
Neuro – Genetic Approach for Predicting

Maintainability Using Chidamber and Kemerer
Software Metrics Suite

Lov Kumar and Santanu Ku. Rath

Dept. CS&E
NIT Rourkela, India

lovkumar505@gmail.com,

skrath@nitrkl.ac.in

Abstract. Accurate estimation of attributes such as effort, quality and
risk is of major concern in software life cycle. Majority of the approaches
available in literature for estimation are based on regression analysis and
neural network techniques. In this study, Chidamber and Kemerer soft-
ware metrics suite has been considered to provide requisite input data
to train the artificial intelligence models. Two artificial intelligence (AI)
techniques have been used for predicting maintainability viz., neural net-
work and neuro-genetic algorithm (a hybrid approach of neural network
and genetic algorithm). These techniques are applied for predicting main-
tainability on a case study i.e., Quality Evaluation System (QUES) and
User Interface System (UIMS). The performance was evaluated based
on the different performance parameters available in literature such as:
Mean Absolute Relative Error (MARE), Mean absolute error (MAE),
Root Mean Square Error (RMSE), and Standard Error of the Mean
(SEM) etc. It is observed that the hybrid approach utilizing Neuro-GA
achieved better result for predicting maintainability when compared with
that of neural network.

Keywords: Artificial neural network, CK metrics suite, Maintainabil-
ity, Genetic algorithm.

1 Introduction

Software quality is considered as one of the most important parameter of soft-
ware development process. Software quality attributes that have been identified
by ISO/IEC 9126 [7] are efficiency, functionality, maintainability, portability,
reliability and usability. In recent years, maintainability plays a high priority
role for achieving considerable success in software system and it is considered as
essential quality parameter. The ISO/IEC 9126 [7] standard defines maintain-
ability as the capability of the software product to be modified, including adap-
tation or improvements, corrections of the software to changes in environment
and in requirements and functional specifications. In this paper, Maintainability
is considered as the number of source of lines changed per class. A line change
can be an ‘addition’ or ‘deletion’ of lines of code in a class [9].

c© Springer International Publishing Switzerland 2015 31
H. Unger et al. (eds.), Recent Advances in Information and Communication Technology 2015,
Advances in Intelligent Systems and Computing 361, DOI: 10.1007/978-3-319-19024-2_4

32 L. Kumar and S.K. Rath

Some of the Object-Oriented software metrics available in literature are as
follows: Abreu MOOD metrics suite [1], Briand et al. [8], Halstead [6], Li and
Henry [9], McCabe [11], Lorenz and Kidd [10] and CK metrics [4] suite etc. In
this paper, CK metrics suite has been considered to provide requisite input data
to design the models for predicting maintainability using ANN with Gradient
descent learning method [2] and hybrid approach of ANN and genetic algorithm
i.e., Neuro-genetic (Neuro-GA) [3]. CK metrics suite is a six metrics set. The
important aspect of CK metrics suite is that it covers most of the feature of the
Object-Oriented software i.e, size, cohesion, coupling and inheritance. WMC
show size or complexity of class, DIT and NOC show the class hierarchy, CBO
and RFC show class coupling and LCOM show cohesion.

The remainder of the paper is organized as follows: Section 2 shows the re-
lated work in the field of software maintainability and Object-Oriented metrics.
Section 3 briefs about the methodologies used to predicting maintainability. Sec-
tion 4 emphasizes on mining of CK metrics values from data repository. Section
5 highlights on the results for effort estimation, achieved by applying ANN and
Neuro-GA techniques. Section 6 gives a note (comparison) on the performance of
the designed models based on the performance parameters. Section 8 concludes
the paper with scope for future work.

2 Related Work

It is observed in literature that software metrics are used in design of prediction
models which serve the purpose of computing the prediction rate in terms of
accuracy such as fault, effort, re-work and maintainability. In this paper, em-
phasis is given on work done on the use of software metrics for maintainability
prediction. Table 1 shows the summary of literature review done on Maintain-
ability, where it describes the applicability of numerous software metrics used
by various researchers and practitioners in designing their respective prediction
models. From table 1, it can be interpreted that many of the authors have used
statistical methods such as regression based analysis and their forms in predict-
ing the maintainability. But keen observation reveals that very less work has
been carried out on using neural network models for designing their respective
prediction models. Neural network models act as efficient predictors of depen-
dent and independent variables due to sophisticated modeling technique where
in they posses the ability to model complex functions. In this paper, two ar-
tificial intelligence techniques are applied to design the model to estimate the
maintainability of the software product using CK metrics suite.

3 Proposed Work for Predicting Maintainability

This section highlight on the use of artificial intelligence techniques (AI) such
as Artificial neural network (ANN) with Gradient descent learning method [2],
hybrid approach of Artificial neural network (ANN) and genetic algorithm i.e.,
Neuro-genetic (Neuro-GA) [3] for predicting maintainability.

Neuro – Genetic Approach for Predicting Maintainability 33

Table 1. Summary of Empirical Literature on Maintainability

Author Prediction technique

Li and Henry (1993) [9] Regression based models

Paul Oman (1994) et al. [13] Regression based models

Don Coleman (1994) et al.
[5]

Aggregate complexity measure, Factor analysis, Hier-
archical multidimensional assessment model, polyno-
mial regression models , principal components analy-
sis.

Scott L. Schneberger (1997)
[14]

Regression based models

Van Koten et al. (2006) [15] Bayesian Network, Backward Elimination and Step-
wise Selection, Regression Tree.

Yuming Zhou and Hareton
Leung (2007) [16]

Artificial neural network, Multivariate linear regres-
sion, Multivariate adaptive regression splines, Regres-
sion tree and Support vector regression

3.1 Artificial Neural Network (ANN) Model

ANN is used for solving problems such as classification and estimation [12]. In
this study, ANN is being used for predicting maintainability using CK metrics.

Input layer Hidden layer

Output layer

Fig. 1. Artificial neural network

Figure 1 shows the architecture of ANN, which contains three layers i.e., input
layer, hidden layer and output layer. Here, for input layer, linear activation
function is used and for hidden layer and output layer, sigmoidal function or
squashed-S function is used.

A neural network can be represented as:

Y ′ = f(W,X) (1)

where X is the input vector, Y
′
is the output vector, and W is the weight

vector.

Gradient Descent Learning Method. Gradient descent learning method is
one of the methods for updating the weights during learning phase [2]. It uses
first-order derivative of total error to find the minima in error space. Normally

34 L. Kumar and S.K. Rath

Gradient vector G is defined as the 1st order derivative of error function Ek, and
the error function is represented as:

G =
d

dW

(
Ek

)
=

d

dW

(1
2
(y′k − yk)

2
)

(2)

After obtaining the value of gradient vector G in each iteration, weighted
vector W is updated as:

Wk+1 = Wk − αGk (3)

where Wk+1 is the updated weight, Wk is the current weights, Gk is gradient
vector, α is the learning constant, y and y

′
are the actual and expected output

respectively.

3.2 Neuro-Genetic (Neuro-GA) Approach

Neuro-genetic (Neuro-GA) is a hybrid approach of ANN and genetic algorithm.
In Neuro-GA, genetic algorithm is used for updating the weight during learning
phase. A neural network with a configuration of ‘l-m-n’ is considered for estima-
tion. The number of weights N required for this network can be computed using
the following equation:

N = (l + n) ∗m (4)

with each weight (gene) being a real number and assuming the number of
digits (gene length) in weights to be d. The length of the chromosome L is
computed using the following equation:

L = N ∗ d = (l + n) ∗m ∗ d (5)

For determining the fitness value of each chromosome, weights are extracted
from each chromosome using the following equation:

Wk =

{
−xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2 if 0 <= xkd+1 < 5

+
xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2 if 5 <= xkd+1 <= 9
(6)

The fitness value of each chromosome is computed using following equation:

Fi =
1

Ei
=

1
√∑j=N

j=1 Ej

N

=
1

√∑j=N
j=1 Tji−Oji

N

(7)

where N is the total number of training data set. Tji and Oji are the estimated
and actual output of input instance j for chromosome i.

Neuro – Genetic Approach for Predicting Maintainability 35

Random
population
of ‘n’ chro-
mosomes is
generated

Weight
set is
ex-

tracted

Weight for
training the
network is
fed as input

Fitness
value is

computed
using

FITGEN()

Stopping
crite-
rion
met ?

Model is used
for testing

Yes

Min fitness
value chro-
mosome is
replaced
with Max

fitness value
chromo-
some

Two-point
cross over is
performed No

Fig. 2. Flow chart representing Neuro-GA execution

Figure 2 shows the block diagram for Neuro-GA approach. This block diagram
represents the steps followed to design the model using Neuro-GA approach.

4 Metrics Set and Empirical Data Extraction

Metrics suites are defined for different goals such as effort estimation, fault pre-
diction, re-usability and Maintainability. In this paper, CK metrics suite has
been considered for Maintainability estimation i.e., the number of lines changed
per class is considered as a criterion is determining the Maintainability. A line
change can be addition or deletion of code in a class. The CK metrics values
were extracted using Chidamber and Kemerer Java Metrics (CKJM) tool. This
tool extracts Object-Oriented metrics by processing the byte code of compiled
Java classes. Hence in this approach, Maintainability for a class is considered
as a dependent variable and each of the CK metrics is an independent variable.
In this analysis, we disregarded the CBO metric of the CK metrics suite for
computing maintainability as it measures non-inheritance related coupling” [9].
Maintainability is assumed to be a function of WMC, DIT, NOC, RFC and
LCOM. It is represented as:

Maintainability = Change = f(WMC,DIT,NOC,

RFC,LCOM)
(8)

4.1 Case Study

In this paper, to analyze the effectiveness of the proposed approach, two com-
mercial software products were used as case studies. Softwares such as Quality

36 L. Kumar and S.K. Rath

Table 2. Descriptive statistics of classes for UIMS and QUES

UIMS QUES

WMC NOC DIT RFC LCOM CHANGE WMC NOC DIT RFC LCOM CHANGE

Max. 69 8 4 101 31 289 83 0 4 156 33 217

Min. 0 0 0 2 1 2 1 0 0 17 3 6

Median 5 0 2 17 6 18 9 NA 2 40 5 52

Mean 2.15 11.38 0.94 23.20 7.48 46.82 14.95 0 1.91 54.38 9.18 62.18

Std Dev. 15.89 2.01 0.90 20.18 6.10 71.89 17.05 0 0.52 32.67 7.30 42.09

Evaluation System (QUES) and User Interface System (UIMS) are chosen for
computing the Maintainability using Neuro-GA and ANN approach. The soft-
wares systems viz., UIMS and QUES had 39 and 71 classes respectively. Table
2 shows the statistical analysis of UIMS and QUES for CK metrics indicating
Max, Min, Median and Standard deviation.

5 Results

In this section, the relationship between value of metrics and the maintainability
of class (changes in class). Six CK metrics are considered as input nodes and the
output is the computed maintainability. The number of hidden nodes vary from
six to thirty three. In this paper, 10-fold and 5-fold cross-validation concept has
been considered in QUES and UIMS for comparing the models i.e., each fold
contain nearly seven number of data samples. True error and estimate of true
error determine the suitable model to be chosen for predicting maintainability.
The most suitable number of hidden node in each fold is chosen on the basis
of minimum deviation between true error and the estimate of true error. The
number of hidden node in final model chosen for predicting maintainability is
based on the median values of the hidden nodes in their respective folds.

The following sub-sections give a brief implementation details of the applied
neural network techniques.

5.1 Artificial Neural Network (ANN) Model

In this paper, three layers of ANN are considered, in which five nodes act as input
nodes, the number of hidden nodes vary from six to thirty three and one node
acts as an output node. The network is trained using Gradient descent learning
method unless and until the neurons achieve the threshold value of ’MSE’ or
reach maximum iteration limit (of 2000 epochs). Table 3 shows the various
performance parameters which were used to evaluate the best suitable model to
be designed for maintainability estimation. From Table 3 it can be interpreted
that the high value of ‘r’ is indicate the pearson’s correlation between the actual
maintainability and estimated maintainability. Figure 3 shows the variance of
MSE vs Number of iterations.

Neuro – Genetic Approach for Predicting Maintainability 37

Table 3. Performance matrix

r Epochs MRE MARE SEM

UIMS 0.8624 578 0.1820 0. 6931 0.0391

QUES 0.8674 2000 0.1580 0.4384 0.0184

0 500 1000 1500 2000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iteration Number
MS

E

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration Number

MS
E

UIMS QUES

Fig. 3. MSE Vs No. of Iterations (epoch)

5.2 Neuro-Genetic (Neuro-GA) Approach

In this paper, 5-n-1 configuration of neural network is considered (5 numbers of
input neurons, n numbers of hidden neurons, 1 output neuron). The total number
of weights used in 5-n-1 configuration model are determined using equation 4
i.e., (5+1) ∗n = 6 ∗n (where ‘n’ represents the number of hidden nodes varying
from six to thirty three), each weight is considered as a gene of length 5, so the
length of one chromosome is calculated using equation 5 i.e., L=(5 + 1) * n * 5
= 30 * n.

In this study a population of size 50 is considered i.e., initially 50 chromo-
somes are randomly generated. The input-hidden layer and hidden-output layer
weights of the network are computed using equation 6. Two-point cross-over
operation is performed on the generated population. The execution of the algo-
rithm converges when 95% of the chromosomes achieve same fitness values or
reach maximum iteration limit (of 200 epochs).

Table 4 shows the various performance parameters which were used to evaluate
the best suitable model to be designed for maintainability estimation. From
Table 4 it can be interpreted that the high value of ‘r’ is indicate the pearson’s
correlation between the actual effort and estimated maintainability. Figure 4
shows the variance of number of chromosomes having same fitness value and
generation number of UIMS and QUES.

Table 4. Performance matrix

r Epochs MRE MARE SEM

UIMS 0.8108 76 0.1553 0.5331 0.0258

QUES 0.8227 74 0.1480 0.4180 0.0155

38 L. Kumar and S.K. Rath

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Generation No.

No
. o

f c
hro

mo
so

me
 ha

vin
g s

am
e f

itn
es

s v
alu

e

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Generation No.

No
. o

f c
hro

mo
so

me
 ha

vin
g s

am
e f

itn
es

s v
alu

e

UIMS QUES

Fig. 4. MSE Vs Generation No.

6 Comparison of Models

Figure 5 shows the Pearson residual boxplots for neural network and Neuro-
GA, allowing a visual comparison. The line in the middle of each box represents
the median of the Pearson residual. Of two analysis, Neuro-GA in both UIMS
and QUES has the narrowest box and the smallest whiskers, as well as the few
number of outliers. Based on these boxplots, it is evident that Neuro-GA gave
best estimation accuracy as compared to neural network with gradient descent
algorithm.

ANN Neuro−GA

−0.6

−0.4

−0.2

0

0.2

Pe
ar

so
n

Re
si

du
al

ANN Neuro−GA

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Pe
ar

so
n

Re
si

du
al

UIMS QUES

Fig. 5. Residual boxplot for UIMS and QUES

Apart from the comparative analysis done to find the suitable model which
can predict the best software maintainability, this paper also makes the com-
parison of the proposed work with the work done by Yuming Zhou et al. [16]
and Van Koten et al. [15]. Yuming Zhou et al. [16] and Van Koten et al. [15]
have used same dataset i.e., UIMS and QUES for predicting maintainability
based on different regression and neural network models . They have considered
‘MMRE’ as a performance parameter to compare the models designed for pre-
dicting maintainability of Object-Oriented software systems. Table 5 shows the
MMRE value of the proposed work and the work done by Yuming Zhou et al.
[16] and Van Koten et al. [15]. From Table 5, it can be observed that, in case of
QUES software MMRE value is almost same but in case of UIMS software, the
proposed approach obtained better prediction rate for maintainability.

Neuro – Genetic Approach for Predicting Maintainability 39

Table 5. Performance based on MMRE for UIMS and QUES

MMRE

Author Technique UIMS QUES

Van Koten et al.[15] Bayesian Network 0.972 0.452
Regression Tree 1.538 0.493
Backward Elimination 2.586 0.403
Stepwise Selection 2.473 0.392

Zhou et al. [16] Multivariate linear regression 2.70 0.42
Artificial neural network 1.95 0.59
Regression tree 4.95 0.58
SVR 1.68 0.43
MARS 1.86 0.32

ANN 0.6931 0.4384
Neuro-GA 0.5332 0.4180

7 Threats to Validity

Several issues affect the results of the experiment are:

– Two Object-Oriented systems, i.e., UIMS and QUES used in this study
are design in ADA language. The models design in this study are likely
to be valid for other Object-Oriented programing language, i.e., Java or
C++. further research can extend to design a model for other development
paradigms.

– In this study, only eleven set of software metrics are used to design a models.
Some of the metrics which are widely used for Object-Oriented software are
further considered for predicting maintainability.

– we only consider AI techniques for designing the prediction models to predict
maintainability. Further, we can extend the work to reduce the feature using
feature reduction techniques, i.e., PCA, RST, statistical test etc..

8 Conclusion

In this paper, an attempt has been made to use CK metrics suite in order to
estimate software maintainability using gradient descent and hybrid approach
of neural network and genetic algorithm. These approaches have the ability to
predict the output based on historical data. The CK metrics are considered as
input data to train the network and predicting software maintainability. The
results reveal that the hybrid approach of Neuro-GA prediction model obtained
low values of MAE, MARE, and RMSE when compared with those of gradient
descent prediction model.

Further, work can be replicated by using hybrid approach of neural network
and fuzzy logic. Also feature reduction techniques such as rough set and principal
component analysis can be applied to minimize the computational complexity
of the input data set.

40 L. Kumar and S.K. Rath

References

1. Abreu, F.B.E., Carapuca, R.: Object-oriented software engineering: Measuring and
controlling the development process. In: Proceedings of the 4th International Con-
ference on Software Quality, vol. 186 (1994)

2. Battiti, R.: First and second-order methods for learning between steepest descent
and newton’s method. Neural Computation 4(2), 141–166 (1992)

3. Burgess, C., Lefley, M.: Can genetic programming improve software effort estima-
tion. Information and Software Technology 43, 863–873 (2001)

4. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

5. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. IEEE Computer 27(8), 44–49 (1994)

6. Halstead, M.: Elements of Software Science. Elsevier Science, New York (1977)
7. Jung, H.W., Kim, S.G., Chung, C.S.: Measuring software product quality: A survey

of iso/iec 9126. IEEE Software 21(5), 88–92 (2004)
8. Briand, L.C., Wust, J., Daly, J.W., Porter, D.V.: Exploring the relationships be-

tween design measures and software quality in object-oriented systems. The Journal
of Systems and Software 51(3), 245–273 (2000)

9. Li, W., Henry, S.: Maintenance metrics for the object-oriented paradigm. In: Pro-
ceedings of First International Software Metrics Symposium, pp. 88–92 (1993)

10. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood
(1994)

11. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2(4), 308–320 (1976)

12. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)

13. Oman, P., Hagemeister, J.: Construction and testing of polynomials predicting
software maintainability. Journal of Systems and Software 24(3), 251–266 (1994)

14. Schneberger, S.L.: Distributed computing environments: effects on software main-
tenance difficulty. Journal of Systems and Software 37(2), 101–116 (1997)

15. Van Koten, C., Gray, A.: An application of bayesian network for predicting object-
oriented software maintainability. Information and Software Technology 48(1),
59–67 (2006)

16. Zhou,Y., Leung,H.:Predicting object-oriented softwaremaintainability usingmulti-
variate adaptive regression splines. Journal of Systems andSoftware 80(8), 1349–1361
(2007)

	Neuro – Genetic Approach for Predicting
Maintainability Using Chidamber and Kemerer
Software Metrics Suite

	1 Introduction
	2 Related Work
	3 Proposed Work for Predicting Maintainability
	3.1 Artificial Neural Network (ANN) Model
	3.2 Neuro-Genetic (Neuro-GA) Approach

	4 Metrics Set and Empirical Data Extraction
	4.1 Case Study

	5 Results
	5.1 Artificial Neural Network (ANN) Model
	5.2 Neuro-Genetic (Neuro-GA) Approach

	6 ComparisonofModels
	7 Threats to Validity
	8 Conclusion
	References

