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Abstract—Cloud Computing provides various types of services
to the users, such as IaaS, PaaS, and SaaS. In IaaS cloud service,
virtualization is one of the major services which helps the user to
request for multiple services with the lowest price. The different
resource utilization is caused by various mappings between
virtual machines (VMs) and physical machines (PMs). Today for
cloud service provider the central issue is how to place multiple
VMs demanded by the users into the PMs to achieve workload
balance and optimize the resource utilization. The proposed cloud
model offers (with different levels) services by designing physical
machines into four pools, with diverse provisioning delay and
energy usage characteristics. We have broken down to acquire
the hypothetical energy usage and performance optimization for
VM placement in IaaS cloud data center. We have considered
mean response delay and job rejection probability on average
performance configuration with VM loss rate as our performance
metrics.
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I. I NTRODUCTION

Background And System Description: Cloud computing
is an emerging technology. It has profound impact on the
economy and the environment. The cloud datacenter provides
services to the users at three levels i.e. Infrastructure asa
Service (IaaS), Software as a Service (SaaS), and Platform as a
Service (PaaS). IaaS cloud provides users with computational
resources in the form of virtual machines (VM) instances
deployed in the provider data center. In PaaS and SaaS cloud
offer services in terms of specific solution stacks and applica-
tion suites respectively. Inefficient resource utilization within
the cloud datacenter significantly escalates power consumption
by cloud datacenter equipment while increasing operational
cost and carbon emission rate [1]. The largeness and scalability
problems of complex models are described in [2]. To solve
such problems, the hierarchical composition is introducedin
[3] (and many other papers and books), where a two-level
hierarchical model is proposed. A Markov chain models each
subsystem and the system reliability is modeled after a series
system of independent Markov components. In [3], stochastic
petrinets (SPNs) and reliability block diagrams are used for the
quantification of sustainability impact, cost and dependability
of datacenter cooling infrastructures. However, the paperonly
focuses on the cooling system and does not face scalability
issues for availability evaluation. There are lots of worksexist
[4], [5], which uses queuing models to study the performance
of distributed system with various performance metrics such as
weighted mean response time and arithmetic average response
time [6], a novel stochastic framework for energy efficiency
and performance analysis of dynamic voltage and frequency

scaling (DVS) enabled cloud [7], probability of load balancing
success [8], mean response ratio [9], and mean miss rate
[10]. Optimal load distribution in a heterogeneous distributed
computer system with both generic and dedicated applications
was studied in [11], [12]. To the best of our knowledge, there
has been no similar investigation in the literature. The method
of optimal multicore server processor configuration has been
employed for other purposes, such as managing the power and
performance tradeoff [13]. In an IaaS cloud, when a request
is processed, a prebuilt image is utilized to convey one VM,
or a predeployed VM may be tweaked and made accessible
to the clients. VMs are conveyed on PMs that may be shared
by different VMs. The conveyed VMs are provisioned on the
premise of a prerequisite of CPU, RAM and system bandwidth.
This procedure of provisioning furthermore, conveying VMs
includes delays that may be diminished by different advance-
ment methods. One such approach is to gathering the PMs
into numerous pools, portrayed by distinctive degrees of delay
included in provisioning of VMs. Depending on delay involved
in provisioning, in our proposed work, we have grouped PMs
into four pools:a-type (running), b-type (turned on but not
ready), c-type (sleep mode) andd-type (turned off). A pre-
instantiated VM can be promptly provisioned and conveyed to
prepared state on a running PM (a-type) with least provisioning
delay. Instantiating a VM from an image and conveying it on
a b-type PM needs extra time in provisioning. PMs in thec-
type andd-type pools are sleep and turned of when not being
used, and conveying a VM on such PMs experiences an extra
start up delay. We have assumed that 1) the measure of a wide
range of pool is foreordained, 2) pool has homogeneous PMs,
3) all requests are homogeneous, where every task may ask
for one VM with altered size CPU cores, RAM and system
network bandwidth requirement.

Problem statement : Taking into account the above dis-
cussion, We have evaluated complete performance VM provi-
sioning with Virtual Machine Placement Submodel (VMPM)
of the IaaS cloud. This proposed work handles the issue of
analytical modeling and analysis of IaaS cloud datacenter.We
consider expected VM completion time, VM loss rate, job
rejection probability and mean response delay as key metrics
of performance. We employ a continuous-time Markov model
to obtain analytical solutions of these metrics.
Key contributions : Based on the scalable interactingstochastic
models approach, as described in [13] we make the following
contributions in this paper: (1) using Markov reward approach
we consider VM loss rate, in each pool of IaaS cloud datacen-
ter and (2) VM completion time for the proposed model by
considering two QoS parameter i.e. job rejection probability,



mean response delay through careful exploration of different
cloud parameters and configurations.

Rest of the paper is organized as follows, Section II,
presents the problem statement and model description, Section
III describes the simulation result, we conclude and outline
future research in Section IV.

II. M ODEL DESCRIPTION
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Fig. 1: SCM Model [13]

A. Server Consolidation Submodel (SCM)

SCM is modeled as a CTMC as shown in Fig. 1. A finite
length decision queue is considered where decisions are made
on a FCFS basis. States in this model (a-type, b-type, c-type or
d-type) are labeled as (i, s), where i denotes the number of jobs
and s denotes pool type se lected for job provisioning. When
the queue is empty SCM is in state of (0, 0). We consider the
following pa rameter as an input to the CTMC: (i) job arrival
rate (λ), (ii) mean searching delay to find a PM in⁀extita-type,
b-type, c-type, and d-type pool for resource pr ovisioning as
1/δa, 1/δb, 1/δc or 1/δd respectively, (iii) probabilities that a
⁀extbfa-type, b-type, c-type, and d-type PM can accept a jo b
for resource provisioning bePa, Pb, Pc andPd respectively,
and (iv) size of the job queue is N. Th e different parameters
mentioned this model is as, N is assumed to be given, the
arrival rateλ, δa, e.ltab, δc, andδd supposed to be measured,
VMPM provides probabilitiesPa, Pb, Pc and Pd. The state
transition diagram can be described as: with arrival rateλ the
state (0, 0) transit to state (0,a. With probabilityPa, the state
(0, a) transit to state (0, 0), confirming that job is accepted
for provisioning on one of thea-type PMs. With probability
(1-Pa) , the state (0,a) transit to state (0,b), affirming that
job can’t be acknowledged for provisioning on anya-type
PM, and the state (0,a) transit to state (1,a) when a new
job arrives with rateλ, this speaks to the condition that one
job is holding up in the queue and one job is experiencing
provisioning decision. SCM tries to search forb-type PM in
state (0,b) to provision the job that could not be handled by
b-type PM. When nob-type PM is available (i.e. probability
(1-Pb)) the state (0,b) transit to state (0,c). in state (0,c),
SCM search for onec-type PM to provision the job (that could
not be provisioned on anyb-type PM) . When noc-type PM is
available then the state transit from (0,c) to state (0,d) with
probability (1-Pc). The job experiencing provisioning decision

goes out of the queue, once a decision has been made for thed-
type pool. With probabilityPd, the job can be acknowledged
in the d-type pool and sub-model goes to state(0, 0). With
probability (1-Pd), all d-type PMs are occupied, job is rejected
and the sub-model goes to state (0, 0). From this model, we
can process job rejection probability because of buffer full (
Pblock ), rejection probability because of deficient capacity (
Pdrop ) and consequently, job rejection probabilityPreject=
Pblock+Pdrop. We can likewise process mean queuing delay
(E(qdelay)) and mean decision delay (E[Ddelay]) conditional
upon the job being accepted.

B. VM provisioning sub-models

VM provisioning sub-models catch the instantiation, setup,
and provisioning of a VM on a PM. For every PM in diverse
pool, we have one CTMC which stays informed concerning the
quantity of relegated and running VMs. VM provisioning sub-
model of a pool is the union of individual provisioning sub-
models of every PM in that pool. A running PM in a pool may
fail. The time to-failure follows an exponential distribution
with failure rate Fa ∈ R+ in a-type pool( Fb, Fc and Fd
for b-type, c-type and d-type pool ), whereR+ is the set
of positive real numbers. Every fizzled PM can be repaired
by programming or equipment repair units and restored to
the typical state. The repair time follows an exponential
distribution with repair rateZa ∈ R+ ( Zb, Zc, Zd for b-type,
c-type and d-type pool ). VM instances on these failed PMs
also fail. In this case, they go back and join the arrival flow for
resubmission. The time to resubmit one failed VM instance is
exponentially distributed with rateRa in a-type pool( Rb, Rc
andRd for b-type, c-type andd-type pool).
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Fig. 2: a-type VMPM

1) a-type PM Pool: Our a-type pool is a two stage tandem
network. We derive the closed form expressions for the steady
state probabilities of thea-type PM CTMC whenLa ← ∞

andm → ∞. We model thea-type pool PM, similar to the
detail given in [13] can be referred. While the proposed model
assumes homogeneous requests (one VMs for each request).
We design separate VM provisioning model for four different
pool of PMs. Fig.2 shows a VM provisioning sub-model for a
PM in the a-type pool. Conceptually, the overalla-type pool



is modeled by a set of independenta-type PM. Although, note
that only one PM pool needs to be solved. For the sake of
simplicity in representation Fig.2 shows the VMPM when each
task has only one VM. A PM inb-type, c-type and d-type
pool modeled asa-type though, with some minor differences.
Therefore, a task can be accepted by a PM if first, there is
enough room in the PMs queue for all VMs within the task
and second, if the PM has sufficient resources (CPU, RAM and
Network bandwidth) for the given task. States of the sub-model
in a-type are indexed by(i, j, k, l), where, i denotes number
of jobs in the queue, j denotes number of jobs currently being
provisioned, k denotes the number of VMs which have already
been deployed andl gives the details of status of PM i.e. a PM
is working or failed. Input parameters for thea-type CTMC
are: (i) effective job arrival rate to eacha-type PM (λa), (ii)
rate at which VM instantiation, provisioning, and configuration
occurs (βa), and (iii) µ be the service rate of each VM. We
assume that the jobs are coming one at a time and hence,
the value of j is either 0 or 1 andl is the either 0 indicating
working condition and 1 indication failed condition. Assuming
a total ofna PMs in thea-type pool.

Among other input parametersβa can be measured,µa

can be computed from the run-time sub-model ,La and m are
assumed to be given. Here we describe the state changes in
pool given in Fig. 2. The sub-model goes to state (0, 1, 0, 0),
from state (0, 0, 0, 0), with job arrival rateλa. In state (0,
1, 0, 0), the job is being supplied with VM instance. Mean
time to provision a VM on aa-type PM is 1/βa and the state
changes from (0, 1, 0, 0) to state (0, 0, 1, 0) with rateβa.
The VM instance is removed and the sub-model moves from
state (0, 0, 1, 0) to state (0, 0, 0, 0) with rateµ when a job
is completed. Arrival of a new job with rateλa will take the
sub-model to state (1, 1, 0, 0) from state (0, 1, 0, 0) When a
VM is being provisioned in state (0, 1, 0, 0), where the job is
waiting in the queue. In almost the same way, new jobs can
arrive more and more moving the sub-model to states (i, 1, 0,
0) with 0 ≤ i ≤ La. In state (La, 1, 0, 0) the buffer is full
and hence, no new job can arrive. When a VM is in execution
(e.g., in state (0, 0, 1, 0)), arrival of a new job with rateλa

will take the sub-model to state (0, 1, 1, 0), where the new
job is being provisioned. Suppose a running PM fails in the
state (0, 0, 1, 0) then the state become (0, 0, 1, 1), i.e.l value
will be 1 where, 1 is failure condition and 0 is for running
condition. VM instances on a failed machine are resubmitted
and the state goes from (0, 0, 1, 1) to ( 0, 1, 0, 0). If the buffer
is full then the corresponding job of failed VM will be passed
to next pool, if none of the pool have sufficient space to host
this job then the VM is rejected and that falls under rejection
of job due to insufficient space. The output from this pool is
Ba blocking probability, andPa that at least one PM in the
a-type can accept a job for provisioning. Now, the probability
of failure of a machine can be given by:

Pfail(a−type)(xa) =

∑La

ya=0,z(ya)=z(xa)+1,φa
xa,ya

>0 φ
a(xa, ya)

∑La

ya=0,x 6=ya φ
a(xa, ya)

(1)

wherez(xa) is the number of failed VM at stateφa(xa),
z(ya)=z(xa)+1 indicates that one more failure happens in the
transition from stateφa(xa) to φa(ya). φa(xa, ya) > 0 means
that φa(ya) is an immediate succeeding state ofφa(xa). The

probability of VM failure,Da−type,(xa), can be calculated as
the ratio of the aggregate probability ofPfail(a−type(xa), to
the aggregate probability of states with at least one alive PM
i.e.

Da−type,(xa) =

∑La

xa=0,g(xa)>0 φ
a(xa)× Pfail(a−type)(xa)

Pa
(2)

where g(xa) denotes the number of alive VM instances
φa(xa). From the system equilibrium view point, the actual
input rate satisfies the following equation:

na(1 +Da−type,(x))λa = λ(1− Pa) (3)

Finally, the expression forλa can be given as follows:

λa =
λ(1− Pblock)

na(1 +Da−type,(x))
(4)

Where,ρ is the service rate. As discussed earlier, failed
VM tasks go back to the waiting queue for resubmission. In
this case, the completion time for these failed ones are longer
than the sojourn time of successful ones. Lettingua denote the
completion time for a failed VM instance, expected completion
time of failed VM is

E(ua) = E(ωa) +
1

Fa

+ E(sa) (5)

where1/Fa is the expected failure time andE(sa) is the
expected VM completion time.E(ωa) is expected waiting time
of VMs, Equation 5 implies thatE(ua) can be calculated as
the expected sojourn time of a failed VM instance plus the
expected completion time as a new resubmitted VM task.

VM loss rate,la, is another important metric. Based on our
stochastic model, VM tasks can be rejected and lost due to a
full queue. Note that resubmitted VMs can also be rejected
when they reenter the queue. Therefore

la = Ba + Pa ×Da−type,(xa) × la
whereDa−type,(xa) × la means the probability of VM loss
when failed ones are resubmitted.

2) b-type PM Pool: CTMC for a b-type PM is shown in
Fig. 3, which can be described as when no VM is running or
being provisioned,b-type PM is turned on but not ready for
use. Upon a job arrival, theb-type PM requires some additional
start up delay to make it ready to use. So, the sub-model goes
from state (0, 0, 0, 0) to state (0, 1, 0, 0). Time to make ab-type
PM ready for use, is assumed to be exponentially distributed
with mean1/γb. (iii) Mean time to provision a VM on ab-
type PM is 1/βb for the first VM to be deployed on this PM;
mean time to provision VMs for subsequent jobs is the same
as that for aa-type PM, i.e.,1/βa. When a running job exits
from state (0, 1, 1, 0), the pool moves to the state (0,1∗∗, 0,
0) (instead of state (0,1∗, 0, 0)). In state (0,1∗∗, 0, 0), the
b-type PM is ready to use (behaving like aa-type PM) and
hence mean time to provision a VM in this state is1

βa

. We



Fig. 3: b-type VMPM

assume that the length of buffer on eachb-type PM isLb. The
c-type, d-type pool can be described in similar manner. The
output from this pool isBb blocking probability, andPb that
at least one PM in theb-type can accept a job for provisioning.
The other parameter forb-type, c-type, d-type pool is similar
to a-type type pool, and is not mentioned in this paper due to
brevity.

3) Overall outputs for VM provisioning sub-models: As
discussed earlier, failed VM tasks go back to the waiting queue
for resubmission. In this case, the completion time for these
failed ones are longer than the sojourn time of successful ones.
Lettingu denote the completion time for a failed VM instance,
we haveE[u] be the expected completion time of all failed
VMs. Thus, the mean response delay is then given by:

E [Tresp] =E(qdelay) + E [Ddelay] (6)

+ E
[

Tq
−
vm

]

+ E [Tprov] + E[u]

whereE [Tprov] is for a job, conditional upon being accepted,
E [Tprov] and E

[

Tq
−
vm

]

is mean queuing delay for VM
provisioning. The details are not mentioned due to brevity.

III. E XPERIMENTAL RESULTS

We consider a datacenter sample built on Intel Xscale
PXA270 uniprocessors. We use MATLAB 13.0 to implement
the stochastic model for the system. We have used the algo-
rithm from [13] where the input data to this algorithm are as
follows a-type, b-type, c-type, d- type and SCM Sub model and
the outcome is steady state values of performance measures
and steady state values of fixed-point variables (PBlock, Pa,
Pb, Pc andPd). Increase in mean service time increases job
rejection probability increases with as depicted in Fig. 4a,
with the job arrival rate (1500 jobs/h) and fixed number of
PMs in each pool (e.g., 100 PMs in each pool). The job
rejection probability can be minimized by increasing the PM
capacity in each pool at a constant mean service time. Mean

response delay increases if we increase mean service time for
at a constant PMs in each pool as depicted in Fig. 4b. In
our proposal the gain can be defined as the minimization of
job rejection probability or mean response delay with increase
in number of PMs in each pool keeping other input parameter
constant. When the pm capacity increases from 80 to 130 PMs
in each pool then the marginal gain change with increasing
mean service time which is shown in Fig. 4b.

We have researched in our illustration that in the medium
extent mean service time (around 100-2800 minute) the gain is
greatest in light of the fact that, for a settled number of PMs,
mean response delay has three sections those are, mean queu-
ing delay before SCM, mean decision delay and conditional
mean provisioning delay. The marginal gain fluctuates with
expanding mean service time contingent on which component
of delay is more prevailing. The gain due to increase in PM
is inconsequential when the mean service time is low (100 -
400 moment) as to keep low response delay, jobs needs to
leave the server farm for the new job to arrive. The queue
before the SCM increments when the mean service time of jobs
increases (say 1000 min), for low capacity frameworks (e.g., 80
PMs in every pool for our illustration). This shows that adding
more PMs decrease mean queuing delay in front of SCM. The
marginal gain decreases when the mean service time increases
to 1900 for larger capacity systems (e.g., 130 PMs in each
pool for our example) increasing mean queuing delay in front
of SCM. This outcome indicates in general mean response
delay, how the parameter mean queuing delay changes as the
mean service time and PMs in every pool are changed.

It is intriguing to take a gander at the parts of mean
response delay and rejection probability. They are indicated in
Fig. 4d for 80 PMs in every pool. For the illustration indicated
in Fig. 4c, beyond mean service time of 100 minute, rejection
because of buffer full is prevailing contrasted with rejection
because of deficient capacity. This is a case that shows how
our models can give an ides to imagine a scenario where
investigation to better comprehend framework bottlenecks. In
the sample demonstrated in Fig 4d, mean provisioning delay is
predominant when mean service time is under 150 minute and
mean queueing delay is overwhelming when mean service time
is higher than 150 minute. We show the effects of changing
arrival rate, task service time, number of PMs in each pool,
number of VMs on each PM and job size on the interested
performance indicators. Arrival rate ranges from 50 to 1500
jobs per hour. Mean service time of each task within service
time ranges from 40 to 220 minutes. We assume 90 to 130
PMs in pools. The results in Figs. 4e shows that jobs arrives
with at a particular rate and there occurs VM loss or machine
failure and the failed machine need to be resubmitted to the
PMs to increase the rate of success in VM execution. It also
reveals that with the increase in task arrival the VM failure
increases which affect increase in service time will resultin
longer total delay on job completion. In Fig 4f, we examine
the effect of job size on task rejection probability using of
geometric. Here we have kept a constant arrival rate of 800
jobs per hour. As can be seen by increasing the size of jobs
the rejection probability reduces sharply for both geometric
and uniform distribution. Since the size of job is truncatedto
the maximum number of VMs allowed on each PM ( here, up
to 6 VMs), the bigger job size will result in the lower number
of arrivals as well as lower deviation of jobs.
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Fig. 4: Experimental Results

IV. CONCLUSION

In this paper, we present a performance model suitable
for IaaS cloud datacenter environment with homogeneous
requests and resources using interacting stochastic models.
We measure the impacts of varieties in workload (e.g., job
arrival rate, job service rate, failure and repairing of VMs)
and framework limit (PMs per pool, VMs per PM) on the
execution of a class of IaaS clouds where PMs are sorted out
in a set of pools for administration and power consumption
costs reduction. Moreover, under different configurations, the

behavior of IaaS cloud datacenter is characterized so that an
effective admission control can be achieved. Results show that
our approach enables the cloud service providers to detect
system bottlenecks. We plan to extend the heterogeneity in
jobs (i.e., RAM and disk) and server pools (i.e. different PMs
in each pool) and energy management in a cloud datacenter in
our future work.
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