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Abstract—Cloud Computing provides various types of services
to the users, such as laaS, PaaS, and SaaS. In laaS cloud seryice
virtualization is one of the major services which helps the user to
request for multiple services with the lowest price. The different
resource utilization is caused by various mappings between
virtual machines (VMs) and physical machines (PMs). Today for
cloud service provider the central issue is how to place multiple
VMs demanded by the users into the PMs to achieve workload
balance and optimize the resource utilization. The proposed cloud
model offers (with different levels) services by designing physical
machines into four pools, with diverse provisioning delay and
energy usage characteristics. We have broken down to acquire
the hypothetical energy usage and performance optimization for
VM placement in laaS cloud data center. We have considered
mean response delay and job rejection probability on average
performance configuration with VM loss rate as our performance
metrics.
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scaling (DVS) enabled cloud [7], probability of load balare
success [8], mean response ratio [9], and mean miss rate
[10]. Optimal load distribution in a heterogeneous disttéul
computer system with both generic and dedicated applitatio
was studied in [11], [12]. To the best of our knowledge, there
has been no similar investigation in the literature. Thehoet

of optimal multicore server processor configuration hasmbee
employed for other purposes, such as managing the power ant
performance tradeoff [13]. In an laaS cloud, when a request
is processed, a prebuilt image is utilized to convey one VM,
or a predeployed VM may be tweaked and made accessible
to the clients. VMs are conveyed on PMs that may be shared
by different VMs. The conveyed VMs are provisioned on the
premise of a prerequisite of CPU, RAM and system bandwidth.
This procedure of provisioning furthermore, conveying VMs
includes delays that may be diminished by different advance
ment methods. One such approach is to gathering the PMs
into numerous pools, portrayed by distinctive degrees t#fyde
included in provisioning of VMs. Depending on delay invalve

in provisioning, in our proposed work, we have grouped PMs
into four pools:a-type (running), b-type (turned on but not

is an emerging technology. It has profound impact on thgeady), c-type (sleep mode) andi-type (turned off). A pre-
economy and the environment. The cloud datacenter providggstantiated VM can be promptly provisioned and conveyed to
services to the users at three levels i.e. Infrastructur@ as prepared state on a running PEHype) with least provisioning
Service (laaS), Software as a Service (SaaS), and Platloan a gejay. Instantiating a VM from an image and conveying it on
Service (PaaS). laaS cloud provides users with compugdtiong p.type PM needs extra time in provisioning. PMs in the
resources in the form of virtual machines (VM) instancestype andd-type pools are sleep and turned of when not being

deployed in the provider data center. In PaaS and SaaS clo

offer services in terms of specific solution stacks and appli
tion suites respectively. Inefficient resource utilizatiwithin

ed, and conveying a VM on such PMs experiences an extre
start up delay. We have assumed that 1) the measure of a wid
range of pool is foreordained, 2) pool has homogeneous PMs,

the cloud datacenter significantly escalates power conSamp 3y a|| requests are homogeneous, where every task may as

by cloud datacenter equipment while increasing operattiongor one VM with altered size CPU cores, RAM and system
cost and carbon emission rate [1]. The largeness and sii@glabi network bandwidth requirement.

problems of complex models are described in [2]. To solve

such problems, the hierarchical composition is introduired Problem statement : Taking into account the above dis-
[3] (and many other papers and books), where a two-levetussion, We have evaluated complete performance VM provi-
hierarchical model is proposed. A Markov chain models eaclsioning with Virtual Machine Placement Submodel (VMPM)
subsystem and the system reliability is modeled after a&seri of the laaS cloud. This proposed work handles the issue of
system of independent Markov components. In [3], stocbastianalytical modeling and analysis of laaS cloud datacekiter.

petrinets (SPNs) and reliability block diagrams are usedtfe
guantification of sustainability impact, cost and depeiidgb
of datacenter cooling infrastructures. However, the papdy

consider expected VM completion time, VM loss rate, job
rejection probability and mean response delay as key rsetric
of performance. We employ a continuous-time Markov model

focuses on the cooling system and does not face scalability obtain analytical solutions of these metrics.

issues for availability evaluation. There are lots of woekést

Key contributions : Based on the scalable interactingstochastic

[4], [5], which uses queuing models to study the performancenodels approach, as described in [13] we make the following
of distributed system with various performance metrichsag  contributions in this paper: (1) using Markov reward appftoa
weighted mean response time and arithmetic average response consider VM loss rate, in each pool of laaS cloud datacen-
time [6], a novel stochastic framework for energy efficiencyter and (2) VM completion time for the proposed model by
and performance analysis of dynamic voltage and frequencgonsidering two QoS parameter i.e. job rejection probigbili



mean response delay through careful exploration of diftere goes out of the queue, once a decision has been made for the
cloud parameters and configurations. type pool. With probability P;, the job can be acknowledged
in the d-type pool and sub-model goes to state(0, 0). With
'probability (1), all d-type PMs are occupied, job is rejected
and the sub-model goes to state (0, 0). From this model, we
can process job rejection probability because of buffer (ful
Pyock ), rejection probability because of deficient capacity (
Piop ) and consequently, job rejection probabilif.;ec:=

II. MODEL DESCRIPTION PyocitParop. We can likewise process mean queuing delay
(E(gdetay)) and mean decision delay®{Dgqay]) conditional
upon the job being accepted.

Rest of the paper is organized as follows, Section I
presents the problem statement and model descriptionpBect
lIl describes the simulation result, we conclude and oatlin
future research in Section V.

B. VM provisioning sub-models

VM provisioning sub-models catch the instantiation, setup
and provisioning of a VM on a PM. For every PM in diverse
pool, we have one CTMC which stays informed concerning the
quantity of relegated and running VMs. VM provisioning sub-
model of a pool is the union of individual provisioning sub-
models of every PM in that pool. A running PM in a pool may
fail. The time to-failure follows an exponential distrilorm
with failure rateF, € RT in atype pool( Fp, Fc and Fyq
for b-type, c-type and d-type pool ), where RT is the set
of positive real numbers. Every fizzled PM can be repaired
by programming or equipment repair units and restored to
the typical state. The repair time follows an exponential
distribution with repair rateZ, € R™ ( Zy, Zc, Zg4 for b-type,

A. Server Consolidation Submodel (SCM) c-type and d—type pool ). VM instances on these f_ailed PMs
also fail. In this case, they go back and join the arrival flow f

SCM is modeled as a CTMC as shown in Fig. 1. A finite resubmission. The time to resubmit one failed VM instance is
length decision queue is considered where decisions are madxponentially distributed with rat®, in a-type pool( Ry, Rc
on a FCFS basis. States in this modetype, b-type, c-typeor  andRy for b-type, c-type and d-type pool).
d-type) are labeled ad,(s), where i denotes the number of jobs
and s denotes pool type se lected for job provisioning. When
the queue is empty SCM is in state &, (0. We consider the
following pa rameter as an input to the CTMC: (i) job arrival
rate ), (i) mean searching delay to find a PM éixtita-type,
b-type, c-type, and d-type pool for resource pr ovisioning as
1/64, 1/0p, 1/5. or 1/, respectively, (i) probabilities that a
extbfa-type, b-type, c-type, andd-type PM can accept a jo b
for resource provisioning b&,, P,, P, and P, respectively,
and (iv) size of the job queue is N. Th e different parameters
mentioned this model is as, N is assumed to be given, the
arrival rate ), d,, €tap, ., anddy supposed to be measured,
VMPM provides probabilitiesP,, P,, P. and P;. The state
transition diagram can be described as: with arrival patbe
state 0, 0) transit to state (@, With probability P,, the state
(0, a) transit to stated, 0), confirming that job is accepted
for provisioning on one of tha-type PMs. With probability
(1-P,) , the state (0a) transit to state (Ob), affirming that
job can't be acknowledged for provisioning on aaytype Fig. 2: a-type VMPM
PM, and the state (Og) transit to state (1a) when a new
job arrives with rate)\, this speaks to the condition that one
job is holding up in the queue and one job is experiencing 1) a-type PM Pool: Our a-type pool is a two stage tandem
provisioning decision. SCM tries to search foitype PM in network. We derive the closed form expressions for the gtead
state (0,b) to provision the job that could not be handled by state probabilities of tha-type PM CTMC whenL, «+
b-type PM. When nob-type PM is available (i.e. probability andm — oco. We model thea-type pool PM, similar to the
(1-P,)) the state (0p) transit to state (O¢). in state (0,c), detail given in [13] can be referred. While the proposed model
SCM search for one-type PM to provision the job (that could assumes homogeneous requests (one VMs for each request
not be provisioned on any-type PM) . When noc-type PM is ~ We design separate VM provisioning model for four different
available then the state transit from ),to state (0,d) with pool of PMs. Fig.2 shows a VM provisioning sub-model for a
probability (1-P.). The job experiencing provisioning decision PM in the a-type pool. Conceptually, the overadl-type pool

Fig. 1. SCM Model [13]




is modeled by a set of independentype PM. Although, note  probability of VM failure, D,_;,,c (2q), Can be calculated as
that only one PM pool needs to be solved. For the sake athe ratio of the aggregate probability &% q;;(q—¢ype(za), to
simplicity in representation Fig.2 shows the VMPM when eachthe aggregate probability of states with at least one alMe P
task has only one VM. A PM irb-type, c-type and d-type  i.e.

pool modeled as-type though, with some minor differences.

Therefore, a task can be accepted by a PM if first, there is

enough room in the PMs queue for all VMs within the task 253:0 o(za)>0 " (2a) X Praii(a—type) (za)
and second, if the PM has sufficient resources (CPU, RAM andDa—type,(za) = - P : :
Network bandwidth) for the given task. States of the sub-ehod @ )

in a-type are indexed by(i, j, k, 1), where, i denotes number

of jobs in the queue, j denotes number of jobs currently beingvhere g(za) denotes the number of alive VM instances
provisioned, k denotes the number of VMs which have already)®(za). From the system equilibrium view point, the actual
been deployed andgives the details of status of PM i.e. a PM input rate satisfies the following equation:

is working or failed. Input parameters for tleetype CTMC

are: (i) effective job arrival rate to eadchtype PM (A\,), (ii)

rate at which VM instantiation, provisioning, and configioa Na(1+ Do—type,2))Aa = M1 — Py) (3)
occurs 3,), and (i) © be the service rate of each VM. We

assume that the jobs are coming one at a time and hence, Finally, the expression fok, can be given as follows:

the value of j is either 0 or 1 anldis the either O indicating

working condition and 1 indication failed condition. Assimg \ = AL = Phiock) @)

a total ofn, PMs in thea-type pool. * " ng(1+ Da—type,(z))

Among other input parameters, can be measured,, . . _ . )
can be computed from the run-time sub-modg},,and m are Where, p is the service rz_it_e. As discussed earll_er,_falled
assumed to be given. Here we describe the state changes Y tasks go back to the waiting queue for resubmission. In
pool given in Fig. 2. The sub-model goes to state (0, 1, 0, o)thIS case, the completion time for these failed ones areelong
from state (0, 0, 0, 0), with job arrival ratk,. In state (0 than the sojourn time of successful ones. Lettilgdenote the
1, 0, 0), the job, is,bei7ng supplied with VM instance. Mean completion time for a failed VM instance, expected compieti
time to provision a VM on a-type PM is 1/3, and the state time of failed VM is
changes from (0, 1, 0, 0) to state (0, 0, 1, 0) with rate
The VM instance is removed and the sub-model moves from 1
state (0,0, 1,0 to state (O, 0,. 0, 0) with ra.te{\/hen a job E(ua) = E(wa) + — + E(sa) (5)
is completed. Arrival of a new job with ratg, will take the Fy
sub-model to state (1, 1, 0, 0) from state (0, 1, 0, 0) When a . ) ) i
VM is being provisioned in state (0, 1, 0, 0), where the job is Wherel/F, is the expected failure time anfl(sa) is the
waiting in the queue. In almost the same way, new jobs caf*xPected VM completion time(wa) is expected waiting time
arrive more and more moving the sub-model to states (i, 1, ®®f VMs, Equation 5 implies that/(ua) can be calculated as
0) with 0 < i < L,. In state ., 1, 0, 0) the buffer is full the expected sojourn time of a failed VM instance plus the
and hence, no new job can arrive. When a VM is in executiorPXPected completion time as a new resubmitted VM task.

(e.g., in state (0, 0, 1, 0)), arrival of a new job with ratg VM loss rate la, is another important metric. Based on our
will take the sub-model to state (0, 1, 1, 0), where the nevgigchastic model, VM tasks can be rejected and lost due to a

job is being provisioned. Suppose a running PM fails in theg)| queue. Note that resubmitted VMs can also be rejected
state (0, 0, 1, 0) then the state become (0, O, 1, 1)l value  \yhen they reenter the queue. Therefore

will be 1 where, 1 is failure condition and 0 is for running

condition. VM instances on a failed machine are resubmitted [a = By + Py X Dy_type,(za) X la

and the state goes from (0, 0, 1, 1) to (0, 1, 0, 0). If the buffewhere D,_;,,c (zq) x la means the probability of VM loss
is full then the corresponding job of failed VM will be passed When failed ones are resubmitted.

to next pool, if none of the pool have sufficient space to host g . g ; ;
this job then the VM is refected and tat falls under rejacto 1o wich can be described as when no VM i running o
of J%ﬁ) dE.e to 'nSbUﬁéﬁ'.em Spd"’llfe'hThe O:Jtpl"t from th's.poﬁl ISbeing provisionedp-type PM is turned on but not ready for
B, blocking probability, andP, that at least one PM in the o0 400 4 job arrival, thetype PM requires some additional
a-type can accept a job for provisioning. Now, the probability g 5 delay to make it ready to use. So, the sub-model goes
of failure of a machine can be given by: from state (0, O, 0, 0) to state (0, 1, 0, 0). Time to maketgpe
La a PM ready for use, is assumed to be exponentially distributed
Zya:&z(ya)ZZ(MHL%G,W>0(b (za, ya) with mean1/~;. (iii) Mean time to provision a VM on &-
Zjl‘;:oy#ya ¢ (ra,ya) type PM is 1/, for the first VM to be deployed on this PM;
Q) mean time to provision VMs for subsequent jobs is the same
as that for aa-type PM, i.e.,1/3,. When a running job exits
where z(za) is the number of failed VM at statg®(xa),  from state (0, 1, 1, 0), the pool moves to the statel(0, O,
z(ya)=z(xa)+1 indicates that one more failure happens én th0) (instead of state (01*, 0, 0)). In state (01**, 0, 0), the
transition from state“(za) to ¢*(ya). ¢*(xa,ya) > 0 means b-type PM is ready to use (behaving like atype PM) and
that ¢?(ya) is an immediate succeeding state¢df(za). The  hence mean time to provision a VM in this stateé;s. We

Pfail(aftype) (xa) =



response delay increases if we increase mean service time fo
at a constant PMs in each pool as depicted in Fig. 4b. In
our proposal the gain can be defined as the minimization of
job rejection probability or mean response delay with insge

in number of PMs in each pool keeping other input parameter
constant. When the pm capacity increases from 80 to 130 PMs
in each pool then the marginal gain change with increasing
mean service time which is shown in Fig. 4b.

We have researched in our illustration that in the medium
extent mean service time (around 100-2800 minute) the gain i
greatest in light of the fact that, for a settled number of PMs
mean response delay has three sections those are, mean que
ing delay before SCM, mean decision delay and conditional
mean provisioning delay. The marginal gain fluctuates with
expanding mean service time contingent on which component
of delay is more prevailing. The gain due to increase in PM
is inconsequential when the mean service time is low (100 -
400 moment) as to keep low response delay, jobs needs tc
leave the server farm for the new job to arrive. The queue
before the SCM increments when the mean service time of jobs
increases (say 1000 min), for low capacity frameworks (8@.
PMs in every pool for our illustration). This shows that autyli
more PMs decrease mean queuing delay in front of SCM. The
c-type, d-type pool can be described in similar manner. The!0 1900 for larger capacity systems (e.g.,, 130 PMs in each
output from this pool isB, blocking probability, andP, that ~ Pool for our example) increasing mean queuing delay in front
at least one PM in thb-type can accept a job for provisioning. 0f SCM. This outcome indicates in general mean response
to a-type type pool, and is not mentioned in this paper due tomean service time and PMs in every pool are changed.

brevity. It is intriguing to take a gander at the parts of mean

3) Overall outputs for VM provisioning sub-models: As  esponse delay and rejection probability. They are indttat
discussed earlier, failed VM tasks go back to the waitingugue Fig. 4d for 80 PMs in every pool. For the illustration indiedt
for resubmission. In this case, the completion time for ¢hes in Fig. 4c, beyond mean service time of 100 minute, rejection
failed ones are longer than the sojourn time of successfes.on Pecause of buffer full is prevailing contrasted with reject
Letting « denote the completion time for a failed VM instance, Pecause of deficient capacity. This is a case that shows how

we haveE[u] be the expected completion time of all failed OUf models can give an ides to imagine a scenario where
VMs. Thus, the mean response delay is then given by: investigation to better comprehend framework bottlenetrks

the sample demonstrated in Fig 4d, mean provisioning dslay i
predominant when mean service time is under 150 minute and

Fig. 3: b-type VMPM

_ mean queueing delay is overwhelming when mean service time
E Tresp] =E(dostay) + E [Daetay] © is higher than 150 minute. We show the effects of changing
+E [quvm] + E [Tprov] + Elu] arrival rate, task service time, number of PMs in each pool,

whereE [T),,.,] is for a job, conditional upon being accepted, number of VMs on each PM and job size on the interested
E[Tprov] and E [Tq Um} is mean queuing delay for VM performance indicators. Arrival rate ranges from 50 to 1500

provisioning. The details are not mentioned due to brevity. 10PS per hour. Mean service time of each task within service
time ranges from 40 to 220 minutes. We assume 90 to 130

PMs in pools. The results in Figs. 4e shows that jobs arrives
with at a particular rate and there occurs VM loss or machine

We consider a datacenter sample built on Intel Xscaldailure and the failed machine need to be resubmitted to the
PXA270 uniprocessors. We use MATLAB 13.0 to implementPMs to increase the rate of success in VM execution. It also
the stochastic model for the system. We have used the algoeveals that with the increase in task arrival the VM failure
rithm from [13] where the input data to this algorithm are asincreases which affect increase in service time will regult
follows a-type, b-type, c-type, d- type and SCM Sub model and longer total delay on job completion. In Fig 4f, we examine
the outcome is steady state values of performance measurdge effect of job size on task rejection probability using of
and steady state values of fixed-point variabl€s; (., P., geometric. Here we have kept a constant arrival rate of 800
Py, P. and P;). Increase in mean service time increases joljobs per hour. As can be seen by increasing the size of jobs
rejection probability increases with as depicted in Fig, 4athe rejection probability reduces sharply for both geoioetr
with the job arrival rate (1500 jobs/h) and fixed number ofand uniform distribution. Since the size of job is truncated
PMs in each pool (e.g., 100 PMs in each pool). The jobthe maximum number of VMs allowed on each PM ( here, up
rejection probability can be minimized by increasing the PMto 6 VMSs), the bigger job size will result in the lower number
capacity in each pool at a constant mean service time. Meaof arrivals as well as lower deviation of jobs.

I1l. EXPERIMENTAL RESULTS
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IV. CONCLUSION

In this paper, we present a performance model suitableur approach enables the cloud service providers to detec
for laaS cloud datacenter environment with homogeneousystem bottlenecks. We plan to extend the heterogeneity in

rate 1000(faRlejection probability vs. with arrival rate 1200 jobs per hour with
VM request

4: Experimental Results

behavior of laaS cloud datacenter is characterized so that a

effective admission control can be achieved. Results shaiv t

requests and resources using interacting stochastic modejobs (i.e., RAM and disk) and server pools (i.e. different$M

We measure the impacts of varieties in workload (e.g., jolin each pool) and energy management in a cloud datacenter ir

arrival rate, job service rate, failure and repairing of JMs our future work.
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