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Abstract—The Load balancing problem on Heterogeneous
Distributed Computing System (HDCS) deals with allocation of
tasks to compute nodes, so that computing nodes are evenly
loaded. Dynamic load balancing problem to assign tasks on HDCS
is presented as a linear programming problem to minimize the
makespan. Different greedy resource allocation algorithms are
presented for load balancing on HDCS with tasks as Expected
Time to Compute(ETC) matrix. The relative performance of the
four heuristic algorithms under different circumstances has been
simulated on two different HDCS using in house simulator. The
simulation results show that the greedy based scheduling policy
has the significant impact on the system heterogeneity.

Keywords—Expected time to compute, greedy algorithm, het-
erogeneous distributed system, load balancing, makespan.

I. INTRODUCTION

Heterogeneous Distributed Computing platforms are
widely used to process various jobs from different field of
scientific applications. The potential of distributed computing
system is relates to the management and allocation of com-
puting resources relative to the computational load of the sys-
tem [1][2][3][4]. The popular distributed computing platform
includes clusters, the grid, service-oriented architecture, mas-
sively parallel processors, pear-to-pear networking, and cloud
computing. These computational environments are consisting
of multiple heterogeneous computing modules, these modules
interact with each other to solve the problem. Balancing the
computing loads among the computing nodes in a HDCS are
carried out by the central server that assigns the jobs to the
nodes, so as to optimize the makespan. Load balancing has
been studied by various researchers as a problem to mini-
mize the makespan [2][3][5][6]. The different techniques and
methodologies for scheduling processes of a distributed system
are task assignment, load-balancing, or load-sharing [1]. In
HDCS, jobs encounter different execution times on different
processors. Therefore, research should address scheduling in
heterogeneous environment as the load balancing problem,
that computes the assigned task with the smallest possible
makespan. In this paper the load balancing problem is pre-
sented as minimization problem, to minimize the makespan
of n tasks on m computing nodes [2][7]. The problem of
finding an assignment of minimum makespan is NP-hard [7].
The algorithm approaches used for load balancing problem

are roughly classified as (i) exact algorithms,(ii) heuristic
algorithms,and (iii) approximation algorithm [8]. The solution
to dynamic load balancing problem in this paper has been
discussed with heuristic approach under greedy algorithm
paradigm.

The selection of load balancing algorithm mostly depends
on the set of system parameters such as (i) system size,
(ii) system load, (iii) system traffic intensity [1]. In dynamic
resource allocation scenarios the responsibility for making
global scheduling decisions are lying with one centralized
scheduler, or be shared by multiple distributed schedulers
[9]. Hence dynamic load balancing algorithms can be further
classified into a centralized approach and a decentralized
approach. Dandamudi [10] has presented a study on impact
of heterogeneity and variance in inter-arrival time in HDCS
with two different arrival rate of the tasks to central scheduler.
A centralized approach [2], [11] one node in the distributed
system acts as the central controller and responsible for task
allocation to other computing nodes. Casavant and Kuhl [12]
have characterized the structure and behavior of decision-
making policies, in particular referring to the load sharing
policies considering performance and efficiency.

Dynamic load balancing algorithm based on task classifica-
tion has been presented by Wang et al.[13]. Centralized static
resource allocation algorithms has been studied extensively
in [6], [14] using heuristics. Gopal et al. [4] presented a
simulation study for four load balancing algorithm on het-
erogeneous distributed system with the central job dispatcher.
Izakian et al. [15] have presented an efficient heuristic method
for scheduling independent tasks on heterogeneous distributed
environment and compare with five popular heuristics for
minimizing the makespan. In HDCS the load balancing is a
job scheduling policy which takes a job as a whole and assign
it to the computing node [1]. The rest of the paper is organized
as follows. Section 2 defines the system model of Heteroge-
neous distributed computing system model, task model and
the load-balancing problem. Section 3 presents the different
greedy algorithms and their applicability to solve dynamic load
balancing problem. Simulation results are presented in Section
4. Conclusions and directions for future research are discussed
in Section 5.



II. SYSTEM MODEL FOR DYNAMIC LOAD DISTRIBUTION

A. Centralized system model for HDCS

The scheduling problem in HDCS aims to maintain a
balanced execution of tasks while using the computational
resources with computing node. Dynamic resource allocation
in HDCS can be possible through centralized or decentral-
ized control. A centralized dynamic load balancing algorithm
operates based on the load information from another com-
puting node and can realize through a centrally controlled
HDCS. A centralized model of HDCS consists of a set
of M = {M1,M2, ...,Mm}, m independent heterogeneous,
uniquely addressable computing nodes, with one node acts as
the resource manager. The single computing node that acts
as a central scheduler or resource manager of the system is
responsible for collecting the global load information of other
computing nodes and allocate the task among the computing
nodes. The centralized HDCS can be modeled as, M/M/m
(Markovian arrivals, Markovian distributed service times, m
computing nodes as a server, and with infinite buffer for
incoming task) multi-server queuing system. Allocation of a
task to the computing nodes are equally probable and can
be assigned by the central scheduler independently [16]. It
is assumed that if all the computing nodes are busy the task
will keep waiting in the waiting queue with central scheduler
which is of infinite length.

B. Task or work load model

The work load submitted to the HDCS is assumed to
be in the form of tasks. Depending on dynamic scheduling
approach, the tasks are submitted either to the central scheduler
or submitted to different computing nodes independently. For
different domains of computer science the exact meaning
varies greatly. Terms such as application, task, sub task, job and
program is used to denote the same object in some instances,
and yet, have totally different meanings in others. We have
assumed the task as the computational unit to execute on the
computing nodes of HDCS.

A task in HDCS is an independent scheduling entity and
its execution cannot be preempted. The tasks are independent
and can be executed on any node. Formally, each arriving
task ti is associate with an arrival time and expected time
to compute on different computing node. Let T be the set
of task, T = {t1, t2, ..., tn}. Each task ti, has an expected
time to compute on node Mj , and dented as tij . Considering
heterogeneity of system, tasks are characterized by Expected
Time to Compute(ETC) matrix, where all m computing nodes
can be represented in the first row. In ETC matrix, the elements
along a row indicate the execution time of a given task
on different nodes [17]; in particular tij represent expected
time to compute ith task on machine Mj . If the HDCS has
m computing nodes, then they can be represented by ETC
matrix. Hence a program with n task can be represented as
a n × m ETC matrix on m computing node. Hence ETC
matrix can be used to study dynamic load balancing problem
in HDCS. Because there are no dependency among the tasks,
load balancing schemes is simplified, and mostly focuses on
efficient matching of tasks to the computing nodes [14]. It is
assumed that the size of the meta-task is the number of tasks
to be executed on HDCS and denoted as |T | = n.

The ETC model presented in [17] are with three parameters
(i) machine heterogeneity, (ii) task heterogeneity and (iii)
consistency. The task heterogeneity can be represented with
two categories (i) consistent and (ii) inconsistent. A consistent
ETC matrix can be obtained by arranging the computing nodes
in order of their processing capability or may be arranged as
decreasing order of FLOPS. In particular a node Mi has a
lower execution time than node Mj for task tk , then tki < tkj
. The Inconsistent ETC matrix is resulted in practice, when
HDCS includes different type of machine architectures such
as high performance computing clusters, multi-core processor
based workstations, parallel computers, work station with
GPU units. In literature, most of the researchers used the
task execution times as uniformly distributed [17]. In this
paper, we have used Inconsistent ETC matrix to study the
performance of Greedy Load Balancing algorithms in HDCS.

C. Dynamic Load balancing as linear programming prob-
lem(LPP)

Dynamic load balancing problem to assign n tasks on
HDCS with m computing nodes can be represented as a
optimization problem to minimize the makespan. The task
to be executed on HDCS are represented by the ETC matrix
[17]. Let A(j) be the set of task assigned to node Mj ; and Tj

be the total time machine Mj have to work to finish all the
task in A(j). Hence Tj =

∑
ti∈A(j) tij ; for all task in A(j).

This is otherwise denoted as Lj and defined as load on node
Mj . The basic objective of load balancing is to minimize the
makespan, which is defined as maximum loads on any node
(T = maxj:1:mTj). Let xij correspond to each pair (i, j) of
node Mj ∈M and task ti ∈ T such that

xij = 0; when the task i not assign to node Mj . (1)

or

xij = tij ; when the load of task i on node Mj . (2)

For each task ti, we need
∑m

j=1 xij = tij ;for all task ti ∈ T .

The load on node Mj can be represented as Lj =
∑m

j=1 xij ,
where xij is defined in Equations 1 and 2. The load balanc-
ing problem aims to find an assignment that minimizes the
maximum load. Let L be the load of HDCS with m nodes.
Hence the generalized load balancing problem on HDCS can
be formulated as

MinimizeL =
m∑

j=1

xij = tij , ∀ ti ∈ T (3)

subjected to:
n∑

j=1

xij ≤ L, ∀Mj ∈M (4)

where xij ∈ {0, tij}, ∀ti ∈ T, andMj ∈M

xij = 0, ∀ ti /∈ A(j)

The objective Function 3 maps each possible solution of
the load balancing problem to some non-negative value, and
an optimal solution to the optimization problem is one that



minimizes the value of this objective function. Feasible as-
signments are one-to-one correspondence with xij satisfying
the constraints in Equation 4. Hence an optimal solution to
this problem is the load Lj on a node, also denoted as
corresponding assignment A(j). For n tasks to be assigned
to m computing node, the number of possible allocation will
be mn and the number of states for execution will be n!, hence
intractable with number tasks or computing nodes exceeds a
few units [7].

III. GREEDY HEURISTIC ALGORITHMS FOR LOAD

BALANCING

A. Greedy load balancing algorithm

All heuristic algorithms for load balancing discussed in
this paper follows the simple Greedy-Balance algorithm frame-
work, discussed by Kleinberg and Tardos [7] to suggest a
generalized greedy load balancing algorithm for HDCS. The
proposed algorithms operates with the ETC matrix and arrival
time for each task, to allocate the task to computing node for
load balancing. The arrival time of the task to be recorded
in a priority queue HAT (MaxTask). The priority queue
HAT (MaxTask) has been implemented as min-heap, records
the order at which the tasks are arriving at central scheduler.
The min-heap can be created with time complexity©(log n).
The task with earliest arrival time selected and assigned to the
machine with minimum load. The assumption made to design
the greedy algorithm is that ”initial load of computing nodes
are zero”. The greedy Algorithm 1 is designed to obtain an
optimal task assignment by assigning the n tasks in stages,
one task per stage in non-decreasing order of task arrival time.
The greedy load balancing algorithm operates by initializing
set of task A(j) and the total time to finish the task Tj for
every node Mj . The Algorithm 1 can be implemented with
time complexity ©(n log n). The Algorithm 1 successfully
terminates with task queue becomes empty. The selection of
computing node is based upon greedy criterion : assign the
task to the node with minimum Tj . The algorithm computes
makespan for the set of task having MaxTask number of
tasks.

Algorithm 1 Greedy load balancing algorithm

with priority queue

Require: ETC(MaxTask,MaxNode), HAT (MaxTask) :
task Queue

Ensure: L : makespan
1: Lj ←− 0 forall node Mj

2: A(j)←− φ forall node Mj , Let φ be the empty set
3: repeat
4: Let Mj be a node with minimum Tj

5: Let ti be the task on root of the min-heap HAT
6: Allocate task ti to Node Mj

7: A(j)←− A(j) ∪ {ti}
8: Lj ←− Lj + tij
9: Remove task ti from min-heap HAT

10: until HAT is not empty
11: L←− maxjLj

Objective of dynamic load balancing algorithm to allocate
the tasks on the fly as the tasks are queued with the central

scheduler with Poission arrival. A fixed batch size denoted
as WinSize and defined as the number of tasks selected
from a batch for allocation. As there are too many tasks
waiting with central scheduler to be allocated, the scheduling
heuristics only apply to the tasks that are within the batch.
Once one batch of tasks are allocated to the computing nodes,
the next batch of task is selected from the task queue for
allocation. The Algorithm 1 can modify to Algorithm 2 with
MaxTask = WinSize to facilitate batch mode resource
allocation. The Algorithm 2 can be called n

WinSize
times in

batch mode to allocate n tasks dynamically to m computing
node. For simplicity it is assumed that MaxTask, is positive
integer multiple of WinSize. The Algorithm 2 is initiated first
time with following initiation:

Lj ←− 0 for all node Mj

A(j)←− φ for all node Mj

The makespan can be obtained after n
WinSize

steps as
L = maxjLj . Heuristic and meta-heuristic algorithms are

Algorithm 2 Greedy load balancing for batch

job with priority queue

Require: T,A,ETC(WinSize,MaxNode), HAT (WinSize) :
task Queue

1: repeat
2: Let Mj be a node with minimum Lj

3: Let ti be the task on root of the min-heap HAT
4: Allocate task ti to Node Mj

5: A(j)←− A(j) ∪ {ti}
6: Lj ←− Lj + tij
7: Remove task ti from min-heap HAT
8: until HAT is not empty

the effective technology for scheduling in HDCS due to their
ability to deliver high quality solutions in reasonable time. The
dynamic load balancing algorithm using batch mode heuristic
MINMIN and MINMAX operates by selecting fixed small
number that fits to the task window on each iteration. The
MINMIN and MINMAX operates for the fixed number of
iteration to assign n tasks to the computing nodes.

B. First-Come, First-Served (FCFS) heuristic

The FCFS heuristic is a very simple and most common
resource allocation heuristic are being used by various re-
searchers to study task scheduling in distributed system[2],
[10], [14]. This is a non-preemptive scheduling policy that
schedules tasks in the order of their arrival to the central
scheduler. The FCFS Algorithm 3 is applied to the load
balancing problem discussed in Section II-C. A min-heap is
created to maintain the order of the task as per their time
of arrival to the system and represented as HAT . The load
status of the computing node Mj is represented as CLj . Every
iteration assigns the task with least arrival time to a computing
node Mj with CLj = Null in HDCS.

C. Randomized algorithm

The randomized algorithm used in this paper is a Monte
Carlo algorithm as it runs for a fixed number of steps equal
to the maximum number of tasks to be assigned. The result



Algorithm 3 FCFS

Require: T : set of task,M : set of node, ETC :
expected time to compute,HAT : task Queue

Ensure: A : Allocation List, L : makespan
1: Lj ←− 0 for all node Mj

2: A(j)←− φ for all node Mj

3: repeat
4: let ti is the task at root of min-heap HAT
5: allocate←− false
6: repeat
7: for j = 1 to MaxNode do
8: if CLj = Null then
9: Allocate task ti to Node Mj

10: Remove task ti from min-heap HAT
11: A(j)←− A(j) ∪ {ti}
12: Lj ←− Lj + tij
13: allocate←− true
14: end if
15: end for
16: until allocate = false
17: until HAT is not empty
18: L←− maxjLj

produced by randomized algorithm are not optimal, but char-
acterized by some probability to represent the average case,
hence are used to compare the performance of another deter-
ministic algorithms. The details of the randomized resource
allocation algorithm are shown in Algorithm 4. Each iteration
select the task from the root of min-heap HAT and allocates
to a randomly selected computing node. The time complexity
of Algorithm 4 is an ©(n) to assign n tasks to m computing
node.

Algorithm 4 Random

Require: T : set of task,M : set of node, ETC :
expected time to compute,HAT : task queue

Ensure: A : Allocation List, L : makespan
1: Lj ←− 0 for all node Mj

2: A(j)←− φ for all node Mj

3: repeat
4: let ti is the task at root of min-heap HAT
5: let Mj be a node selected at random
6: allocate task ti to Node Mj

7: A(j)←− A(j) ∪ {ti}
8: Lj ←− Lj + tij
9: remove task ti from min-heap HAT

10: until HAT is not empty
11: L←− maxjLj

D. MINMIN algorithm

The MINMIN algorithm is a dynamic task allocation algo-
rithm on HDCS operates in batch mode, and realized through
discrete event simulation. Min-Min heuristics use the ETC
matrix to compute completion time for n number of tasks. Al-
gorithm 5 represents heuristic algorithm for HDCS and named
as MINMIN. This algorithm considers all the unmapped tasks
during each allocation decision but maps only one task at a

time. Every allocation of task to the computing node is fol-
lowed by update of expected completion time of all unallocated
tasks. Let the task tk is having minimum expected completion
time on node Ml, i.e. Ckl = min (Ck1, Ck2, · · · , Ckm).
Algorithm 5 allocates the task tk to the computing node Ml

as the task tk is having minimum expected completion time
with node Ml. The makespan is computed after the complete
allocation of all tasks as L = maxjLj .

Algorithm 5 MINMIN

Require: T : set of task,M : set of node, ETC :
expected time to compute

Ensure: A : Allocation List, L : makespan
1: for all task ti in meta-task T do
2: for all machine Mj in M do
3: Cij ←− tij + Lj

4: end for
5: end for
6: repeat
7: for all task ti in T do
8: find the task with minimum completion time. Let tk

be the task with minimum completion time on node
Ml

9: end for
10: assign task tk to node Ml

11: update load of node Ml as Ll ←− Ll + tkl
12: update Cil for all unallocated task
13: Remove task tk from task list T
14: until T is not empty
15: L←− maxjLj

E. MINMAX algorithm

This algorithm is different from common Max-min al-
gorithm defined in [14]. The Algorithm 6 is composed of
two steps. The algorithm operates on the batch of task and
their respective ETC matrix. The algorithm computes the
completion time for all the tasks on HDCS. The first step is
the selection of task with minimum completion time in HDCS
with m node, Let tk be the task with minimum completion time
on node Ml. The first step is the same as MINMIN algorithm.
The second step decides the allocation of task to a computing
node, which can be decided as follows:

• If
tkf
tkl
≥ Ckl then allocate the task tk to node Mf

• else assign the task tk to node Ml.

IV. RESULTS AND DISCUSSION

We have conducted extensive simulation with the in house
simulator designed by us using Matlab, that uses M/M/m
queuing model to simulate the task arrival with heterogeneous
computing nodes. The tasks are arriving with a rate λ to the
central server queue. We consider only 500 task for these
experiments, that uses inconsistent task model as suggested in
[17] on a HDCS with 60 nodes. We have consider two types
of heterogeneous system, where the HDCS are characterized
by the service rate of the computing nodes. The two types of
system used to study the impact of heterogeneity are: Type
I: The first system model includes half of the computing
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Fig. 1. Makespan with number of tasks in type-I system with slow arrival
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Fig. 2. Makespan with number of tasks in type-I system with medium arrival
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Fig. 3. Makespan with number of tasks in type-I system with fast arrival
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Fig. 4. Makespan with number of tasks in type-II system with slow arrival
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Fig. 5. Makespan with number of tasks in type-II system with medium arrival
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Fig. 6. Makespan with number of tasks in type-II system with fast arrival



Algorithm 6 MINMAX

Require: T : set of task,M : set of node, ETC :
expected time to compute,HTA : taskqueue

Ensure: A : Allocation List, L : makespan
1: for all task ti in meta-task T do
2: for all machine Mj in M do
3: Cij ←− tij + Lj

4: end for
5: end for
6: for all task ti in T do
7: find the task with minimum completion time, Let tk be

the task with minimum completion time on node Ml

8: end for
9: repeat

10: if
tkf
tkl
≥ Ckl then

11: assign task tk to node Mf

12: update load of node Mf

13: update Cif for all i
14: else
15: assign task tk to node Ml

16: update load of node Ml

17: update Cil for all i
18: end if
19: Remove task ti from task list T
20: until T is not empty
21: L←− maxjLj

nodes are homogeneous and other half of the computing
nodes are heterogeneous with different service rate, and Type
II: The second system model includes the computing nodes
with different service rate. The system was evaluated with
slow, medium and fast load. The arrival rate of tasks are
assumed to be 10, 20 and 30 for slow, medium, and fast
arrival respectively. We have used the inconsistent ETC matrix
to study the impact of heterogeneity in HDCS [17]. The
impact on the inconsistent tasks arrived rate with Poisson
distribution are shown in Figures 1, 2 and 3. The MINMIN
heuristic performs better with more number of tasks in the
system at a particular time instant. The results obtained also
indicates that FCFS and Randomized algorithms exhibit similar
performance on allocating the tasks using inconsistent task
model. Simulation results on the HDCS with heterogeneous
computing nodes are shown in Figures 4, 5 and 6. These
simulation results clearly indicates the better performance of
MINMIN algorithm. Moreover in three alternatives both FCFS
and Randomized algorithms exhibit similar performance in
terms of makespan. It also indicates highest makespan, average
makespan and minimum makespan value against varying task.

V. CONCLUSION

The dynamic load balancing problem is modeled as an
minimization problem. Load balancing is being performed
during runtime at various stages to keep the workload balance
on computing nodes of a HDCS. Simulation experiment were
conducted to examine the performance of greedy resource
allocation algorithms against makespan to study the task and
node heterogeneity in HDCS by considering three different
arrival rate for the tasks. It is observed that batch mode
heuristics makes better decision, because these heuristics have

the resource requirement information for the meta-task. It
is also observed that the performance of greedy scheduling
algorithm is also affected by the rate of heterogeneity of the
tasks and number of computing nodes.
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