+||2)
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Here 2 represents the channel noise variance, ¢ and ¢
are the positive and negative channel states respectively. The
terms n} and n; are the number of positive and negative
channel states respccnvcly and they are equal. Here it is as-
sumed that the transmitted symbol s(k) is binary taking the
value from +1/ — 1. This equation can also be presented as :

FlrtR)) = Zw exp (_Ili'slﬁ)
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Here N, is the number of channel states equal to 2™*+7 -1,
w; are the weights associated with each of the centers.-w; is
+1 if ¢; correspond te a positive channel state and -1 if it rep-
resents a negative channel state. It is also observed that each
of the channel state vector has m components. We can rep-
resent arry-channel state ¢; a5 ¢; = [€ig, €i1+Ci2, -r; Ci(m—1)]-
Rewriting the squared norm in Eqn(5) as a summation and
éxploiting the properties of the exp function yields:

6]
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No. sth) sk-I) sk-2) (k) 7(k—1)
1 1 ¥ 1 1.5 1.5 Positive
2 1 1 -1 1.5 -0.5 channel
3 1 -1 1 -0.5 0.5 states
4 ] -1 -1 0.5 -1.5
5 -1 i 1 0.5 1.5 Negative
] -1 1 -1 0.5 0.5 channel
7 -1 -1 1 -1.5 0.5 states
8 -1 -1 -1 -1.5  -1.5

Table 1: The channel states calcwlation

Here C; is the (j + 1)th component of channel state vector
<.

'3 Channel States Estimation

From the previous section it has been observed that knowl-
edge of the channe! states is essential for evaluation of the
optimum decision function for the equalizer. The channel
state estimation needs the knowledge of the channel. But un-
der most circumstances knowledge of the channel may not
be available. Additicnally estimation of channels for non-
linear channels is very difficult. Under these circumstances
the channel states can be estimated during the training period
when the transmitted symbols are known to the receiver with -
the aod of supervised clustering algorithm {6].

The channel states can be computed from the scalar chan-
nel states. The scalar channel states refers to the possible
noise free received samples. The scalar states can be cal-
culated by a clustering algorithm. Calculation of the scalar
channel states is simple and computational complexity for
this is independent of the order of the equalizer. These scalar

" states can be suitably combined in the fuzzy if-then rule
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for generate the vector states. Once the channel state vec-
tors have been estimated finding the decision function of the
equalizer is straightforward.

We take an example to illustrate the relat:onshlp of scalar
and vector channel states. Table 1 provides the channe! state
calculation for a equalizer of order m = 2, delay d = 0.
The channel transfer function is H(z) = 0.5 + z~!'. For
the analysis we assume that the channe! is linear. Here ny, is
2. Following observations are made from the channe! state
calculation:

e There are 2** 7™~ 1=g vector channel states which can be rep-

resented as [F(k), 7{k — l)]

® There are 2""=4 possible scalar channel states which corre-
spond to each of the elements of 7{k) or F{k — 1).

e The weights w; of the decision functions eqns.5 assume the
value +1 or —1 for positive and negative states respectively.

» A change in the decision delay only changes some of the pos-
itive states to negative states and equal number of negative
states to positive state. The decision function can be obtained
by suitable adjustment of the parameter p; for the states that
have changes from positive to negative states or vice-verse.



4 Neuro Fuzzy Equalizers with Scalar Centers

The structure of the fuzzy equaliser is presented in Figure
2. Here, the incoming signal sample is presented to the
membership function generator. Each of the components of
the membership function generator produces an output 3],
characterised by its centres C] which are positioned at the
scalar channel states. Here j represents the fuzzy centre at
the scalar channel states. The membership functions from
r(k—1i),1 €£i < m— 1 are generated by passing the mem-
bership function from r{k) through a TDL.

The inference block of the equaliser has N, fuzzy if then
rules with product inference and the rule base is generated
from the information of the combination of scalar channel
states forming the channel states. Each of these rules uses
only one of the 1] terms corresponding to each of the m
inputs to the equaliser. The output of the inference units
are suitably weighted and added to provide e and b which

- provide the function of the defuzzifier. The output of the
equaliser is computed by the equaliser function presented in
(2) which is (& — b}/{a + b). The output of the decision
function passed through a hard limiter to forms the detected
sample. An example is considered to illustrate the working
of this equaliser:

Inference rule base
TChannel sate informpian)
A“"" H l

Figure 2: Structure of fuzzy implemented Bayesian equaliser’

Example: )

The channel considered here is H(z) = 0.5 + 1.0z7%
The equaliser is characterised by m = 2, d = 0 and SNR=
8 dB. This provides N, = 8 channel states and M = 4
scalar channel states. The channel states for this equaliser
have been presented in Table 3. It is also seen that the m-
dimensional N, channel states take their components from
the available M scalar channel states, The weights w; of the
equaliser decision function are +1 for ¢;, ¢z, €3, cgand ~1
forcs, ca, €7, Ca-

For fuzzy implementation the centres for membership
functions are positioned at scalar channel states +1.5, —0.5,
+0.5and ~1.5. The membership functions ¥1, ¥?, ¥} and
¥ corresponding to #(k ~ 1), are delayed samples of ],
¥Z, ¥ and 1§ corresponding to r{k). The inference block
- consist of N, = 8 fuzzy IF ... THEN ... rules. Here
Gro0 = B0 = Y, $s0 = da0 = V3, 50 = deo = U,
$10 = a0 = Y&, ¢ = d51 = ¥}, du = da = U7,
d31 = ¢ = ¥3, and da = ¢s1 = 7. The products
drod11, P00, ¢aodsr, Piodar constitute the rules for
CJ, arc added to provide & and @so¢s1, $eader, Frodr,
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¢dgods1 constitute the rules for CJ and are added to pro-
vide b. The calculation of the decision function is straight-
forward.
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Figure 3: Fuzzy equaliser decision boundary for channgl
H{z) = 05+ 1.0z~ withm = 2,d = 0 and SNR= 8
dB.¢ positive channel states and x negative channel states
with actual channel states

The decision boundary of this equaliser is presented in
Figure 3. Figure 3(a) presents the decision boundary of the
fuzzy equaliser’and the Bayesian equaliser when the chan-
nel states and noise statistics are known, whereas in Figure
3(b) the fuzzy equaliser uses the estimated channel states and
noise statistics and the Bayesian equaliser uses the true chan-
nel parameters. The positive and negative channel states are
shown with ¢and x respectively. A study of the decision
boundaries shows that, the fuzzy equaliser is able to provide
a near optimal decision boundary even at a low SNR of 8 dB.

The fuzzy equaliser developed here, uses FBF with prod-
uct inference and COG defuzzifier. Owing to the close rela-
tionship of this fuzzy equaliser with the Bayesian equaliser,
the NBESS has been implemented using a RBE network with
scalar centres [5]. However, the use of a fuzzy system to im-
plement this equaliser provides the possibility of using other
forms of inference rules and defuzzification processes. This
can provide some of the alternate forms of fuzzy implemen-
tation of the Bayesian equaliser.

5 Advantages of Neuro Fuzzy Equalizer

We have seen in the previous sections that the neuro fuzzy
equalizer provides the same decision function as the RBF im-
plementation of Bayesian equaliser. Additionally they pro-
vide Bayesian equalizer implementation with computational
complexity reduction. Some of the advantages associated
with the neuro fuzzy equalizer for non-linaer channels are
as under, -
» the equalizer does not need channel identification;

* in mobile environment decision directed training can be em-
ployed to take care of the channel variation;

* provides scope for performance tradeoff with complexity;

6 Simulation Results

In order to demonstrate the performance of the proposed
equalizer for non-linear channe!s following simulations were
carried out. In all the tests (k) was an equiprobable random
binay number taking the value from +1/ — 1. In the first test



the decision boundary of the proposed equalizer was com-
pared with MAP equalizer. For this H(2)} = 0.5 + 2~ ! was
selected with non-linearity K'; was taken as 0.9. The deci-
sion delay used was 0. The decision function provided by
the fuzzy equalizer and the MAP equalizer are presented in
Figure.4. It is seen that the fuzzy equalizer is able to provide
the nearly similar decision function as the optimal equalizer,
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Figure 4: Fuzzy equaliser decision boundary

In the next part of simulation bit error rate (BER} was
considered as the performance criterion, Equalizer order
m = 2 with decision delay d = 0 was used. In the
first case H(z} = 0.5 + z~! was used and subsequently
H(z) = 0.5+ 0.812~1 + 0.312~2 was used. In both cases
channel non-lineatity of 3rd order was used with A1 = (0.9
The plot of the BER perdformance. of the equalizers against
the channel SNR for bothe the cases are presented in Figure.
5 and Figure. 6. From these it is observed that the neuro
fuzzy filter performs very close to MAP equalizer.
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Figure 3: Fuzzy equalizer BER performance
7 Conclusion .

The training of the proposed equalizer is very simple us-
ing supervised clustering algorithm. The performance of the
equalizer has been demonstrated to be comparable to the op-
timal MAP equalizer. In line with the normalised radial basis
function equalizer with scalar centres [7] this equalizer can
also be usedful for co-channel interference suppression. We
ar¢ investigating the performance of the equalizers for non-
linear channels in presence of co-channel interference. We
also plan to investigate the equalizer performance in fading
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Figure 6: Fuzzy equaliser BER performance
envirinment. The work reported in this pape has been re-
ported in {8].
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