Green-JEXJ: A new tool to measure energy
consumption of improved concolic testing

Sangharatna Godboley*, Arpita Dutta’, Bhagyashree Besra ¥, and Durga Prasad Mohapatra$
DOS Lab, Department of Computer Science and Engineering,
National Institute of Technology Rourkela, Rourkela, Odisha, India.* 118
Email: sanghul790@gmail.com*,arpitad10j@ gmail.comT ,bubblingkajal @ gmail.comi ,and durga@nitrkl.ac.inr§

Abstract—Green Computing is a solution for environment
sustainability, where any part of computer does not pollute the
environment system. The main focus of Green Computing is to
reduce harmful material used in computers, boost the energy
efficiency and create recyclability of waste. Now a days energy
consumption of software is very interesting research area. Green
Software Testing deals with applying Green Computing technique
on software testing. In this paper, we developed a tool to measure
energy consumption of improved concolic testing. We have named
our tool as Green-JEXJ (Green JEXNCT JCUTE). We have
developed Green-JEXJ in Java language with a nice Graphical
User Interface (GUI). The GUI provides 100% augmented
testing technique on Green-JEXJ. Our proposed method achieves
7.45% of average increase in branch coverage for some sample
programs. The average difference of energy consumption of the
sample programs is -75945.1008 Joules (‘-ve’ shows that our
transformation approach is energy efficient).

I. INTRODUCTION

Green Computing is a technique of using systems and
technology in echo-friendly manner. It is also known as
Green technology. This concept uses computer and related
resources in environmentally responsible manner. This tech-
nique involves using the energy efficient central processing
unit, servers, and peripherals. This also involves the proper
disposal of E-waste material [11].

The SMART 2020 report reveals that carbon dioxide emis-
sions from the ICT sector will represent an estimate of 2.8%
of the total global emission by the year 2020 [7]. Some of
the impacts of ICT on human health and environment are the
followings: hazardous electronics waste, health risk, climate
change, global warming and land and water pollution etc.
Fig. 1 depicts the components of GreenICT implementation
explored from literature review which focuses on green ICT
implementation practices, factors, benefits, and barriers to
the educational institutions [7]. Ministry of Environment and
Forests Government of India (2011) have developed National
Mission for Green India under the National Action Plan on
Climate Change (NAPCC). The has presented tentative action
plan for Implementation of the Green India Mission during
2011-2012.

Software testing is an important phase in Software Devel-
opment Life Cycle (SDLC). Earlier days it was a manual
practice, but currently it is a must to automate software testing
to save the efforts in terms of time and cost. Software testing
is of two types: Black-box testing and White-box testing.
Coverage based testing is a white-box testing technique that

Fig. 1. Components of Green ICT Implementation

depends on structure of the code. In Nuclear and Aerospace
critical safety systems, branch coverage is mandatory. Now a
days Concolic Testing is very much useful for software testing
practices because it does exhaustive and rigorous testing.
We propose a technique to improve concolic testing. Since,
energy consumption, branch coverage, and concolic testing
are important in safety critical systems. So, we apply green
computing technique on coverage based testing and concolic
testing. By this hybrid nature of the work, we deal with Green
Software Testing. Being a software testing engineer, it is our
responsibility to spread awareness on Green Software Testing.
We should measure how much power and energy are consumed
for our testing tools or testing technique. It is our responsibility
to develop such testing tools, so that they generate energy
efficient test cases. There are lot of ideas pending to apply
Green Computing on Software testing technique.

In our proposed work, we develop a tool named Green
JEXNCT JCUTE (Green-JEXJ) that measures Energy con-
sumption of our proposed testing technique. Green-JEXJ con-
sists of five modules JEXNCT, JCUTE, Speed Calculator,
JouleMeter, and Energy Consumption Calculator. Our pro-
posed tool spreads the awareness of energy consumption of
an improved concolic testing.

The rest of the paper is organized as follows: Section 2
discusses some of the fundamental ideas required to under-
stand the proposed approach. Section 3 explains the proposed

Fig. 2. Green computing concept

Green-JEXJ tool. In Section 4, we present the experimental
result. In Section 5, we compare our work with some of the
existing related work. Section 6 concludes with some insights
into our future work.

II. FUNDAMENTAL IDEAS

In this section, we discuss some basic concepts and im-
portant terminologies that we use in our proposed approach.
Green Computing is a major concept which can be able to
change the whole digital life. There are many tools, plans, and
techniques present for reducing the power consumption but
recycling and reusability are major issues that can be solved
with the awareness of end users and with the intelligence of
developers. To reduce the consumption of power, virtualiza-
tion, power management techniques, and cooling systems are
used. Many tips, plan, tools and technologies are used for
the purpose of Green Computing [9]. The Green Computing
concept is shown in Fig. 2.

Definition 1: Green Use: It is a concept, which reduces
the power consumption of computer system and use them in
environmentally sound manner.

Definition 2: Green Disposal: It deals with recycle and reuse
of computer waste.

Definition 3: Green Design: It deals with reducing haz-
ardous material production.

Definition 4: Green Manufacturing: It deals with manufac-
turing computers and other sub parts with minimal impact on
environment.

It is very important to understand some terms on the path
to the evolution of Green Software. These terms are defined
below:

Definition 5: Green IT: Green IT is the study and practice
of designing, manufacturing, using and disposing IT related
hardware products in an efficient sustainable way with minimal
or even no impact on the environment [14].

Definition 6: Green Software Engineering: Green Software
Engineering is the attempt to apply “green principles” known
from hardware products, also on software products, software
development processes and their underlying software process
models [14].

Definition 7: Sustainable Software: Sustainable Software is
the software whose direct and indirect negative impacts on
economy, society, human beings, and environment that result
from development, deployment, and usage of the software

are minimal and/or which has a positive effect on sustainable
development [14].

Definition 8: Energy Consumption: The power readings de-
fine energy consumption recorded with respect to timestamps.
The total energy consumption for the entire run may be simply
obtained by summing up the power values measured in Watts
for the duration of interest. Since each value is the power use
of one second, the sum is the energy consumption in Joules
[6].

We need to understand the concept of software testing
technique that we are using.

Definition 9: Branch Coverage: For achieving branch cov-
erage, each decision should take all possible outcomes at least
once either true or false. For example: If(m > n), then there
are maximum four test cases. These test cases are: 1) m==n,
2) m!=n, 3) m >n, and 4) m<n.

Definition 10: CONCOLIC Testing: Concolic testing is a
crossover methodology to programming verification that con-
solidates Symbolic Execution. It deals with program variables
as far as the typical variable for more Concrete Execution,
running the program on specific inputs. In this procedure, rest
of the system is controlled by introducing standard variables
with irregular data and the path condition is achieved alongside
regular execution done on the path acquired. New paths are
guided by the past paths by flipping or nullifying the last
condition seen [4].

III. PROPOSED TOOL GREEN-JEX]

To spread the awareness of energy consumption for soft-
ware testing techniques, we introduced a tool called Green-
JEXJ. It may be noted that alone JEXJ module is used
to compute branch coverage of Java programs. An power
computational tool i.e. JouleMeter has been integrated with
JEXJ. So, finally by merging both the modules we obtain
Green-JEXJ. The Green by JEXJ concept pursues the objective
of reducing the environmental effects in other fields through
software engineering and software testing solutions. In safety
critical systems such as Nuclear and Aerospace systems,
both coverage based testing and energy consumption analysis
are necessary. We developed a Java Exclusive-NOR Code
Transformer (JEXNCT) to enhance the branch coverage and
include it in Green-JEXJ. We have used Java Concolic Unit
Test Engine(JCUTE) tool as dynamic symbolic execution tool
that has resolved issues such as unavailability of library code
and shortcomings of concolic engines. To measure power con-
sumption and energy consumption, we incorporate JouleMeter
[6] in Green-JEXJ. We name our framework Green-JEXJ that
stands for Green JEXNCT JCUTE.

A. Description of Green-JEXJ

Figure 3 presents the schematic representation of Green-
JEXJ tool. Green-JEXJ is the hybrid version of energy
consumption and coverage based software testing tech-
niques. Green-JEXJ consists of followings modules: 1) Java
Exclusive-NOR Code Transformer (JEXNCT), 2) Java Con-
colic Unit Testing Engine (JCUTE), 3) Speed Calculator, 4)
JouleMeter, and 5) Energy Consumption Calculator.

— _.ah_%i

consumption

Detailed Power Metering

Energy Consumption
(Joules)

Fig. 3. Schematic representation of Green-JEXJ

The flow starts with JouleMeter. It tracks the testing process
and saves the power consumption over the period of time inter-
est in an excel sheet. Initially, JEX]J is executed after supplying
a Java program as an input to the JEXNCT. JEXNCT is a code
transformer that accepts the target Java program and produces
the transformed version of the Java program. JEXNCT consists
of two steps: Predicate Identification, and Insertion of empty
nested if-else expressions using Exclusive-NOR operation.
Putting the original Java program with the generated con-
ditional expressions is termed as the transformed program.
Then, this transformed version of Java program is supplied into
JCUTE (a concolic tester) to automatically generate test cases
and provide branch coverage percentage. We record the total
execution time (JEXNCT + JCUTE). Then, Speed Calculator
for Test data generation is executed to compute the speed
of test case generation. Hence, speed shows the number of
test cases generated per minute. After performing this testing
process we stop recording JEXJ tool. JouleMeter saved all
the values in excel sheet. Since, JouleMeter does not provide
energy consumption in Joules, we have developed our energy
consumption calculator and plugged into JouleMeter. Energy
Consumption Calculator browses the above excel sheet and
retrieves timestamps along with total power consumed by the
JEXJ tool. Finally, Energy Consumption Calculator produces
the total energy consumed during the testing process in Joules.

In Green-JEXIJ, two modules i.e. JCUTE and JouleMeter
are open source tools and are easily installable. To achieve
high Branch Coverage, JEXNCT is plugged into JCUTE. We
have developed JEXNCT using Java language to handle Java
programs. Since, JCUTE is not capable to measure speed of
test case generation, therefore we have developed Speed Cal-
culator that computes the speed of test case generation process.
We have used JouleMeter to compute Power Consumption. We
have developed a Energy Consumption Calculator and plugged
into JouleMeter to produce total energy consumption in Joules
as shown in Figure 3.

-

((Go6) 88 (<50 |1 (@80
if((x>70)" | >45) && (z<6
OO0 8 eSSy e aeesen
if((x>700) && (y>450) && (z<890))
T R0y 88 (y<5)) 11 58
if((x>70) || ((y>45) && (2<6)))
if((x>700) & (y>450) && (z<890))
if((x>70) || ((y>45) && (2<6)))

Time Taken 2:

|}vADuta B Besra,D P Mohapatra @NIT Rourkela

o
Green-JEX) I Catorotion] L) Without Code Transform o ¥
3
Wer Fle_Edn_Format View Help
JEXNCT) 2
Display Parameters Transformed Java ICUTE | || seecrTaetre [peansprogaspoLiauesretesisconaton s 33'2
Program o ‘;i
55555 —
Additional if-else using Dis — ;i
. & - rediate Hented: o
EXNOR Operation | e entted . 53
Non-Predicate Identfiec: view
Predicate Identification \ Eeons Line number of Predicate entfled: View
o
Speed umberofCoses :
Save o
\energ
JoutE Caloutator
[
i y - - = mm
JOULEMETER Excel file consist of Consumption —
- . total time and power Calculator
In-situ Power Model Learning por

Fig. 4. Number of predicates identified

S =

BICIC |
I i
-

L= scuTe (cuTe for Javar A Concolic uni Tesing &

[[w]

(o o Tostod
B

@

e — o o]

3

Pl

[rojecta il

e] |
| e

Function 1o be Iested [tests.conartion.man

B [Tostng Lo | Output | Swtstes |
Suminary of Bugs Found

e —

Lotal number of crroncous cxccution patns:
Number of execution patns violating JCUIE assertion
Number of dcadiocked exocution patns

Number of execution patns throwing an Exception
Number of exec

aving data racos

o
0| | total tuncuons mvokea pjll| ==

o | | Totaibrancnes coverea a2

o | | Percentage of brancnes coverea a7.5%

o | | Total numper or oxecution patns 20

0| | Total runtime in miliseconds aess | (|

o | S—
alang String[)> |

Coverage Summary

Progress

Patns Coverea

total Progress [

JEXNCT
Selct Taget et | dsPDLyauerctstslandton || Browss |
R
Precicte dentfec: 0 view
Hor-Predicate dentiec: view
Line number of Predicate dentrid: view
Transfomed versin of Targt Fe: [view
jouTe Calcator
Timer: 1 Reset | 2302
Developed by: S. Godboley A Dutta B Besra D P Mohapatra @NIT Ro.

Fle Bt Fomat View Hep
ll backage tests;
import cute.Cute;
public class_condition {

public static void main(string [Jargs) {

int x, y, z;
System.out.printIn("Enter three no. ");
X = Cute.input.Integer();
y = Cute.input.Integer();
z = Cute.input.Integer();

(1 (y<5))

e
else if(1(x>6)){}

}
if((x>6))

F(y<sN{r
else if(1(y<5){}

2{(!(»6)‘ [1(y<5))

(@81
else if(1(z>8)){}
1008 & G 11 @)

Fig. 6. Transformed version of Java program

2 CUTE (CUTE or JAVAY: A Concole Uit Tesing Engin fo Java " EEToX

i3

Java Program to be Tested
[

% |nEe e

POLycutelstc

WainJavaFle |

oL el

JEXN

Fctontobe Tosted[escondonman

[~ roram prametrs

[Testing Log | Output | Statistcs.

Select Target Fle: | csiPDLycutd| - Summary of Bugs Found

Total number of eroneous execution paths :

Number of deadocked execution paths
Number of execution paths throwing an Excep
Number of execution aths having data-races
Number o fields having race :

Number o distnct exceptons thrown :

Predicate Identiied:

Non-Predicate Identifed:

Line number of Predicate dentfied: Coverage Details

Number of execution paths vioating CUTE assertion

tion:

Coverage Summary

Total functions invoked : 1
Total branches covered 191
Percentage of branches covered: 8232%
Total number of execation paths 1000
Total runtime in miliseconds 234400

Transformed verson of Target Fie:

icuTE

ol Progress
Resel
Paths Covered

100011000 Branches Covered

191/ Branch Coverage | 8232% Errors 0 DFSfo it

Total Progress [

Fig. 7. Execution of jCUTE for transformed program

] [/ Speed Catculator

p
public void testl()
| = public void test2(;
public void test3(;

I For Test Data Generation Bublic void tescd(
CPU public void test5(.
Moo ||| 5286t the fe generated by SoUTE contaning test cases: public void tests(

)]
g
public void testLBE
¢
¢
C
1
9

Speed Calculator

e [IPDLYests condiion main Testiava| | Browse public void test27
ase | public void test28
Totak I public void test46
Total Execution Time (i sec): 2362 I public void test96

public void test24.
public void test24!
public void test472
I public void test814

Test Cases Datected: 1 view

Speed of Test Cases:

Calculate

0056900084

Developed by: S Goaboley,ADuts B Besra D P Hohapatia @NIT Rourkela

Without using code transformer ENERGY CONSUMPTION CALCULATOR

Start Execution for the orgralprogam: ‘Selct Transformed Fie:

Speed 1: 019208237
sProscsDLEnercongitin2 sy | Bowse

] [Bowse
w00 Total ime (ms) : Tias0

| R

T Taken 1 12

1065002 ST 4075000

Using java EX-NOR code transformer

26318 20905406

Refresh ™
Run un)

0056200084

Strt Secution or the transforned progea: Speed 2:

Tie Taken2: 26362
225670 ek -
Difference in Total Tme (ms): po Lo o st

013908228 Difference n Power Consumption(watt) : 0130002

1239200000000001 Difference in Energy Consumption (joules): 28537221

Developed by S Godboley ADuta B.8esra D P Honapas@T Ro.

Deelope . Gedboley ADuta 8 Besra DP Mohapatia GNIT Rourela

Fig. 9. Final output of JEXJ tool and Energy Consumption calculator

B. Proposed steps for the Green-JEXJ tool

In this section, we discuss the proposed experimental
steps to execute Green-JEXJ. Here, we demonstrate the steps
through Graphical User Interface (GUI) of Green-JEXI.
These steps are as follows:

Step 1: Execute Power Consumption tool i.e. JouleMeter
and set Component Power Usage (Watts). Since, we want to
track a software testing tool, so enter the Application Name
according to the task manager process tab. Browse a file to
save power data and save with a suitable name. Now, start
saving the power consumption values by tracking the process
that is to be performed.

Step 2: Execute JEXJ tool to perform the testing process.
In our testing technique, we need to execute the tool two
times. First execution will be without using code transformer
(WCT) and second will be with using Java EX-NOR Code
Transformer (JEXNCT). Now start execution for the original
program, by pressing the ‘Run’ button.

Step 3: Now to the “WCT’ window will appear. Browse
the file to select a target program and click ‘Run” button to
get parameters such as Predicates Identified, Non-Predicates
identified, Line Numbers of predicates identified, Number of
predicates identified, Number of classes, and Lines of codes
etc. as shown in Figure 4. Press ‘view’ button to view the
identified predicate as shown in Figure 4.

Step 4: To execute JCUTE tool, press the button labeled
”JCUTE”. Browse the source directory, Main Java file and

execute the process to get all the statistics such as Branches
Covered, Path covered, Branch Coverage% etc., as shown in
Figure 5.

Step 5: Execute the Speed Calculator to measure total speed
of test data generation.

Step 6: Stop saving the Power Consumption values for first
experiment and browse new file to start saving for second
experiment.

Step 7: Now, we perform steps with Java Exclusive-NOR
Code Transformer (JEXNCT). Press ”Run” button on JEXJ
tool for JEXNCT module. Window of JEXNCT will get
opened.

Step 8: Browse the transformed program and press ‘run’
button to get predicates identified, non-predicates, line
numbers, and transformed version of the target program as
shown in Figure 6. To view the transformed program, press
‘view’ button as shown in Figure 6.

Step 9: Press ”JCUTE” button to execute JCUTE (a concolic
tester) to perform concolic testing. Through, jCUTE, we
measure the Branch Coverage percentage as shown in Figure
7. In this step, input file will be the transformed one.

Step 10: Execute Speed Calculator for measuring the speed
of the test data generation process. Browse test cases file to
measure total number of test cases found as shown in Figure
8.

Step 11: Press “Refresh” button to display final values in
JEXI tool. We can observe the difference of time and speed
of both the experiments as shown in Figure 9.

Step 12: Stop saving power consumption values for second
experiment and execute energy consumption calculator.
Browse excel files generated from JouleMeter for both the
experiments and hit run buttons to compute and display the
final output values as shown in Figure 9.

IV. EXPERIMENTAL STUDY

In this section, we describe our experimentation on three
sample Java programs. We have taken this sample programs
from Open System Labrotory [15]. We have already mentioned
that our Green-JEXJ tool is the combination of JEXNCT,
JCUTE, Speed Calculator, JouleMeter, and Energy Consump-
tion Calculator. JCUTE and JouleMeter are open source tool,
and easily installable. We have developed JEXNCT, Speed
Calculator, Energy Consumption Calculator and plugged to
JCUTE and JouleMeter. All modules are developed in Java
language and able to handle Java programs. We have set "Man-
ual Power Model” by providing Base(Idle) power(watts)=65,
Processor peak power(high frequency)=35, Processor peak
power(low frequency)=10, and Monitor power=50 in JouleMe-
ter.

Since, we are interested to compute power consumption of
JEXJ tool, therefore we ignored all the power consumption

TABLE I
CHARACTERISTICS OF JAVA PROGRAMS

SL. No. | Program Name | LOC | LOC’ | Predicates | Function | Classes | BC | BC’ | Path | Path’ | Error | Error’
1 CAssume.java 64 154 8 1 1 30 | 98 | 384 99 3 4
2 Demo.java 56 76 2 1 11 | 28 70 80 77 80
3 weight.java 79 159 6 1 1 28 | 124 | 10 63 0 0
TABLE II
OUTPUTS ON EXECUTION OF JEXJ TOOL
SI. No. | Program Nmae | TC | TC' | Time | Time’ | Speed | Speed’ | BC% BC%' | diff_Time | diff_Speed | diff BC%
1 CAssume.java | 13 14 | 32698 | 122.79 | 2.382 6.84 | 66.21% | 83.33% | -204.19 4.458 17.12%
2 Demo.java 4 6 48.22 | 63.31 4974 5.64 87.5% | 91.66% 15.09 0.666 4.16%
3 Weight.java 9 14 16.8 5446 | 32.142 | 1542 | 87.5% | 88.57% 37.66 -16.722 1.07%
TABLE III
OUTPUTS ON EXECUTION OF ENERGY CONSUMPTION CALCULATOR
SI. No. | Program Name | TT(ms) | TT'(ms) | PC(Watt) | PC’(Watt) | EC(Joules) | EC'(Joules) | diff TT | diff PC | _ diff_EC
1 CAssume.java | 614529 | 271144 4422 156.5 271744.724 | 42434.036 | -343385 | -285.70 | -229310.6900
2 Demo.java 114641 | 141025 17.3 9.5 1983.2894 | 1339.7375 26384 -7.8 -643.5519
3 weight.java 60924 | 240398 17.7 13.3 1078.3549 3197.2934 | 179474 -4.4 2118.9395

of hardware components. We have measured only power
consumption of our testing tool through JouleMeter.

Table I shows the different characteristics of the programs
considered for experimentation. Columns 3 and 4 shows the
size of program in Lines of code. The prime (") symbol shows
the experimental values for the transformed programs. In our
experiment, LOCs vary from 56 to 159. Column 5 deals with
predicates identified in the programs. Columns 6 and 7 show
the Functions invoked and Number of classes present in the
programs respectively. Branches Covered, BC and BC’ are
shown in Columns 8 and 9 respectively. Columns 10 and
11 deal with total number of paths covered. Columns 12 and
13 show the Errors detected for the original and transformed
programs respectively.

Table II shows the outputs on execution of JEXJ tool.
Columns 3 and 4 deal with the number of Test Cases(TCs)
generated. Please observe that the value of test cases are
increased for transformed programs as compared to original
programs. Columns 5 and 6 show the time of execution
Without Code transformer (WCT) and with Java EXNOR
Code Transformer (JEXNCT) respectively. The time is mea-
sured in seconds. Speed Calculator is developed to measure
speed of test case generation. Columns 7 and 8 show the
values of speed of test cases generated, measured in # of
TCs generated per minute. Column 9 and 10 present Branch
Coverage percentages, BC% and BC'% respectively. Column
11 shows the difference between Time and Time'. Please
note that, if difference value is ’-ve”, then it shows that our
transformation technique takes less time. Column 12 shows
the difference between speed and speed’. Please note that, if
difference value is ”-ve”, then it shows that our transformation
technique is slower as compared to original one. Column
13 shows the difference between BC% and BC’'%. Here, we
achieved increase in BC% for all the three programs.

Table III shows the output on execution of JouleMeter and
Energy Consumption Calculator. Column 3 shows the total
time spent to execute the testing process Without using Code
Transformer (WCT) in milliseconds. Column 4 shows the
total time spent to execute the testing process using Java EX-
NOR Code Transformer (JEXNCT), in milliseconds. Columns
5 and 6 show the total Power Consumption of original and
transformed Java programs respectively. Power Consumption
is measured in watt. Columns 7 and 8 deal with total energy
consumption for the original and transformed Java programs
in Joules respectively. Column 9 shows the difference of total
times. Please note that ‘-ve’ value shows that transformed
technique takes less time than that of the original technique.
Column 10 presents the difference of Power Consumptions
for original and transformed techniques. Please note that, ‘-
ve’ value shows that the transformed technique consumes
less power than original technique. Column 11 shows the
difference of total Energy Consumption between the original
and transformed techniques. Please note that ‘-ve’ value shows
that the transformed technique consumes less energy than that
of the original one.

Finally, we achieved 7.45% high Branch Coverage Percent-
age on an average for the three sample Java programs. We
consumed -75945.1008 Joules energy on an average for the
three programs on difference of energy consumption.

V. COMPARISON WITH RELATED WORK

In this section we compare our proposed work with some
existing related works.

Table IV summarizes the comparison of some related work.
We present the framework type developed and used by var-
ious authors shown in the third column of Table IV. Brief
description of various mentioned research work is provided in
the fourth column of Table IV. We can observe from Table

IV that authors listed in sl. no. 1 to 3 proposed their research
work based on power consumption and energy consumption.
These work help to spread awareness for GREEN IT and
GREEN Software Engineering. Authors listed in sl no. 4 and
5 explain about concolic testing and coverage based testing.
Last row of Table IV shows our proposed work. We have have
presented Green-JEXJ, which is based on Concolic Testing,
Branch Coverage, and Green Software Engineering. Green-
JEX]J helps to enhance awareness about the importance of
energy consumption in software testing.

Table V presents the comparison of different character-
istics of the existing approaches. These characteristics are
Test Cases, Coverage %, Time Constraints, Speed, Power
Consumption, and Energy Consumption, which present that
whether these parameters were considered or not in the re-
spective approaches. Among all existing works, only Ding
Li et al. [1] have done the analysis of energy consumption
for software testing. Please note that authors listed in sl. no.
2 and 3 proposed the work only for energy consumption
and power consumption. They have not focused on, software
testing technique. Again please note, the authors listed in sl.
no. 4 and 5 have only focused on software testing, since they
are unaware of Green IT and Green Software Engineering.
Last row in Table V shows our proposed work. We have done
our research on all the characteristic mentioned in Table V.
Our proposed work deals with software testing as well as
Green IT, and Green Software Engineering.

VI. CONCLUSION AND FUTURE WORK

We proposed a framework named Green-JEXJ to measure
the energy consumption of improved concolic testing. We
discussed Green-JEXJ along with Fundamental Ideas, the
block diagram of Green-JEXJ, and description in detail. We
have proposed experimental steps to execute Green-JEXJ. The
experimental results show that the proposed approach of test
case generation achieved better branch coverage in comparison
to the existing methods. Our proposed method achieved 7.45%
average increase in branch coverage for the three sample
programs. The average difference in energy consumption of
the three programs is -75945.1008 Joules(‘-ve’ shows that our
transformation approach is energy efficient).

In future, we will extend this work to measure energy
consumption of MC/DC testing method. Further, we also aim
to develop a distributed framework to increase the scalability
of our approach.

REFERENCES

[1] D. Li, C Sahin, J. Clause, and WGJ. Halfond. Energy-directed test suite
optimization. 2nd International Workshop on Green and Sustainable
Software (GREENS), pages 62-69, New York, USA, May 2013.

[2] N. Amsel and B. Tomlinson. Green tracker: a tool for estimating the
energy consumption of software. Proceedings of the 28th International
Conference on Human Factors in Computing Systems, CHI, pages 3337-
3342, Atlanta, Georgia, April 10-15 2010.

[3] M. Dick, E. Kern, J. Drangmeister, S. Naumann, and T. Johann.
Measurement and Rating of Software Induced Energy Consumption
of Desktop PCs and Servers. Envirolnfo 2011: Innovations in Sharing
Environmental Observations and Information, Shaker Verlag Aachen,
2011.

TABLE IV
COMPARISON OF DIFFERENT WORKS ON CONCOLIC AND COVERAGE
BASED TESTING

S.No Authors FrameWork Description
1 Liet EDTSO Based on encoding minimization problem
al. [1] as integer linear programming problem
2 Amsel et GreenTracker Estimates the Energy Consumption of software in order to help
al. [2] concerned uses make informed decision about the software they use
3 Dick et PM,WG.DAE How to measure the Energy
al. [3] Consumption of software
4 Godboley et | XNCT,CREST, Approach deals with concolic testing and MC/DC testing.
al.[13][8] CA EX-NCT uses Exclusive-NOR operation.
5 Sen et CUTE, Concolic Tool developed for
al. [4] JCUTE C and Java Programs
6 Proposed Work Green-JEXJ Spread the awareness on energy consumption
analysis on Software testing techniques

TABLE V
CHARACTERISTICS OF DIFFERENT APPROACHES ON CONCOLIC AND
COVERAGE BASED TESTING

SNo Authors Generated Test i D Computed Power | Computed Energy
Cases Coverage% | Time C i speed C i C i
1 Liet v v v X X v
al. [1]
2 Amsel et X X X X v v
al. [2]
3 Dick et X X X X v v
al. [3]
4 Godboley et v v X X X X
al.[13][8]
5 Sen et v v v X X X
al.[4]
6 Proposed Work v v v v v v
[4] Sen, Koushik and Agha, Gul. CUTE and jJCUTE: Concolic Unit Testing

and Explicit Path Model-Checking Tools (Tools Paper). DTIC Document

2006.

V. V. Kimbahune, A. V. Deshpande, and P. N. Mahalle. Green Engineer-

ing: Future Internet Perspective. Green Computing CSI Communication:

Knowledge Digest for IT Community Volume(39),Issue(5), pages 10-11.

August 2015.

JouleMeter:Computational Energy Measurement and Optimization.

http://research.microsoft.com/en-us/projects/joulemeter/.

K. Suryavasnhi, and S. Narkhede. Green ICT in higher Education: The

Next Frontier for sustainable growth. Green Computing CSI Communi-

cation: Knowledge Digest for IT Community Volume(39),Issue(5), pages

12-13. August 2015.

Sangharatna Godboley. Improved Modified Condition/ Decision Cov-

erage using Code Transformation Techniques. Thesis (MTech) NIT

Rourkela 2013.

S. Kuar, K. S. Dhindsa. Green Computing- Saving the environment with

Intelligent use of computing. Green Computing CSI Communication:

Knowledge Digest for IT Community Volume(39),Issue(5), pages 14-16.

August 2015.

[10] Sangharatna Godboley, and Durga Prasad Mohapatra. Time Analysis
of Evaluating Coverage Percentage for C Program using Advanced
Program Code Transformer 7 th CSI International Conference on
Software Engineering Pages 91-97, Nov 2013.

[11] V. K. Vishwakarma. Green Computing. Green Computing CSI Com-
munication: Knowledge Digest for IT Community Volume(39),Issue(5),
pages 18-19. August 2015.

[12] S. Godboley, G.S. Prashanth, D.P. Mohapatra, and B. Majhi. Increase in
Modified Condition/Decision Coverage using program code transformer.
IEEE 3rd International Advance Computing Conference (IACC) Pages
1400-1407, Feb 2013.

[13] S. Godboley, G.S. Prashanth, D.P. Mohapatra, and B. Majhi. Enhanced
modified condition/decision coverage using exclusive-nor code trans-
former. 2013 International Multi-Conference on Automation, Comput-
ing, Communication, Control and Compressed Sensing (iMac4s) pages
524-531, March 2013.

[14] S. K. Puri. The concept of Software Recycle. Green Comput-
ing CSI Communication: Knowledge Digest for IT Community Vol-
ume(39),Issue(5), pages 20-21. August 2015.

[15] Open System Labrotory. URL: http://osl.cs.illinois.edu/software/jcute/.

[5

=

[6

=

[7

—

[8

[t}

[9

—

