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Abstract— In this paper, a two-stage control allocation based
covariance controller design method is proposed to ensure a
certain level of disturbance attenuation property for a class of
overactuated systems. The proposed method is equally efficient
as existing single-stage design technique for assigning a state or
output covariance matrix. A set of sufficient conditions has been
derived for which the actuator displacements in single-stage
technique and in the proposed allocation based method become
same. The design steps are formulated in the linear matrix in-
equality framework. In the presence of actuator saturation, the
allocation based method yields better closed-loop performance

compared to the single-stage design technique until the level of
actuator saturation remains under the attainable range of the
allocator. To elucidate the effectiveness of the proposed method,
two flight control design examples have been presented.

Index Terms—Covariance control, control allocation, distur-

bance attenuation, overactuated systems.

I. INTRODUCTION

Many safety-critical systems use redundant actuators to

improve system performance, reliability and reconfigurabil-

ity. To handle system redundancy efficiently, quite often a

two-stage control design method is adopted. In the first stage,

a controller is designed to generate a virtual command and

then the command is redistributed among healthy actuators

by an allocator. This method provides an effective platform

for handling actuator saturation and faulty situation. In allo-

cator based design, input matrix of a given state-space model

is factorized into two full rank matrices [1], [2]. The right one

is known as control effectiveness matrix and the left one is

called the input distribution matrix. The control effectiveness

matrix is used to design control allocator, whereas the latter

one is considered as input matrix for controller design. On

the contrary, in single-stage design technique, the actuator

command is generated by controller to meet closed-loop

objectives. This single-stage method is hence not capable of

utilizing the redundancy of the system as is done in two-stage

allocation based technique to tackle actuator saturation and

faulty situation. In this paper, we explore two-stage control

allocation based technique for disturbance attenuation prob-

lem for a class of overactuated systems, where it is shown

that the proposed control allocation based method is equally

efficient as single-stage technique to assign covariance matrix

but adds extra advantages while the actuators get saturated.
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In last few decades, the disturbance attenuation problem

has drawn much interest in different areas of control en-

gineering, e.g., in antenna movement [3], path following

objective of air vehicles [4], [5], systems with wind gust

disturbance [3], etc. In this work, we consider a class of

overactuated systems whose input state-space matrix can be

factorized into two full rank matrices. This type of systems

are found in aerospace applications [6], robotics, underwater

and ground vehicles [7], [8], [2], etc. The main results of

this paper are built on the concepts furnished in [9] and

[10]. It is shown that the closed-loop state covariance or

output covariance is a measure of disturbance attenuation of

a designed closed-loop system. This concept has widely been

used in a variety of control applications ([11], [12], [13] and

references therein). The covariance control provides a unified

framework for handling many other control and estimation

problems [10]. It is further worth noting that the closed-

loop state covariance matrix is related to the closed-loop

controllability gramian [9], [14], [10].

In this work, a sequence of design steps for two-stage

control allocation based method has been proposed for a

class of overactuated systems to achieve certain level of

disturbance attenuation property of the closed-loop system.

Disturbance considered is of wind gust type. Some compu-

tational complexities of the design have been circumvented

by imposing a bound on the covariance matrix instead

of assigning an exact one. The design is carried out in

the linear matrix inequality framework. A set of sufficient

conditions has also been derived to show that under a given

condition, the actuator displacements in two design methods

(i.e., the single-stage method and the proposed allocation

based method) are identical. The effectiveness of the design

approaches are demonstrated and compared by solving two

flight control examples. It is also shown that, in the presence

of actuator saturation, the closed-loop response is better in

allocator based approach compared to the method of [10].

Notation

Notation is standard. MT denotes the transpose of M .

Let M⊥ denote the matrix whose columns are the basis

vectors of the null space of M . Let R
n×m denote the set

of real matrices with dimension (n×m). Rn represents the

set of n-dimensional real vectors. ‖ · ‖ denotes the 2-norm.

M+ represents the Moore-Penrose pseudo inverse of M . I
represents the identity matrix. The state covariance X :=
lim
t→∞

E
[

x̄(t)x̄(t)T
]

, where E [·] represents the expectation.



II. PRELIMINARIES

This section presents some terminologies and preliminary

results which will streamline the main results of this paper.

Consider a stable linear time invariant (LTI) closed-loop

system
˙̄x = Acx̄+ Ecw̄, ȳ = Ccx̄ (1)

where x̄ ∈ R
n is the state vector, w̄ ∈ R

l is the exogenous

input vector and the output vector is ȳ ∈ R
m. The control-

lability gramian Xg of the above system is the solution to

the following Lyapunov equation [15]

AcXg +XgA
T
c + EcE

T
c = 0. (2)

Considering EcE
T
c ≥ 0 and using the Lyapunov lemma [15],

we have Xg = XT
g > 0 iff (Ac, Ec) is controllable. If

the exogenous signal covariance is W , the state covariance

matrix X is the solution to the following equation [9], [16]

AcX +XAT
c + EcWET

c = 0. (3)

This is worth noting that X = Xg when W = I . Thus

an assigned matrix X depends on the closed-loop system

matrix Ac that contains controller parameters to be designed.

Eq. (3) or, Eq. (2) with W = I plays an important role in

assigning state covariance, depicted later in Theorems 1 and

2, where controller design methods are given to assign a state

covariance for the closed-loop system.

The following lemma is instrumental for controller syn-

thesis to assign state covariance for a closed-loop system.

Lemma 1 ([10]): Given a symmetric matrix Ω and an

LTI continuous time system as in Eq. (1) where w̄ is the

stochastic white process noise with covariance I , then the

following statements are equivalent:

(i) The system is asymptotically stable, and the

output covariance is bounded above by Ω, i.e.,

lim
t→∞

E
[

ȳ(t)ȳ(t)T
]

< Ω.

(ii) There exists a matrix X > 0 such that

CcXCT
c < Ω, AcX +XAT

c + EcE
T
c < 0. 3

Note that the system considered in Eq. (1) is strictly

proper. When Cc = I , Ω in Lemma 1 becomes an upper

bound for both the state and output covariance matrices. The

second condition of Lemma 1 is key to controller synthesis.

Next we present the Finsler’s lemma [17], [18] which will

be required to interpret the results of Theorem 2.

Lemma 2 ([17], [18]): Let matrices B ∈ R
n×m and

Q ∈ R
n×n be given. Suppose rank (B) < n and Q =

QT . Let (Br, Bl) be any two full rank factors of B so

that B = BlBr, and define D :=
(

BrB
T
r

)−1/2
B+

l .

Then µBB
T − Q > 0 holds for some µ ∈ R iff

P := B
⊥QB

⊥T < 0 and µ is given by µ > µmin =
λmax

[

D
(

Q−QB
⊥P−1

B
⊥TQ

)

D
T
]

. 3

III. MAIN RESULTS

In this section, a systematic design procedure is proposed

for disturbance attenuation problem for a class of overactu-

ated systems with actuator saturation, where the input state-

space matrix is assumed to have the number of columns

more than the number of state variables. It is worth noting

that, with proper assumption, the input matrix for the above

class of overactuated systems can be factorized into two

full rank matrices [1] and by adopting control allocation

technique, an effective closed-loop system can be designed

in two steps. The control allocation based two-stage design

method can assign the same state covariance matrix that

can be assigned by the method of [10] and [14]. Thus, the

proposed control allocation based method is an alternative

technique for covariance control for overactuated systems.

Further in this paper it is emphasized that the above two

methods, i.e., the proposed one and the method of [10],

are comparable in terms of the closed-loop performance,

however, the control allocation based proposed method is

advantageous while the actuators get saturated.

We present below a brief overview of the covariance con-

trol and control allocation methods, which will be required

to establish main results of this section.

A. Covariance control

Let us consider the following system
˙̄x = Ax̄+Bū+ Ew̄, ȳ = Cx̄ (4)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n and E ∈ R

n×l are

respectively the system matrix, the input matrix, the output

matrix and the disturbance input matrix. We assume that the

system is completely state controllable and all the states are

available for feedback. We also assume that for closed-loop

control a stabilizing state feedback control law ū = Gx̄
is applied. Then the following theorem provides all state

covariance matrices that can be assigned by a set of static

stabilizing state feedback controllers.

Theorem 1 ( [10], [14]): Let the state covariance X ∈
R

n×n be a given positive definite matrix. Then the following

statements are equivalent for the system given in Eq. (4).

(i) There exists a static stabilizing state feedback control gain

G that assigns X for the closed-loop system.

(ii) X satisfies (I −BB+)
(

AX +XAT +W
)

(I −BB+)
= 0 and the set of controllers, which can assign state

covariance X , is given by G = − 1
2B

+
(

AX +XAT +W
)

(2I −BB+)X−1 +B+SfBB+X−1 +(2I −BB+)Zf

where Zf is arbitrary, Sf is an arbitrary skew-symmetric

matrix and W is the noise covariance matrix. 3

The proof of this theorem is given in [10]. The matrix

equality condition in Theorem 1 is not straightforward to

solve [10]. To circumvent this difficulty, the above result is

extended, presented in Theorem 2 below, where a covariance

matrix is assigned for a given upper bound with unity noise

covariance. In this paper, this result is further explored to

propose a control allocation based new covariance control

technique for overactuated systems.

Theorem 2 ( [10]): Consider the system given in Eq. (4)

and let a symmetric matrix Ω be given. Then the following

statements are equivalent:

(i) There exists a static stabilizing state feedback gain G
such that lim

t→∞
E
[

ȳ(t)ȳ(t)T
]

< Ω.

(ii) There exists a matrix X > 0 such that CXCT <
Ω, B⊥

(

AX +XAT + EE
)

B⊥T < 0.
(iii) There exist a scalar γ > 0 and a matrix Q > 0

such that a positive definite solution P > 0 to PA +



ATP + P
(

1
γ2EET −BBT

)

P + Q = 0 satisfying

γ2CP−1CT < Ω. In this case, all static stabilizing

state feedback gains are given by G = −BTP+LQ1/2

where L is an arbitrary matrix with ‖L‖ < 1. 3

Note that, the equivalence between the condition (i) and

conditions (ii) and (iii) is established by applying Lemma 1.

On the other hand, Lemma 2 shows the equivalence between

the condition (ii) and condition (iii). From condition (iii),

we have P = PT > 0 and γ > 0 such that ∃ Q =
QT > 0 satisfying A

(

γ2P−1
)

+
(

γ2P−1
)

AT + EET −
γ2BBT = −γ2P−1QP−1 ⇐⇒ ∃ P = PT > 0 and γ >
0 such that A

(

γ2P−1
)

+
(

γ2P−1
)

AT +EET −γ2BBT <
0.

Defining X =
(

γ2P−1
)

and β = γ2, the above inequality

becomes

AX +XAT + EET − βBBT < 0. (5)

Now applying Lemma 2, it is apparent that inequality (5)

along with the constraint C(γ2 P−1)CT < Ω hold, if and

only if, the condition (ii) of Theorem 2 is satisfied. Also

note that the inequality (5) is numerically tractable as it is

in the form of LMI constraint to find X and β in single

step to design a static stabilizing state feedback controller

for assigning a covariance matrix.

B. Allocator

We consider in this paper a sub-class of overactuated

systems whose input state-space matrix can be factorized into

two full rank matrices. A basic feedback control structure

for an overactuated system with allocator is shown in Fig.

1, where r̄ ∈ R
m is the reference command, v̄ ∈ R

m is the

virtual control input generated by the controller, ū ∈ R
p is

the actuator command generated by the allocator and ȳ ∈ R
m

is the output vector of the system. Let an LTI overactuated

system be given as

˙̄x = Ax̄+Bvv̄, ȳ = Cx̄, Buū = v̄. (6)

where A ∈ R
n×n is the system matrix, B ∈ R

n×p is the

input matrix, C ∈ R
m×n is the output matrix and p > m.

We assume that the pair (A, B) is controllable, and the input

matrix B can be factorized into two full rank matrices as

B = BvBu, where Bv has full column rank and Bu has

full row rank. After factorization, a stabilizing controller is

designed considering the input matrix as Bv. With the help

of the allocator, the output of the controller (i.e., the virtual

command) is then distributed among actuators maintaining

all physical limits.

G Allocator
x Ax Bu

y Cx

 !

 

 

-
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v u yr

Fig. 1: A schematic block diagram for an overactuated

system with allocator

An allocator solves the following optimization problem.

min
ū

‖ūT ū‖
subject to Buū = v̄, and ūmin ≤ ū ≤ ūmax,

(7)

where Bu is the control effectiveness matrix and ūmin/max

are actuator limits. If the condition Buū = v̄ holds, the

open-loop system dynamics is governed by Eq. (6). Note that

the full rank factorization B = BvBu ensures the complete

state controllability of the pair (A, Bv). Different numerical

algorithms to solve Eq. (7) are available in [2], [19]. In

the following subsection, systematic design procedures are

presented for disturbance attenuation problem using the

control allocation based approach and the method of [10].

C. Covariance controller design for overactuated systems

Using the conditions of Theorem 2, new design methods

are proposed for the overactuated system given in Eq. (4).

Suppose the state-space matrices A, B, C, E and a

bound for covariance matrix Ω are given. Suppose further

that (A,B) is controllable and B = BvBu is a full rank

factorization.

Design 1 (using the method of [10]):

Step 1: Find β > 0 and X > 0 by solving the feasible

problem with following LMI constraints

βBBT −AX−XAT −EET > 0, CXCT < Ω. (8)

Step 2: Calculate P = βX−1 and Q =
β−1P

(

βBBT −AX −XAT − EET
)

P .

Step 3: Choose a matrix L such that ‖L‖ < 1.

Step 4: G1 = −BTP + LQ1/2.

Step 5: The actuator command is ū1 = G1x̄.

Design 2 (using control allocation method):

Step 1 Factorize B = BvBu, where Bv has full column

rank and Bu has full row rank.

Steps 2–4: Follow Step 1 to Step 3 of Design 1 replacing

B with Bv .

Step 5: G2 = −BT
v P + LQ1/2.

Step 6: v̄2 = G2x̄ and v̄2 = Buū2, where v̄2 and ū2 are

allocator and actuator commands respectively. 3

We now compare the effectiveness of Design 1 and

Design 2 for covariance assignment. It will be shown in

this section that both the design methods can assign same

covariance matrix. However, the allocation based method is

more efficient than the other to tackle actuator saturation

and faulty situation. It is worth noting that in Design 2,

a stabilizing controller is designed by considering Bv as

input matrix while Design 1 considers the input matrix B
for controller design. We now propose the main results of

the paper.

Proposition 1: Consider the system given in Eq. (4).

Suppose (A,B) is controllable and B = BvBu is a full rank

factorization. Then there exist static stabilizing state feedback

controllers G1 and G2, which can assign same closed-loop

state and output covariances via Design 1 and Design 2,

respectively.

Proof: First we prove that assigned state covariances are

same for both the design methods. If Bv has full column

rank and Bu has full row rank, then the pseudo inverse

(BvBu)
+ = B+

u B
+
v , and for a full row rank matrix Bu,

B+
u = BT

u (BuB
T
u )

−1 and BuB
+
u = I . Using these relation-

ships, from Theorem 1 we have (I −BB+) = (I −BvB
+
v )



for both the methods. Therefore from Theorem 1, assignable

state covariances are same, and consequently the output

covariances are also equal as C is identical for both the

methods.

On the other hand, since Bu has full row rank, the basis

vectors of left null space of Bv and B are same, i.e.,

B⊥
v = B⊥. Now using condition (ii) of Theorem 2, state

covariances obtained are same for both the methods since

they satisfy the same set of LMI constraints. The output

covariances are also equal as C is identical for both the

methods. Hence the proof is completed. �

Remark: Considering Design 1 and Design 2, it is ap-

parent from Proposition 1 that the assigned state covariance

matrix X becomes same in two methods but the values

of γ =
√
β are different. From Theorem 2, it is worth

noting that the upper bound for covariance is independent

of the choice of matrix L and hence, one can choose L as

null matrix but it affects the performance of the closed-loop

system.

Note that, although the disturbance rejection properties

are same in both the approaches, the actuator displacement

(assumed to be same as actuator command) may not be

same. To ensure this, designed controller needs to be re-

tuned by setting a new value to the free variables γ and L,

presented next in Proposition 2. Now if the control inputs get

saturated due to actuator constraints, the control allocation

based covariance control method (Design 2) avoids actua-

tor saturation by redistributing attainable control command

among healthy actuators and thereby the closed-loop nominal

performance can be retained; however, for the same level of

control input, Design 1 loses closed-loop performance owing

to the effect of saturation.

Proposition 2: Consider the system given in Eq. (4).

Suppose (A,B) is controllable, B = BvBu is a full rank

factorization, and actuator commands ū1 and ū2 are obtained

from Design 1 and Design 2 respectively. Then the following

statements hold.

(a) Suppose γ2 and a static stabilizing state feedback con-

troller G2 are obtained by considering L2 = 0 from Design 2

to assign a state covariance X . Then there exists a static sta-

bilizing state feedback controller G1 that generates actuator

command ū1 = ū2 and assigns the same state covariance X
if ∃ β1 > 0 such that the following LMI is satisfied:

[

−β1I
(

BTβ1 −B+
u BT

v γ
2
2

)

(

BTβ1 −B+
u BT

v γ
2
2

)T
−Φ1

]

< 0, (9)

where Φ1 = β1BBT −AX −XAT − EET .

(b) Suppose γ1 and a static stabilizing state feedback con-

troller G1 are obtained by considering L1 = 0 from Design 1

to assign a state covariance X . Then there exists a static sta-

bilizing state feedback controller G2 that produces actuator

command ū2 = ū1 and assigns the same state covariance X
if ∃ β2 > 0 such that the following LMI is satisfied:
[ −β2I

(

BT
v β2 − (BuB

T
u )B

T
v γ

2
1

)

(

BT
v β2 − (BuB

T
u )B

T
v γ

2
1

)T −Φ2

]

< 0

(10)
where Φ2 = β2BvB

T
v −AX −XAT − EET . 3

Proof: (a) In this proof, variables related to Design 1

and Design 2 are respectively denoted by the subscripts 1
and 2. Suppose Design 2 is followed with L2 = 0 and

we have a static stabilizing controller G2 = −BT
v P2 and

v̄2 = −BT
v P2x̄. Replacing v̄2 in the solution of the opti-

mization problem (7), we get ū2 = B+
u v̄2 = −B+

u B
T
v P2x̄.

Suppose another controller is obtained for the same state-

space matrices by following the steps of Design 1 where an

arbitrary L1 is chosen with ‖L1‖ < 1. Then we have G1 =
(

−BTP1 + L1Q
1/2
1

)

and ū1 =
(

−BTP1 + L1Q
1/2
1

)

x̄.

Since B = BvBu is a full rank factorization via supposition,

from Proposition 1 it is inferred that the assigned disturbance

covariance matrix X is same in both the cases. Now if

−B+
u B

T
v P2 = −BTP1+L1Q

1/2
1 we have ū2 = ū1. From the

equality condition we get L1 =
(

BTP1 −B+
u B

T
v P2

)

Q
−1/2
1 .

Now ‖L1‖ < 1 ⇐⇒ L1L
T
1 < I . Defining P1 = γ2

1X
−1,

P2 = γ2
2X

−1, X−1Q−1
1 X−1 =

(

γ2
1Φ1

)−1
, γ2

1 = β1, and

using Schur complement lemma, the condition L1L
T
1 < I is

equivalent to (9). Since (9) implies (8), by solving (9) as a

feasible problem one gets a covariance matrix X that is same

as in Design 2. Hence the proof of part (a) is completed.

(b) Suppose G1 = −BTP1 is obtained from Design 1

considering L1 = 0. Using the same state-space matrices

G2 =
(

−BT
v P2 + L2Q

1/2
2

)

is another controller obtained

from Design 2 where ‖L2‖ < 1. Now if B+
u G2 = G1, we

have ū2 = ū1. Since BuB
+
u = I , the condition ‖L2‖ < 1

is equivalent to (10), obtained by defining γ2
2 = β2 and

following the same line of proof given in part (a). Since

(10) implies (8), solving (10) as a feasible problem one gets

a covariance matrix X that is same as obtained in Design 1.

Hence the proof of part (b) is completed. �

In part (a) of Proposition 2, G2 is obtained using Design 2

with L2 = 0. In order to impose additional constraint

ū1 = ū2, Step 1 of Design 1 is modified by replacing

the constraint (8) with (9). Then following Step 2, P1 and

Q1 are calculated. From Step 4, G1 is calculated with

L1 =
(

BTP1 −B+
u BT

v P2

)

Q
−1/2
1 , where P2 is the matrix

obtained from Design 2.

In part (b) of Proposition 2, G1 is obtained using Design 1

with L1 = 0. To satisfy the constraints ū2 = ū1, Step

2 of Design 2 is modified by replacing the constraint

(8) with (10). Then following Step 3, P2 and Q2 are

calculated. From Step 5, G2 is calculated with L2 =
(

BT
v P2 −

(

BuB
T
u

)

BT
v P1

)

Q
−1/2
2 , where P1 is obtained

from Design 1.

Results developed in this section are applicable only in the

linear zone of actuators. In the next subsection, we briefly

explain how an allocator helps to operate the closed-loop

system in the linear zone of actuators when some of them

reach saturation limit.

D. Consideration of actuator saturation

A high control effort demands larger actuator displace-

ment. But due to presence of position limits of the actuators,

they may get saturated. The actuator saturation problem

is explicitly taken care of by the allocator in a two-stage



allocation based method. When the virtual command (from

the controller) v̄ is large, the actuator command, obtained

as ū = B+
u v̄, may reach or cross position limit of some

actuators. Then a new command ū is generated to meet (6) by

minimizing another objective function ‖Buū− v̄‖ along with

the objective given in (7). As long as the virtual command

is attainable, v̄ = Buū, i.e., the virtual command driving the

system is unaltered, the closed-loop system is in linear zone

of actuators. The nominal performance of the controller is

retained. But actuator commands generated via Design 1 and

Design 2 are not equal, i.e., ū1 6= ū2. When virtual command

is unattainable, the system operates outside the linear zone.

So in the presence of an allocator the linear operating zone is

effectively increased. In the next section, through examples,

we show that an allocator helps a system to retain its closed-

loop performance without significant alteration.

IV. SIMULATION RESULTS

In this section, two numerical examples have been pre-

sented to demonstrate the effectiveness of the proposed

method, especially the performance of the designed con-

trollers while actuators get saturated. In the first example,

ADMIRE model [1] is considered, and a Satellite Launch

Vehicle model [20] is taken up in the second example.

In simulation studies, a scalar wind gust disturbance is

considered, and so the disturbance input matrix E is a

single-column matrix. Here results are compared considering

following three cases— Case 1: Plant model without actuator

saturation and with controller G1; Case 2: Plant model

with actuator saturation and with controller G2 where the

allocation algorithm follows Eq. (7); Case 3: Plant model

with actuator saturation and with controller G1.

Example 1: The ADMIRE model describes a small single

engine fighter with delta-canard configuration. The parame-

ters of the model are for Mach 0.22, at altitude 3000 m. The

linearized aircraft model is considered neglecting the actuator

dynamics. In this work, the control surfaces are viewed as

pure moment generators, and their influence on the rate of

change of angle of attack and the rate of change of sideslip

angle are neglected.

The approximate models for Designs 1 and 2 are given

by Eq. (4). Here the components of v̄ are the angular

accelerations in roll, pitch and yaw produced by the control

surfaces. The system matrices other than E are given in [1].

Output covariance values obtained for different disturbance

input matrices (E) are listed in Table I. We assume the

TABLE I: Covariance bound obtained in ADMIRE system

for Design 1 and Design 2

ET λmax (Ω) λmax

(

CXCT

)

Design 2 Design 1

[0, 1, 0, 1, 0] 25 20.40 20.40
[1, 1, 1, 1, 0] 25 20.55 20.55

angle of attack commands of 5◦ and 0.2◦ are applied at

t = 0 s and t = 2 s, respectively. Sideslip angle is kept zero,

and a roll rate command of 10◦/s is applied at t = 3 s. It

is shown in Figs. 2 and 3 that the actuator command, as

well as the output, with two different designs are same. This

result indicates that the relation established in Proposition

2 is correct. Further, a step disturbance of amplitude 2.5
(considering E = [1, 1, 1, 1, 0]

T
) is applied at t = 3.5 s

for the duration of 0.01 s, and it is observed that Actuator-2
reaches saturation. Due to the disturbance, it is shown in Fig.

2 that roll rate, for Design 1, deviates more from the response

of the system without saturation. But in the presence of the

allocator (in Design 2) the deviation is small. It is seen in

Fig. 3 that Actuators-1, 3 and 4 are used by the allocator to

nullify the saturation effect as much as possible.
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Fig. 2: Output response of closed-loop ADMIRE system

models.
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Fig. 3: Actuator responses of closed-loop ADMIRE system

models.

Example 2 : A Satellite Launch Vehicle (SLV) model with

eight actuators is considered in this example. Eight actua-

tors control four thrusters. The linearized model neglecting

actuator dynamics is described by Eq. (4). The system

matrices except E are given in [20]. Output covariance

values obtained for different disturbance input matrices (E)

are listed in Table II. The pitch, yaw and roll command
of 1.5◦, 1.5◦ and 0.5◦ are applied at t = 0 s, 0.02 s and

0.1 s, respectively. Since there is no saturation in actuators,

output and actuator responses are same for both the designs

up to t = 2 s as shown in Figs. 4 and 5. This result is as



TABLE II: Covariance bound obtained in SLV system for

Design 1 and Design 2

ET λmax (Ω) λmax

(

CXCT

)

Design 2 Design 1

[0, 1, 0, 1, 0, 1] 25 14.58 14.58
[1, 1, 1, 1, 1, 1] 25 19.25 19.25

expected from Proposition 2. At t = 2 s, a disturbance of

amplitude 0.3 is applied for the duration of 0.1 s. Assume

E = [1, 1, 1, 1, 1, 1]
T

. When the disturbance appears,

Actuators-1 and 3 get saturated. Now the system with alloca-

tor based method nullify the effect as much as possible using

rest of the actuators. As a result, the output response of the

allocator based method (Design 2) is less affected compared

to the output of the system obtained using Design 1. This is

shown in Fig. 4.
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Fig. 4: Output response of closed-loop SLV system models.
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Fig. 5: Actuator response of closed-loop SLV system.

V. CONCLUSIONS

In this paper, a sequence of design steps is proposed

for covariance control using the control allocation based

technique for a class of overactuated systems. It has been

shown that the allocator based method (Design 2) can assign

same covariance matrix as obtained by the existing methods

of [10] and [14]. The allocator based method (Design 2) is

successfully applied to two flight control examples. Condi-

tions are also derived for which the same control command

can be generated by two methods, i.e., the allocator based

method (Design 2) and the method of [10] (Design 1). Simu-

lation results show that in the presence of actuator saturation,

Design 2 outperforms Design 1.
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