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Abstract—Accuracy and efficiency are two important ob-
jectives of modeling ground penetrating radar (GPR) signal.
Achieving both together is a driving factor for advanced research
in the state of art for GPR community. Full wave model (FWM)
promises great accuracy to detect layered media. However time
efficiency of FWM is poor compared to other simplified models.
This work presents a new plane wave model (PWM) based on
simplified expression of an FWM. The proposed model is capable
of detecting layered media in far field condition with great accu-
racy and efficiency. Based on this scheme a monostatic frequency
domain GPR system is realized in laboratory environment. The
model is validated by testing water layer and comparing accuracy
and efficiency with an existing FWM scheme.

Keywords—Ground penetrating radar (GPR), Green’s function,
inverse modeling, SFCW radar, layered media

I. I NTRODUCTION

The accuracy and efficiency of ground penetrating radar
(GPR) detection largely depend on the signal modeling
scheme. Compared to the numerical models [1–3] analyti-
cal models [4–13] are more efficient for a problem specific
solution. Among analytical modeling schemes common mid-
point (CMP) [4], [5], common reflection methods [6–8], layer
stripping (LS) [9–11] are some of the popular approaches
for fast characterization of layered media. These schemes are
based on plane wave assumption and extracted data posseses
limited accuracy when dispersion is significant in the me-
dia. In this respect full wave models (FWM) [12], [13] are
more accurate techniques to retrieve complete electro-magnetic
(EM) properties of layered media. In the field of monostatic
stepped frequency continuous wave (SFCW) GPR in far field
configuration Lambotet al. have contributed significantly by
proposing an FWM [12] which has been successfully applied
for water content estimation [14]. The time required to com-
pute this FWM is still significantly high making it unsuitable
for real time applications.

In this work first an FWM is derived based on electric field
equivalent magnetic current density at antenna phase center.
The common reflection method is modified by a spreading
factor based on the simplified formula of the proposed FWM
to yield a plane wave model (PWM) which is simultaneously
fast and accurate. A comprehensive analysis on the both types
of models and GPR detection results on water layer with
an assembled monostatic SFCW GPR system in laboratory
strongly support the superiority of proposed PWM.

II. MODELING GPR SIGNAL

A. GPR Transceiver System Model and its Assumptions

The SFCW radar setup presented in Fig. 1(a) is assembled
with a Vector Network Analyzer (VNA, E5071C of Agi-
lent), TEM horn antenna (BBHA 9120A, Schwarzbeck Mess-
Elektronik) and a wooden tank (138.5 cm× 98.5 cm× 30 cm)
containing material under test. A metal plate (122 cm×81 cm)
is kept at the bottom of the tank to control the boundary condi-
tion. For monostatic configuration and far field measurement,

(a) (b)

Fig. 1. (a) Laboratory experimental setup for the GPR system. (b) Block
diagram representing the VNA-antenna-multilayered medium system [12].

the antenna can be assumed as a point source and receiver.
The signal is assumed to be propagating in normal direction
only i.e in z directions. The VNA, antenna and sub-surface
are modelled as linear systems in series and parallel as shown
in Fig. 1(b). Therefore the VNA measured complex reflection
coefficientS11 (ω) is expressed as following.

S11 (ω) =
Y (ω)

X(ω)
= Hi (ω) +

Ht (ω)G
↑
xx(ω)Hr (ω)

1−Hf (ω)G
↑
xx(ω)

(1)

whereX(ω) is the transmitted signal andY (ω) is the received
signal at the VNA-Antenna connector reference plane;Hi (ω)
is the return loss of the antenna,Ht (ω) is the transmit transfer
function of the antenna,Hr (ω) is the receive transfer function
of the antenna, andHf (ω) represents the feedback loss
transfer function.G↑

xx(ω) is the Green’s function representing
the air-subsurface media. All these frequency dependent linear
transfer functions (LTF) can be evaluated by a set of mea-
surements with known targets like large size perfect electric
conductor (PEC) placed at several distances from antenna and
then solving a set of linear equations [15].



B. FWM Green’s Function

The air-ground surface media is modeled as a 3D multi-
layered media consists of N horizontal layers separated by
N-1 interfaces as illustrated in the Fig. 2. Any singlenth layer

Fig. 2. Model configuration of N-layered medium with a point source.

is homogeneous and is characterized by its EM parameters
electric permittivity(ǫn), electric conductivity(σn), magnetic
permeability(µn) and its thickness(hn). The permeabilityµn

is assumed to be free space valueµ0. The antenna assumed
to be point source and receiver at its phase center is located
at the origin O of the coordinate system. Let us assume that
the transmitted electric field isEt

xp directing only towardsx-
direction at the antenna phase center. By applying Huygen’s
field equivalence principle as explained in [16] (pp. 575−581),
the equivalent magnetic current densityMs can be expressed
by following relation.

Ms = −2n̂× x̂Et
xp = −2Et

xpŷ (2)

And equivalent electric current density

Js = 0 (3)

Here n̂ is normal to the antenna face and is inz-direction i.e.
the direction of EM wave propagation. Now antenna can be
replaced by the imaginary (equivalent) magnetic current source
Ms at the antenna phase center. The radiated far field due
to this magnetic source can be derived by solving Maxwell’s
equations in 3-dimensions. The methods for evaluating scat-
tered EM fields by solving Maxwell’s equation for EM wave
propagation in the multilayered media are discussed in various
literatures [17–19]. The Green’s functionG↑

xx(ω) is defined
here as the backscatteredx-directed electric field for a unit-
strengthx-directed transmitted electric field at the antenna
phase center at frequencyω rad/s.

The spatial domain Green’s function at the source point
((x, y, z) = 0) is expressed as

G↑
xx(0, ω) =

1

4π

+∞
∫

0

G̃↑
xx (kρ, ω) kρdkρ (4)

The integration variablekρ is a spectral domain parameter. The
analytical expression of the spectral domain Green’s function
is derived (derivation not mentioned) and its final form is given
below.

G̃↑
xx (kρ, ω) =

[

RTE
n −RTM

n

]

e−2Γnhn (5)

whereRTM
n is the transverse magnetic global reflection co-

efficient andRTE
n is the transverse electric global reflection

coefficient accounting for all reflections from the multilayered
interfaces as explained in [17] (pp. 48−53). Γn is the vertical
wave number of thenth defined asΓn =

√

k2ρ − k2n, where

kn is free space propagation constant ofnth defined by the
relationsk2

n
= −ζnηn, ζn = iωµn, andηn = σn + iωǫn. In

order to do fast integration the integration path should avoid the
integrand singularities and the function oscillation should be
minimized. It is observed that by applying constant phase path
of integration as explained in [20], the integration becomes fast
reducing the computation time significantly.

The spectral domain Green’s function for monostatic con-
figuration derived by [12] by assuming TEM horn antenna as
an infinitesimal horizontal x-directed dipole is given below.

G̃↑
xx (kρ, ω) =

[

RTM
n

Γn

ηn
−RTE

n

ζn
Γn

]

e−2Γnhn (6)

The Green’s function expression in (5) is similar to the Green’s
function expression in (6). Let us denote the FWM mentioned
in [12] as FWM-1 and the proposed one as FWM-2.

C. Simplification of FWM to derive PWM

In this section the FWM-2 Green’s function presented in
the Section II-B is simplified and important findings are used
to modify the common reflection method. Let us consider the
case of single layer media and reflection by an infinite size
PEC. From (4) and (5) the expression of Green’s function is
written as following.

G↑
xx(ω) =

1

4π

+∞
∫

0

[

RTE
1 −RTM

1

]

e−2Γ1h1kρdkρ (7)

For reflection by PEC, R1
TE = −1, R1

TM = 1, and

Γ1 =
√

k2ρ − k21 . k1 can be expressed as following.

k1 =
√

−ζ1η1 =
√

−iωµ1 (σ1 + iωǫ1) = β1 − iα1 = −iγ1
(8)

Hereβ1 is the phase constant andα1 is the attenuation constant
and γ1 (= ik1) is complex propagation constant in another
form. Therefore (8) is simplified as

G↑
xx(ω) =

−1

2π

+∞
∫

0

e−2h1

√
kρ

2+γ1
2

kρdkρ (9)

Now applying integration by partsG↑
xx(ω) in (9) is simplified

to the following relation.

G↑
xx(ω) =

1

2π

[

−
γ1e

−2h1γ1

2h1
−

e−2h1γ1

(2h1)
2

]

(10)

In above expression second term is attenuated by distance
square and it can be neglected for far field calculation. There-
fore Green’s function is further simplified as given below.

G↑
xx(ω) =

−1

2π

e−2h1γ1

(2h1/γ1)
(11)

1
2π(2h1/γ1)

in (11) is the spreading factor for the signal.



Now the common reflection method is modified according
to the simplified expression of FWM-2 in (11) to make it
very accurate without compromising its efficiency. For plane
wave propagation in layered media, the contribution of first
order reflection

(

r̂1n,n+1

)

from nth interface (zn) to the overall
Green’s function is given by the following relation [8].

(

r̂1n,n+1

)

= rn.n+1

n−1
∏

j=1

(

1− (rj,j+1)
2
)

n
∏

j=1

exp(−2γjhj)

(12)
where γj is the jth layer complex propagation parameter,
rj,j+1 is reflection coefficient atzj layer interface given by

rj,j+1 =
Zj+1 − Zj

Zj+1 + Zj
. (13)

Zj is the impedance ofjth layer media given byZj =
√

ζj
ηj

.
Now plane wave assumption is true when source is in infinite
distance from the target. For finite distance case we like to
modify this relation (12) with spreading factor according to
the expression of FWM-2 in (11) as given below.

R1
n,n+1 =

(

1

2πi
∑n

j=1 2hj/γj

)

(

r̂1n,n+1

)

(14)

WhereR1
n,n+1 is the contribution of1st order reflection from

interfacezn to the Green’s function. The superscript ofR1
n,n+1

denotes the order of reflection coefficient. It can be observed in
(14) that one complex term′i′ is introduced at the denominator
of the expression. This is required to have phase matching
between (12) and (14). Withh2 variation is significant the
(14) is modified as following.

R1
n,n+1 =

(

r̂1n,n+1

2πi

)







1
∑n

j=1 2hj/γj
+

1
(

∑n
j=1 2hj

)2







(15)
Therefore overall Green’s function contributed by reflections
from all the layer interfacesz1 to zN−1 with maximum order
No can be expressed as following.

G↑PWM
xx (ω) =

No
∑

i=1

N−1
∑

k=1

Ri
k,k+1 (16)

Let us denote this Green’s function obtained by plane wave
approximation as plane wave Green’s functionG↑PWM

xx and
the model as plane wave model (PWM). Also define the
G↑PWM

xx obtained by considering onlyh variation term from
(16) as PWM-1 and theG↑PWM

xx obtained by considering both
h andh2 variation terms as PWM-2. It can be observed that
no integration is required to compute the Green’s function
G↑PWM

xx compared to the FWMs. This makes computation
of PWM very efficient.

III. COMPARISON OF MODELS AND THEIR
INVERSION

A. Comparison of GPR Signal Models

A rigorous analysis has been carried out for PWMs and
FWMs in terms of complex Green’s functions values across
frequencies in large parameter vector space and efficiency

of their computations. In all respect we have found that
performances of both FWM-1 [12] and FWM-2 are same.
PWM-1 and PWM-2 are closely matching with FWMs in terms
of accuracy while promising tremendous speed of computation.
Here a brief analysis on comparison of all the models in terms
of frequency averaged%RMS difference and computation
efficiency is presented.

It is observed that frequency response of FWM-1 differs
with FWM-2 with a constant K and phase shift180o. In order
to compare FWMs, FWM-1 is divided by−K. Again from
(11) and (14) it is observed that PWMs and FWMs Green’s
functions have got90o phase shift. To make proper comparison
among all the models, both the FWMs are multiplied by−1i.
Important point to note here is that these phase and amplitude
changes by a constant have no impact on GPR inversion
as extractedGxx by calibration process and modeledGxx

both have same constant multiplied. A single layer media
is considered with wide range of parameter vector space
(2 < ǫr < 101; 10 < σ < 104mS/m; 1 < h < 103cm).
To sweep such a wide range of parameters, they are varied
exponentially. Total 4851 (11 alongǫr, 21 alongσ and 21
along h) iterations are completed to compute all types of
Green’s functions. Any two models (1 and 2) are compared by
frequency averaged%RMS difference between their Green’s
functions (G↑1

xx andG↑2
xx) by following formula.

%RMS Diff. = 100×

√

√

√

√

√

√

∑Nf

i=1

∣

∣

∣

(

G↑1
xx(ωi)

)

−
(

G↑2
xx(ωi)

)∣

∣

∣

2

∑Nf

i=1

∣

∣

∣

(

G↑2
xx(ωi)

)∣

∣

∣

2

(17)
The Nf is the number of frequency points in the total fre-
quency band. With frequency separation of 40 MHz, total 101
Nf are considered in the frequency band 0.5 to 4.5 GHz. The
order of reflection (No) for PWMs is varied from 5 to 25 with
observation thatNo higher than 20 has got no effect onGxx

value in the mentioned parameter vector space. The summary
of analysis is presented in Table I. The worst case%RMS
difference for three differentǫr values i.e. 2, 16 and 81 over
whole range of(σ− h) plane are considered for presentation.
For PWMsNo value of 5 and 20 are presented. It is observed
that the worst case%RMS differences among FWM2, FWM1
and PWM2 are very small over the wide parameter vector
space and the worst case value for this simulation is found to
be 0.74542%. The efficiency of each model as time required
to compute single Green’s functions over 101Nf for a single
layer media is presented in last row of Table I. Each model
was run at least 1000 times in an 1.93 GHz core i3 laptop to
calculate the average computation time.

TABLE I. COMPARISON OFMODELS.

Worst case frequency averaged %RMS difference with FWM-2

ǫr FWM-1
PWM-1 PWM-2

No = 5 No = 20 No = 5 No = 20
2 0.7454 4.3716 4.3737 0.0957 0.0957
16 0.4531 6.0280 2.6236 5.5612 0.4994
81 0.3598 21.1715 2.5402 21.0441 0.6873

Processing time in milliseconds
2280.0 6.2414 6.9968 6.1191 7.3611

Based on this analysis it can be concluded that the complex
frequency response of proposed PWM matches well with the
FWMs as we consider for the higher order reflections andh2



variation term. The stability and noise performance of PWMs
and FWM-2 are expected to be same as FWM-1 due to small
%RMS difference among the Green’s functions.

B. Model Inversion

For inversion of model, objective functionΦ(b) is defined
in least square sense as following.

Φ (b) =
∣

∣G↑∗
xx (ω)−G↑

xx(ω, b)
∣

∣

T ∣
∣G↑∗

xx (ω)−G↑
xx(ω, b)

∣

∣

(18)
where G↑∗

xx (ω) is the vector containing measured and
G↑

xx(ω, b) is the vector containing simulated Green’s function
of the multilayered media. The parameters vectorb (consists
of µn, ǫn, σn, hn) needs to be estimated by minimizing the
objective functionΦ (b) in Eq. (18). A gradient based approach
i.e. Neadler-Mead algorithm of Matlab is implemented to
minimizeΦ(b). Since gradient based technique can’t converege
unless the starting parameters values are in global basin, a
layer stripping (LS) technique (details not given) is utilized to
get preliminary information of layer thickness and electrical
parameters of media. In fact with application of accurate
modeling scheme i.e. PWM, LS is giving promising results
for the laboratory testing case presented in result section.

IV. RESULTS AND DISCUSSION

At first GPR calibration was carried out following the
procedure mentioned in [15] so that all the frequency de-
pendent LTFs are evaluated across the frequency band. The
whole testing setup (shown in Fig. 1(a)) was kept at roof top
without control of temperature and shielding from externalRF
interferences. The frequency range 800 MHz to 4000 MHz
was swept with frequency step of 4 MHz. Due to manual
adjustment of the antenna stand, our height measurement inac-
curacy was around +/-2 mm. From analysis mentioned in [15]
it is understood that mm inaccuracy of antenna height mea-
surement during calibration process causes significant error for
estimating LTFs and leads to detection error. Accordingly the
frequency range of 800 MHz to 2000 MHz was selected for
achieving least%RMS error between measured and modeled
Green’s function by inversion.

Water is a homogenous media and its frequency dependent
electrical parameters are well defined by various research
works [21–23]. The complex dielectric constant (ǫe) of water
is a function of EM wave frequency (f ), temperature (T ) and
salinity (S). The characteristics ofǫe is accurately described
by the Klein-Swift model [21] below 10 GHz microwave
frequency. The salinity(S) of drinking water is negligible.
The real part ofǫe is the relative dielectric constantǫr and
is denoted by static relative permittivityǫs as given by (19).
The imaginary part ofǫe contributes the frequency dependent
conductivityσ(f) as given by (20).

ǫs (T ) = 88.045−0.4147T+6.295×10−4T 2+1.075×10−5T 3

(19)

σ (f) = σs +
ǫs − ǫ∞

1 +
(

f
fr

)2

(

f

fr

)

2πfǫ0 (20)

Whereǫ∞ is the permittivity at infinite frequency with value as
4.9,σs is static ionic conductivity of water,fr is the relaxation

frequency of water as given in (21) [23].

fr (T ) = 2π/(1.1109× 10−10 − 3.824× 10−12T

+ 6.938× 10−14T 2 − 5.096× 10−16T 3) (21)

GPR measurement was conducted to collect theS11 data while
keeping the antenna above a water layer. The water layer
thickness was measured by ruler as approximately 3.6 cm. The
metal plate was kept at the bottom of the water layer to control
the boundary condition. The atmosphere temperature was re-
ported as 29-30 degree centigrade during afternoon at the time
of experiment. Water temperature measured by a thermometer
had shown 39 degree centigrade during experiment as water
layer was exposed to sunlight. With unavailability of standard
conductivity meter in our laboratory, static conductivity(σs2)
was taken as an optimization parameter for GPR inversion.
Relative dielectric constantǫs2 and conductivity (σ2(f)) were
calculated by model i.e. (19) and (20) respectively. Total
three parameters i.e. antenna height (h1), water layer thick-
ness (h2), and its static conductivity (σs2) were optimized
by GPR inversion using FWMs and PWMs. For both the
PWMs maximum up to20th order reflection was considered
to calculate the Green’s function. To find the initial parameter
values LS technique was utilized. Total 31 frequency points
were considered in 1200 MHz bandwidth for model inversion
to achieve better efficiency without compromising the detection
accuracy.

The results of inversion are presented in the TABLE II. It is
observed that the proposed PWMs are as accurate as FWMs to
detect the water layer parameters. Interesting point to observe
here is that the PWM-1 which is most approximated model of
FWM-2, yielded lower%RMS error compared to other three
models and it took more time for detection compared to the
PWM-2. It is quite possible that a less accurate model matches
better with the measurement data when GPR measurement
is affected by calibration error, noise and interferences.In
general the timing efficiency achieved by PWMs is enormous
compared to FWMs. Fig. 3 presents plot of the measured and
the modeled Green’s function for the water layer in frequency
and time domain. It shows good agreement of phase char-
acteristics and partial agreement of amplitude characteristics
between the measured and the modeled Green’s functions for
all the models.

TABLE II. WATER PARAMETERS ESTIMATED BYPWMS AND FWMS.

Model
used

Estimated Parameters
h1

(cm)
h2

(cm)
σs2

(mS/m)
Processing

time (s)
%RMS
Error

LS 32.1645 3.7573 336.1152 0.8803 –
PWM-1 32.2464 3.6171 337.8612 0.4590 13.4317
PWM-2 32.1792 3.6184 339.8806 0.4043 13.9080
FWM-1 32.1789 3.6173 340.3352 132.1153 13.9166
FWM-2 32.1793 3.6172 340.3069 131.6505 13.9079

V. CONCLUSION

In this work an SFCW monostatic GPR system based on
fast and accurate modeling schemes (PWMs) is proposed.
Laboratory experiments with water layer proved that PWMs
are capable of estimating layered media’s parameters with
accuracy comparable with FWMs and their speed of compu-
tation is enormous. The gradient based approach is capable of
inverting the models for single layer media with aid of layer
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Fig. 3. Measured and modeled Green’s function for the water layer represented in (a) Frequency and (b) Time domain.

stripping technique. Clearly the proposed integrated approach
is suitable for real time applications. Though the PWMs are
very fast to detect the layered media, the GPR calibration pro-
cess to extract the linear transfer functions makes the scheme
inefficient and GPR detection complexity high. The future
work should focus on to simplify the process of calibration and
develop a robust global optimization scheme which would be
capable of inverting the model with large number of parameters
efficiently.
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