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Abstract—Cloud computing allows users to access resources
on demand. The size of data centers increase with the increasing
demand for resources by users. Increase in the size of data
centers is directly proportional to energy consumption. The
total energy requirement has to be minimized by distributing
virtual machine requests over data centers optimally, with
the consideration of prices of distribution of virtual machines.
These two parameters are taken into account to frame the
objective function for the Virtual Machine Distribution across
Data Centers. Here both servers and workloads are classified as
10 bound and CPU bound. A greedy algorithm framework has
been used to obtain sub-optimal solutions for virtual machine
distribution problem. Simulation results obtained indicates in
favor of best fit allocation.
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I. INTRODUCTION

Cloud computing acts as a model to enable users to have
on demand access to computing resources with minimal man-
agement effort. It has emerged as a popular computing model
to support large scale processing of huge volumes of data.
Several multinational organizations such as Google, Yahoo,
Microsoft, Amazon and IBM have built cloud platforms for
enterprises and users to access the cloud services [1], [2].

Data Centers have been used to provide powerful computing
resources for critical areas, such as nuclear physics, scientific
simulation and geothermal experiments. A Data Center (DC)
usually deploys a large number of Physical Machines (PMs)
packed densely to maximize space utilization [3].

Virtualization is one of the key concepts of data center
management. The major advantage of virtualization is the
possibility of running several operating system instances on a
single PM thus utilizing the hardware capabilities more fully
which allows administrators to save money on hardware and
energy costs. In literature, these individual operating system
instances are defined as Virtual Machines (VM). The comput-
ing resources of DC are made available to the users through
VMs. The VM scheduling in a cloud computing environment
is very crucial as the number of users continuously increase.
The VM scheduling algorithm greatly affects the performance
of the whole system and its throughput [4].

The placement of VMs to DCs is called Virtual Machine
Distribution (VMD). The effectiveness of VMD is related to
a Quality of Service (QoS) as per the services. The objective
of VMD will be a minimum number of data centers with a

much higher per-data center utilization. More flexibility and
availability of DCs is achieved, while the hardware costs and
operational expenses such as power, physical space etc. are
reduced [5].

In this paper, a scenario has been considered where Cloud
Service Provider (CSP) receives requests for VMs from the
users who need their applications to run on DC. An opti-
mization problem has been formulated for the distribution
of VM requests over DCs, which keeps into account the
minimization of energy and expenses incurred to a Cloud
Service Provider (CSP). The VMD problem has been pre-
sented as an optimization problem using the problem model
of classical bin packing problem. The solution to the virtual
machine distribution is presented using greedy algorithms. An
analysis is made by comparing the simple greedy algorithms
(Best-Fit(BF), First-Fit(FF), Next-Fit(NF), Worst-Fit(WF) and
Random Allocation(RA)) [6].

The remainder of the paper is organized as follows. Sec-
tion II discusses related work. Section III gives the problem
definition along with the statement of the problem and the
constraints. Section IV shows the results of simulation done
on the proposed cloud model. Section V concludes the paper.

II. RELATED WORK

Virtual machine distribution problem has been addressed
in various research topics which include load placement over
shared resources, dynamic resource allotment and the classical
bin packing problem.

Bin Packing is one of the oldest and most well studied NP-
hard problem in computer science [7], [8]. The classical bin
packing problem formulates the decision of putting a number
of items in fixed space bins. The main idea behind this is to
minimize the number of bins used [5].

Finding solutions to bin-packing problems using heuristic
algorithms has been addressed by several researchers. Some
of the work falls into the category of greedy algorithms (e.g.
Best-Fit(BF), First-Fit(FF), Next-Fit(NF), Worst-Fit(WF)) [6].
In [8] a survey has been done on the existing greedy heuristics
for bin packing problem in one dimension. The study in [9]
shows the approximability of vector bin packing(VBP) and
the related multi-dimensional bin packing(MDBP) problem.
Authors in [10] applied a First-Fit Decreasing(FFD) algorithm
in a modified form. Here placement of the workload was
modeled as an instance of 1-D bin packing problem.



In [11] a VM placement problem has been studied which
maximizes the number of applications that can be hosted on
a shared platform. There are many papers which have studies
reflecting various resource management methods with varying
principles in data center management [12]-[14]. In the earlier
implementations of resource allocation, priority was given to
users who had not received their share at the expense of
those who had already surpassed their share [15], [16]. Lottery
scheduling [17] and using an economic model [18] are two of
the direct approaches which have been used where resources
are allocated on the basis of lottery or capital. There has also
been research on an online algorithm in [19] and [20] which
caters to the changing resource requirements by allocating
servers to application instances dynamically.

In [21] dynamic VM placement problem is addressed where
an existing mapping is used as the initial point and then new
placement solutions are generated to balance the load among
hosts. In [22], Genetic Algorithm is used to simultaneously
minimize total resource wastage, power consumption and
thermal dissipation costs for VM placement. In [23], the VM
placement problem is constructed as a constraint satisfaction
problem with minimization of number of used servers and
migration costs acts as the objective. Linear Programming is
used for VM placement in [24] and [25]. In [26], constraint
programming paradigm is used with a flexible and energy-
aware framework in order to allocate VMs to data centers.

We have presented a cloud system model for distributing
VM requests across DCs without violating the service level
agreement (SLA). The greedy heuristics are applied for the
distribution of VMs to optimize the energy and the expenses
incurred to the CSP.

III. DISTRIBUTION MODEL

The problem model that has been referred in this paper is
depicted in Fig. 1. The proposed cloud architecture has been
divided into three layers.

All the organizational and individual users reside in the
topmost layer. The requests generated in this layer form a
VM Request Set which is sent to the Cloud Service Provider
Layer (CSPL). This layer acts as an intermediate layer which
consists of two sub-layers. The upper sub-layer consists of the
VM Request Set which comes from the topmost layer. The
VM Requests consists of the CPU usage, memory, number
of cores and the type of request (CPU based or IO based).
The next sub-layer is the Data Center Control Layer (DCCL),
which has information of the VM requests and the DCs. This
layer is responsible for VM placement across DCs considering
the different constraints namely, DC capacity constraint, user
request constraint and the SLA between the user and CSP.
Many heuristics are applied for the VM placement. VM
request subsets placed into DCs are then passed to the next
layer called the Data Center Set Layer (DCSL). This layer is
responsible for PM allocation of the individual VM Request
Subset into each DC. The assumption made in the paper states
that each DC is composed of a large number of homogeneous
PMs.
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Fig. 1. Proposed Cloud Architecture

Virtualization technologies justify the assumption of using
homogeneous resources in terms of capacity and computing
capability [27] . The cloud architecture proposed in this
paper is assumed to be placed at a particular geographic
location. The maximum and minimum energy consumption
differs in every DC denoted as energymax and energyidle.
The distribution of VMs into different DCs also has a price
associated with it, denoted as dcprice.

The VMD deals with n VM requests, each consisting
of CPU speed, memory (RAM), number of cores and
type of operations (CPU based or IO based) as require-
ments. All these requests constitute the VM request set
{VM;,V My, ...,V M,}.

Each DC combines k homogeneous PMs where each PM has
its own CPU, memory and number of cores as specifications.
All the PMs constitute the Physical Machine Set (PMS)
{PMi,PMs, ..., PM} in every DC.

The DC Set consists of m DCs {DCy,DCy,...,DC,,}.
Here every DC has a type such that VM; to be placed
in DC; should have the same type (CPU or 10). Every
DC in the DC set is associated with a price to place the
VM in the DC. This price is fixed in the SLA between
the user and the CSP. A vector defined which consists of
the prices of all the DC’s in the DC set is as follows :

depricevector = {dcpricey, dcprices, ..., dcprice,,
Every DC is also associated with energymax and energyidle
values which is used to calculate the energy consumed by the
DC upon placing the VMs.
Both the energy vectors are defined as:
energymazvector = {dcemaxy, dcemaz,, ..., dcemax,, }
energyidlevector = {dceidley, dceidles, ..., dceidle,, }

A. Constraints

The significant constraints for VM distribution across DCs,
are as follows :



1) Assignment Constraint: This constraint sees to it that
the DC into which the requested VM is to be placed provides
all the requested resource demands in all the four dimensions
considered here, namely CPU, memory, number of cores and
type of request.

2) Capacity Constraint: This constraint checks the
condition where the total resource requirements of the VM
Request Set should be less than or equal to the total available
resources of the DC Set in all the dimensions.

3) Placement Constraint: This defines the constraint to
distribute a VM to only one data center from the DC Set
provided all the resource requirements are satisfied in all
dimensions.

B. Problem Statement

VMD problem is defined with consideration that there are
k PMs in every DC. Suppose C'PM,.(i) defines the capacity
of PM; in r dimension.
Thus the capacity of a DC in ™ dimension can be written as:

k
CDC; (i) = Z CPM,(5) 0
j=1

The dimensions considered in this paper are CPU speed,
memory and number of cores.

Here a homogeneous set of m data centers constitute the
DC Set whose total capacity in the " dimension will thus
be:

CDCSET, = Z CDC,(5) 2)
j=1
Similar to equation 2, we can formulate the equation for the

capacity of n VM requests which constitute the total capacity
of the VM Request Set :

CVMRSET, = Z CV My (5) 3)

j=1

where C'V M,.(j) is the resource requirement of the ;& VM
in the ™ dimension.

The utilization of DC i in the ™ dimension can be defined
as the ratio of the total VM requirements of all the VMs placed
in the i™ DC to the total resource of DC; in the " dimension.

ST CVM, (i) x Vi
i=1

CDCr(5)
where, V;; = 1 if V.M; is placed in DC}.

As discussed in a previous section, every DC is associated
with three vectors, dcpricevector, energymaxvector and
energyidlevector.

The dcpricevector continuously increases for the DCs in the
DC Set from 1 to m. The three vectors are stated as follows :
depricevector = {dcpricey, deprices, ..., deprice,,
energymazvector = {dcemaz,dcemaxa, ..., dcemax,, }
energyidlevector = {dceidley, dceidles, ..., dceidle,, }

i Vi€ A{L...,m} “

Taking the energymaxvector and energyminvector into ac-
count, the total energy consumption for the DC Set can be
found. Energy consumption for DC}j:

energyDC (j) = ((dcemax; — dceidle;j) x mgX{UDCT (J)} + dceidle;
;V7j e {1,....,m}

®)

Here, the energy consumption of DC'; is calculated by

adding the energy consumed by VMs placed into it and its idle

energy consumption. The energy consumed by placed VMs is

calculated by multiplying the maximum utilization of DC)

in all the three dimensions with the difference between the
maximum and idle energy consumption of DC}.

Thus the Total Energy Consumption (TEC) of the DCs in

the DC Set can be calculated [27] by :

TEC= Z energyDC(j) (6)
j=1

The two parameters associated with every data center are the
price for distributing VMs across data center and the energy
consumed by it. An objective function for DC; (fnDC) can
be formulated depending on the two parameters.

fmDC (j) ={w,, X energyDC(j)} + {wez X (Z depricej x Vij)}

i=1
@)
where w,,, and w,, are the weights associated with energy
parameter and price parameter respectively, such that we, +
Wee = 1 and Vi; = 1 if V M; is placed in DCj.
The overall function of the DC Set (overall fnDC') can be
thus calculated by :

overallinDC = Z faDC() 8)

j=1

overall fnDC' is calculated as the sum of the fnDC(j)
for all DCs in the DC Set. This value is used for analysis
with respect to number of VM requests and is discussed
in section IV. The above objective overall fnDC can be
achieved subjected to following constraints :

ZCVMT(i).Vij < ODC(j); Vi € {1,.com}, Vr (9
=1

ZCVM,.(z‘) < CDCSET, (10)
=1

m
ZV;-]- =1;Vie{l,..,n} an
j=1

Vi; € {0,1} ;5 Vi € {1,....,n}, Vj € {1,....,m} (12)

Equation 9 satisfies the Assignment Constraint and equation
10 mathematically defines the Capacity Constraint. Equations
11 and 12 satisfy the Placement Constraint, where a VM can
be placed in only one DC which is shown by the fact that V;;
can take only values 0 and 1.



The solution to VMD problem is NP-hard. Finding sub-
optimal solution to NP-hard problems using algorithmic ap-
proach are roughly classified as (i) Exact Algorithms, (ii)
Heuristics Algorithms and (iii) Approximation Algorithms
[28]. This paper applies greedy heuristic algorithm of VM
Request Set distribution across the DC Set on the basis of the
overallnDC and TEC. The DCCL uses all the information of
the VM Request Set and the DC Set for VM distribution across
DCs by applying certain greedy heuristics (random, next fit,
first fit, best fit and worst fit) and some constraint conditions.

IV. SIMULATION RESULTS AND DISCUSSION

The greedy heuristics applied to the proposed model in
this paper are Random Allocation (RA), Next Fit Allocation
(NFA), First Fit Allocation (FFA), Best Fit Allocation (BFA)
and Worst Fit Allocation (WFA). We use an inhouse simulation
using JAVA on a desktop computer with Intel (R) Core (TM)
17-3770 processor, 3.4 GHz and 4 GB memory, considering a
fixed number of homogeneous DCs in the DC Set. The number
of DCs considered in the simulation is fixed at 40. Every DC
has 10 PMs each having 4 GB memory, 3.00 GHz cpu and 4
cores. VM Requests are generated in a uniformly distributed
manner, where the values are generated randomly taking range
for cpu fixed between 1 and 3 GHz, number of cores can be
any integer value form 1 to 4 and memory can take values 1,2
or 4. For simulation purpose, the number of VM requests start
from 25 and are taken upto 250 at intervals of 25 requests.

Since in this paper homogeneous PMs are considered and
the number of PMs in a data center is constant, thus for all
the simulations the values for FFA and BFA remain the same.
Thus in the graphs shown below, only BFA is considered.

Fig. 2 shows the plot Number of Data Centers vs Number of
VM Requests. It is observed that the number of DCs increases
as the number of VMs is increased in NFA, BFA and RA. But
it is seen that the number of DCs used remains 40 in WFA.
This result arises due to the fact that WFA always allocates
VM to the DC having the maximum amount of resources.
Therefore, everytime a VM is to be placed a new data center
is being looked into. Further observing the graph it is seen
that BFA uses lesser number of DCs compared to NFA when
there are large number of VM requests. This is because BFA
considers the DCs from first, everytime a new VM is to be
placed whereas NFA always considers distribution from the
DC into the previous VM was distributed.

Fig. 3 displays the plot Total price vs Number of VM Re-
quests. Since the number of DCs used increases on increasing
the number of VM requests as seen in Fig. 2 and the fact
considered in this paper that dcpricevector increases form DC}
to DCyq explains the increase in the total price as the number
of VM requests increase. Total price is calculated by Equation

13.
m n
Totalprice = Z Z depricej x Vij

j=1 i=1

where, V;; = 1 when V' M; is placed into DC}.
It is also observed that as the number of VM requests increase

(13)
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Fig. 2. Number of Data Centers vs Number of VM Requests

BFA gives lesser price that NFA whose difference is negligible
for small number of VM requests. RA and WFA is inconsistent
as the price will depend on the VMs distributed to a particular
DC.
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Fig. 3. Total price vs Number of VM Requests

Fig. 4 plots Energy Consumption vs Number of VM Re-
quests. Energy consumption is calculated using equation 6.
In contrast to figures 2 and 3, here the difference in energy
consumption between BFA and WFA is not much. This is
explained by the fact that energy consumption calculation
depends on the utilization of a particular DC more than on
the number of DCs used. Thus for WFA and RA, there are
more number of DCs used each having lower utility than in the
case for NFA and BFA where lesser number of DCs are used
but each having more utility. Also total energy consumption
increases continuously as the number of VM requests increase.

Fig. 5 shows the plot value of overall fnDC vs Number
of VM Requests. overallfnDC is calculated using equation 8
after VM distribution is completed subject to the constraints
discussed in Equations 9, 10, 11 and 12. overallfuDC takes
into account two parameters; energy and price. The weights
associated with both the parameters are balanced by taking
both values as 0.5. Thus it is seen that considering both number
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of DCs used and utility of DCs, the stark difference between
BFA and WFA is reduced. NFA and FFA give similar values
which is lesser than WFA and RA because of the difference
in number of DCs used.
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Fig. 5. Value of overallfnDC vs Number of VM Requests

All the above explained plots clearly show that BFA gives
the best result for VM distribution across DCs for the proposed
cloud model.

V. CONCLUSION

There has been a significant increase in the number of phys-
ical machines in each data center to deal with the increasing
demands of resources which has resulted in increasing energy
consumption and price for allocation. These two parameters
have been studied in the cloud model proposed in this paper
and analyzed by applying greedy algorithms. It is clearly
seen that best fit allocation outperforms all the other greedy
heuristics. In this work, three constraints have been considered,
but the increasing availability of various applications on cloud
leads to more number of constraints to be met in SLA.
Performance of VM distribution on data center can be further
analyzed using greedy heuristics for larger dimensions.
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