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Abstract—The range resolution of RADAR signal depends
on the bandwidth of the signal. Linear Frequency Modulation
(LFM) signal is used in RADAR because of its good range
resolution. The range resolution can be further improved by
introducing a frequency step between consecutive LFM pulses.
The resultant signal is known as Stepped Frequency Pulse Train
(SFPT). When the product of pulse duration and frequency step
become more than one, the Autocorrelation Function (ACF) of
SFPT shows ambiguous peaks, known as grating lobes. These
grating lobes along with sidelobes present in the vicinity of the
mainlobe are not desirable. In literatures, there are analytical
methods available to find the parameter of SFPT for completely
nullify or suppress these grating lobes to a desired level but
not much attention is given to sidelobes. In this paper, we
use a Multi-Objective Optimization Technique (Multi-Objective
Particle Swarm Optimization (MOPSO)) to find the optimized
parameter of SFPT. The problem was formulated by taking the
objective of minimization of grating lobe and minimization of
peak sidelobe. The efficacy of the proposed method is shown
through exhaustive simulation results.

Keywords—Frequency stepped pulse train, Grating lobe sup-
pression, Multi-objective optimization, RADAR signal processing,
Sidelobe suppression

I. INTRODUCTION

IN RADAR, for high range resolution we required signal
with high bandwidth. Generation of such type of signal

increase the overall cost and system complexity. The conven-
tional hardware used in RADAR may not be able to sustain
this instantaneous large amount of bandwidth. To overcome
this limitation, wide-band signal is splitted into narrow-band
signals. The narrow-band signals are transmitted and received
separately and added coherently at receiver end to get the
effect of the wide-band signal. Such type of signal is known
as Stepped Frequency Pulse Train (SFPT) or Synthetic Wide-
band Waveform (SWW) or Frequency Jumped Train (FJT).

A SFPT of N pulses, each of duration tp and pulse repetition
frequency tr is shown in Fig. 1. Each pulse has a bandwidth B
and the frequency step between pulses is ∆f . The advantage
of using SFPT is that the duration between pulses can be used
to adjust the center frequency of other narrow-band pulses. The
matched filter response of SFPT suffers from ambiguous peaks
known as grating lobes when the product of pulse duration
and frequency step become more than one (tp∆f > 1). These
grating lobes along with sidelobes present in the vicinity of
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the mainlobe are undesirable and can hide the small target or
can cause a false alarm detection.

Different methods are given in literatures to nullify grating
lobes or to suppress it to an acceptable level. In [1], [2]
the pulse width is varied to reduce the grating lobes but
varying pulse width destroys the periodicity of the pulse
train. In [3] the energy of pulse train is distributed non-
uniformly over the desired frequency band to get lower range
sidelobes, higher range resolution and reduced grating lobe
but spectral weighting applied for non-uniform distribution of
energy, introduces additional losses in sensitivity. Levanon and
Mozeson [4] have proposed an analytical technique to establish
a relation between the parameter of SFPT. The grating lobes
are nullified by placing the null of the Autocorrelation Function
(ACF) of single LFM pulse exactly at the location of grating
lobe. In this approach number of pulses N has to be large for
a significant increase in bandwidth. In [5] the grating lobes
are reduced to an acceptable level by forcing the amplitude
of ACF of a single frequency LFM pulse below a predefined
level at the location of grating lobe. The above mentioned
approach does not suppress range sidelobe that occur near
the mainlobe of matched filter response to SFPT. Non-Linear
Frequency Modulated (NLFM) is used instead of LFM pulse
for suppression of range sidelobe but NLFM waveforms are
not Doppler tolerant. A Multi-Objective Optimization (MOO)
technique (Nondominated Sorting Genetic Algorithm (NSGA-
II) [6]) is used by Sahoo and Panda [7] to find the parameter
of SFPT for sidelobes and grating lobes suppression. The
complexity of the algorithm is O

(
MN2

)
, where M is the

number of objective function and N is the population size. In
this work, to achieve better Pareto front with less computation
complexity, a new MOO technique (Multi Objective Particle
Swarm Optimization(MOPSO) [8]) is used.

The paper is structured as follows: Section II gives descrip-
tion of SFPT. In Section III, we formulate the problem used
for optimization. Section IV describes the MOO algorithm.
Simulation results are shown in Section V and conclusion is
presented in Section VI.

II. STEPPED FREQUENCY PULSE TRAIN

The SFPT consists of N pulses, each of duration tp and
the time separation between two pulses is tr. The envelope of
unmodulated pulse is given by [4]

u(t) =
1
√
tp
rect

(
t

tp

)
(1)

Frequency modulation is applied to unmodulated pulse to get
an LFM signal.
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Fig. 1. Stepped frequency pulse train

The complex envelope of LFM pulse is given by

u1(t) =
1
√
tp
rect

(
t

tp

)
exp

(
jπkt2

)
(2)

Where k is the frequency slope of LFM signal and is defined
as

k = ±B
tp

(3)

B is the bandwidth of single LFM pulse. + and − signs corre-
spond to positive and negative frequency slope respectively. In
this paper, we have used the positive value of k but the analysis
is equally valid for the negative value of k. The instantaneous
frequency of LFM signal is given by

f (t) =
1

2π

d
(
πkt2

)
dt

(4)

A uniform pulse train having N number of LFM pulses
separated by tr ≥ 2tp is expressed as

uN (t) =
1√
N

N−1∑
n=0

u1 (t− ntr) (5)

To maintain unit energy the multiplication factor 1√
N

is
included in the expression.

Another slope of ks is added to entire LFM pulse train, and
the complex envelope is represented as

us (t) = uN (t) exp
(
jπkst

2
)

(6)

or

us (t) =
1√
N

exp
(
jπkst

2
)N−1∑

n=0

u1 (t− ntr) (7)

where
ks = ±∆f

tr
∆f > 0 (8)

+ and − signs stand for positive frequency and negative
frequency slope respectively. The overall bandwidth of SFPT
is expressed as

BT = (k + ks) tp∆f (9)

The ACF of us(t) is given by [4]

|R (τ)| =
∣∣∣∣(1− |τ |

tp

)
sin c

(
Bτ

(
1− |τ |

tp

))∣∣∣∣ ∣∣∣∣ sin (Nπτ∆f)

N sin (πτ∆f)

∣∣∣∣
(10)

The expression for |R (τ)| is the product of two terms. First
one is the ACF of single LFM pulse given by

|R1 (τ)| =
∣∣∣∣(1− |τ |

tp

)
sin c

(
Bτ

(
1− |τ |

tp

))∣∣∣∣ (11)

The second term describes the grating lobes

|R2 (τ)| =
∣∣∣∣ sin (Nπτ∆f)

N sin (πτ∆f)

∣∣∣∣ τ ≤ tp (12)

|R2 (τ)| produces the grating lobe at τg = g
∆f where g =

1, 2, ... btp∆fc. These grating lobes can hide the weak target.
In [4] a relation is given between the pulse duration of single
LFM pulse tp, its bandwidth B and frequency step ∆f to
nullify first two grating lobes. It is also shown that in some
cases nullifying first two grating lobes leads to removal of all
the grating lobes.

III. PROBLEM FORMULATION

In [7] some problems were formulated for sidelodes and
grating lobes suppression. We use problem 1 for our MOO
approach. For grating lobes suppression we want the amplitude
of |R1 (τ)| at position of grating lobe to be very low. For
sidelobe suppression we use Peak to Sidelobe Ratio (PSR) as
a performance measure. PSR is defined in [7] as

PSR =
Maximumsidelobe level inACF

mainlobe level
(13)

For a constant value of N , ACF, |R1 (τ)| and |R2 (τ)|
are functions of tp∆f and tpB. By choosing the appropriate
value of tp∆f and tpB we can suppress grating lobes and
sidelobes. The constraint for this problem is that increase in
bandwidth should be significant i.e. N∆f > B. The value
of tpB is chosen such that tpB = (c+ 1) tp∆f (c is any
positive number) to ensure B > ∆f , such that there is some
frequency overlap between the pulses. MOPSO algorithm [8] is
used to search for the values of tp∆f and tpB which results in
low sidelobes and low grating lobes amplitude. The objective
functions which are to simultaneously optimized, defined in
[7], are as follow:
minimizeF1 = max [|R1 (τg)|] where g = 1, 2, ... btp∆fc
minimizeF2 = PSR in dB
Subjected to the constraints Ntp∆f > tpB

IV. MULTI OBJECTIVE OPTIMIZATION ALGORITHM

In practice, there might exist a set of conflicting objectives
for which we want to find the best solution. The objectives may
not have a single best solution with respect to all problems.
Here a set of solutions might exists in search space that are
superior to the rest of solutions with respect to all objective
functions but are inferior among themselves with respect to one
or more objectives. These solutions are called Nondominated
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solutions or Pareto Optimal solutions. None of the Nondom-
inated solution is better than others. The superiority of one
solution over other depend upon the extra knowledge about
the problem.

In the proposed work, we uses MOPSO algorithm to op-
timize the objective functions explained in Section III. The
pseudo-code for this algorithm is shown in Algorithm 1. In
this algorithm w is Inertia weight. Inertia weight affects the
convergence and exploitation. R1 and R2 are two random
values. c1 and c2 are personal and global learning coefficient
respectively. PBEST is the personal best position of the
solution attains so far. REP is External Repository, which
store the nondominated solutions. External repository has
two component, the Archive Controller and the Grid. Work
of the archive controller is to decide which solution stays
in the repository. Archive controller works until number of
solutions in repository are less than the maximum length of
the repository. As the repository reaches its maximum size,
repository becomes a grid. If a new solution is inserted into
the grid then, a solution must be deleted from more populated
area. If the new solution goes beyond the boundary of the grid
then, the grid has to be recalculated and individuals have to be
relocated. A special mutation operator is used in this approach
that explore all the particle at the beginning of the search and
decrease rapidly with respect to the number of iteration.

V. SIMULATION RESULTS

Simulations are carried out to optimize F1 and F2 simul-
taneously using the MOPSO algorithm. The population size
and the number of generations each of 100 are used. Inertia
weight is selected as 0.73. Personal Learning Coefficient and
Global Learning Coefficient both are selected as 1.5. The
Pareto fronts for MOPSO and NSGA-II based approach are
shown in Figs. 2, 3. From Figs. 2, 3 it is clear that the Pareto

Algorithm 1 Multi Objective Particle Swarm Optimization
Algorithm

1: initialize POP() to random value
2: initialize VEL()
3: evaluate each particle in POP()
4: store nondominated vectors in the REP
5: generate hypercube
6: PBEST=POP
7: generation=0
8: while (generation < maxGenerations) do
9: for Each particle i do

10: V EL(i) = w ∗ V EL(i) + R1 ∗ c1(PBEST (i) −
POP (i)) +R2 ∗ c2(REP (i)− POP (i))

11: POP (i) = POP (i) + V EL(i)
12: maintain POP[i] within search space
13: evaluate particle i
14: update REP
15: update PBEST(i)
16: end for
17: increase generation by one
18: end while
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Fig. 2. Pareto front obtained using MOPSO and NSGA-II for tp∆f ∈
[2, 10] , c ∈ [2, 10] and N = 8
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Fig. 3. Pareto front obtained using MOPSO and NSGA-II for tp∆f ∈
[2, 10] , c ∈ [2, 5] and N = 8

front obtained from MOPSO based approach is better than
that of NSGA-II approach. Fig. 2 illustrates the Pareto front
obtained from MOPSO and from NSGA-II approach for
tp∆f ∈ [2, 10] , c ∈ [2, 10] and N = 8. From Fig. 2 it
is evident that in MOPSO approach, for zero grating lobe
amplitude (F1 = 0), maximum sidelobe level is 32 dB
below the mainlobe level as compare to 30.8 dB in NSGA-II
algorithm. From Fig. 2, if the maximum grating lobe amplitude
to be not more than 0.02, then the result obtained by the
proposed MOPSO based approach is better than the result
obtained by NSGA-II.

For tp∆f ∈ [2, 10] , c ∈ [2, 5] and N = 8 the value of
objectives F1 and F2 obtain from MOPSO approach and from
NSGA-II are shown in Fig. 3. From Figs. 3 it is clear that
MOPSO algorithm gives better result for both the objective
functions. Figs. 4- 7 display the plots of |R1 (τ)| , |R2 (τ)|
and ACF for different values of tp∆f and tpB, obtained form
NSGA-II and MOPSO algorithm. In Fig. 4 the null of |R1 (τ)|
is located on the position of grating lobe of |R2 (τ)|, which
means F1 = 0. The value of tp∆f and tpB are given by
NSGA-II algorithm. PSR for this case is 30.8315 dB below
the mainlobe level. Fig. 5 depicts |R1 (τ)| , |R2 (τ)| and ACF
for F1 = 0. The value of tp∆f and tpB are obtain by
MOPSO algorithm. In this case the PSR is 31.9889 dB below
the mainlobe level. So there is an improvement of 1.1574 dB
in PSR. Figs. 6, 7 depicts the plot of |R1 (τ)| , |R2 (τ)| and
ACF for F1 = 0.01, parameters are chosen by NSGA-II and
MOPSO respectively. In NSGA-II F1 = 0.01 ( 40dB below
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Fig. 4. SFPT for F1 = 0. Parameter obtained from NSGA-II. tp∆f = 2, c = 5 and tpB = 12. Top |R1 (τ)| (solid) and |R2 (τ)| (dash). Bottom ACF (in
dB)
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Fig. 5. SFPT for F1 = 0. Parameter obtained from MOPSO. tp∆f = 3, c = 5 and tpB = 18. Top |R1 (τ)| (solid) and |R2 (τ)| (dash). Bottom ACF (in dB)
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Fig. 6. SFPT for F1 = 0.01. Parameter obtained from NSGA-II. tp∆f = 2, c = 5.12 and tpB = 12.24. Top |R1 (τ)| (solid) and |R2 (τ)| (dash). Bottom
ACF (in dB)
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Fig. 7. SFPT for F1 = 0.01. Parameter obtained from MOPSO. tp∆f = 2.93, c = 5.06 and tpB = 17.75. Top |R1 (τ)| (solid) and |R2 (τ)| (dash). Bottom
ACF (in dB)

the mainlobe level) can be observed around τ/tp = 0.5.
For MOPSO F1 = 0.01 can be found near around τ/tp =

0.36. The PSR for NSGA-II and MOPSO is 31.6869 and
32.1971 dB below the mainlobe level respectively. For F1 =
0.01 there is an improvement of 0.5102 dB in sidelobe level
as compare to NSGA-II.

VI. CONCLUSION

In this paper, a multi-objective optimization approach based
on NSGA-II and MOPSO is investigated to find the parameter
of stepped frequency pulse train for low sidelobes and reduced
grating lobes at the matched filter output. The proposed work
facilitates us to choose waveform parameter from the Pareto
front according to the requirements of stepped frequency
pulse train. From the simulation results, we can conclude that
MOPSO based approach provide a better trade-off solutions
between the objective functions through Pareto front than that
of NSGA-II.
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