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Abstract

Spline wavelet (SW) is an optimum wavelet among the various existing wavelets which possesses some superior properties like regularity,
best approximation and compactness at a given order over other conventional bases. In this paper a novel integrated approach for power quality
data compression using the SW transform (SWT) and neural network is presented and its performance is assessed in terms of compression
ratio (CR), mean square error and percentage of energy retained in the reconstructed signals. Varieties of power quality events including
voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the
proposed approach. Computer simulation results indicate that the proposed scheme offers superior compression performance compared to the
conventional discrete cosine transform (DCT) and the discrete wavelet transform (DWT)-based approaches.
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1. Introduction

Increasing interest in power quality (PQ) has evolved over
the past decade[1]. With the advancement of PQ monitoring
equipment, the amount of data gathered by such monitoring
systems has become huge in size. The large amount of data
imposes practical problems in storage and communication
from local monitors to the central processing computers.
Data compression has hence become an essential and im-
portant issue in PQ area. A compression technique involves
a transform to extract the feature contained in the data and
a logic for removal of redundancy present in extracted fea-
tures. For PQ issues the discrete cosine transform (DCT) is
conventionally used for data compression because of its or-
thogonal property[2]. In recent past, the DWT has emerged
as a potential tool for data analysis[3,4], denoising and com-
pression[5,6] of different signals as it provides relatively
efficient representation of piecewise smooth signals[7]. The
degree to which a wavelet basis can yield sparse representa-
tion of different signals depends on the time-localisation and
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smoothness property of the basis function. Data compres-
sion can be also accomplished by neural network approach
as proposed in[8].

Among the varieties of wavelet functions the spline
wavelet (SW) is the best one on the basis of time-localisation
and smoothness properties[9–11]. In a recent paper[12] the
SW transform (SWT) is proposed for PQ data compression
but, for a requirement of high compression of signals the
wavelet transform approach may not provide a satisfactory
result. To overcome this problem a hybrid scheme of data
compression using the SWT and the radial basis function
neural network (RBFNN) is proposed that provides as high
as CR of 60 compared to 30 in the wavelet approach[6]. In
this method, the PQ event data is first passed through the
SWT analysis filter bank and its coefficients are obtained. A
first stage PQ event compression criterion for SWT is then
established by setting low energy coefficients to zero. In
the second stage of compression each threshold-coefficient
is encoded to reduce the number of bits compared to its
conventionally coded bits using the RBFNN. The overall
compression performance is therefore, the product of the
compression ratios (CR) of each stage. The performance
of the scheme is evaluated in terms of peak signal to noise
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ratio (PSNR) and percentage of energy retained (PER)
in the reconstructed PQ signal. Test results confirm that
under identical conditions the proposed hybrid scheme
provides superior compression-reconstruction performance
compared to the conventional approaches of DCT or DWT.

2. Power quality data compression

Research work on data compression has been carried out
using wavelet transform and neural network. To obtain a
reasonably high CR with low energy loss a new integrated
scheme of data compression using SWT and neural network
is proposed in this paper. We have combined SWT with neu-
ral network to extract the advantages of both and thereby an
efficient compression technique is obtained. In the following
SWT, RBFNN and the proposed scheme are discussed.

2.1. Spline wavelet transform

Spline wavelet has significant impact on the theory of the
DWT. Spline wavelet is used to construct non-orthogonal
wavelet basis such as semi-orthogonal, bi-orthogonal and
shift-orthogonal. Unlike the most other wavelet basis, spline
has explicit formulae in both time and frequency domain,
which greatly facilitate their manipulation. Spline wavelets
are extremely regular and usually symmetric or anti sym-
metric. The bi-orthogonal spline wavelets (B-spline) provide
optimal time-frequency localisation[9,10]. The underlying
scaling functions in B-spline are the shortest and most reg-
ular scaling functions.

The construction of a bi-orthogonal wavelet base involves
two multi-resolution analysis of L2, one for the analysis and
other for the synthesis. The spline spaces are in the syn-
thesis side. These are usually denoted by{Wi(β̃)}i∈Zand
{Wi(β)}i∈Z, whereβ̃(x) andβ(x) are the analysis and syn-
thesis scaling functions respectively. In this case,β̃(x) and
β(x) are can be solution of a two scale relation and not nec-
essarily the B-spline. The functionβ(x) can be defined as

βn(x) = β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
(n+1)times

(1)

where

β0(x) =




1, −1/2 < x < 1/2

1/2, |x| = 1/2

0, otherwise

The corresponding analysis and synthesis waveletsψ̃(x) and
ψ(x) are constructed by taking linear combinations of the
above scaling function as:

ψ̃

(
1

2

)
=

√
2
∑
K

g̃(k)β̃(x − k), and

ψ

(
1

2

)
=

√
2
∑
K

g(k)β(x − k) (2)

They form a bi-orthogonal set such that〈Ψi,k, Ψ̂j,l〉 =
δi−j,k−lwhere

ψi,k(x) = 2−i/2Ψ(2−ix − k)

This allows us to obtain the wavelet expansion of only
L2-function as

∀f ∈ L2, f =
∑
i∈Z

∑
k∈Z

〈f, Ψ̂i,k〉Ψi,k

The basis functions are usually specified in terms of the four
sequencesh(k) ĥ(k), g(k) andĝ(k), which are the filters for
the wavelet transform. With these filters the DWT operation
has been carried out using the decomposition structure as
shown inFig. 1.

2.2. Radial basis function neural network

The RBFNN has number of advantages over conventional
multi-layered neural network; such as higher accuracy,
less training time, simple topology and no local minima
problem[13,14]. Fig. 2 depicts the detail structure of the
RBFNN where the hidden nodes contain the radial basis
function. Each hidden unit in the network has two param-
eters called a centre (µ), and a width (σ) associated with
it. The RBF of the hidden units is radially symmetric in
the input space and the output of each hidden unit depends
only on the radial distance between the input vectorx and
the centre parameterµ for the hidden unit. The response
of each hidden unit is scaled by its connecting weights
(α’s) to the output units and then summed to produce
the final network output. The overall network output is
therefore

ŷ(n) = f(xn) = αm0 +
K∑
k=1

αmkφk(xn) (3)

For each inputxn, n represents the time index,K the num-
ber of hidden units,αmk the connecting weight of thekth
hidden unit to output layer,αm0 the bias term,m is the
number of output.

The value ofφk(xn) is given by

φk(xn) = exp

(
− 1

σ2
k

‖xn − µk‖2

)
(4)

whereµk is the centre vector for thekth hidden unit and
σk is the width of the RBF and || || denotes the Euclidean
norm.

In this paper, the parameters of the RBF network are up-
dated using the first derivative of the error function with
respect to network parameters. With the error vector at the
output unit beinge = (d − ŷ), whered is the desired output
vector andŷ the estimated output vector andE1 being half
of the squared error vector, the updating equations for the
parameters of the network are derived by taking the partial
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Fig. 1. Two level multi-resolution pyramid processing of the PQ event data using DWT and IDWT: (a) decomposition and (b) reconstruction.

derivative of E1. The relevant equations derived for the train-
ing are

�µk = η[(d − ŷ)αmk]
(xn − µk)

σ2
k

(2ϕk) + γ�µk−1 (5)

�σk = η[(d − ŷ)]αmk
(xn − µk)

2

σ3
k

(2ϕk) + γ�σk−1

�αmk
= η[d − ŷ](ϕk) + γ�αmk−1

�αmk
= η[d − ŷ] + γ�αmk−1

where η is the learning rate and γ the momentum term.

2.3. The proposed hybrid compression-reconstruction
scheme

A proposed hybrid scheme for data compression-re-
construction is shown in Fig. 3. The raw input data of size
1 ×N are fed to SWT structure, where two-level decompo-
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Fig. 2. The structure of RBFNN-based compressor and expander.

sition is accomplished. The wavelet function used in SWT
operation is localised both in time and frequency yielding
wavelet coefficients at different scales. The time-frequency
localisation implies that more energetic wavelet coefficients
are localised and are sparse in nature. As a result, we
achieve greater compact support from the wavelet transform
coefficients. This forms the basis of data compression by the
proposed SWT approach. Based on the absolute maximum
value of the wavelet coefficients ds(n) at the associated
scale, the threshold value λs is selected and applying hard
thresholding criterion the insignificant wavelet coefficients
are set to zero.

λs = (1 − β)max(|ds(n)|) (6)

where β is selected in the range of 0 < β < 1.
After the thresholding,

d̂s(n) = ds(n) for |ds(n)| ≥ λs

d̂s(n) = 0 for |ds(n)| < λs
(7)

Signal SWT Thresholding RBFNN
Compressor

Compression Stage 

RBFNN
Expander

Inverse SWTReconstructed
Signal

Reconstruction Stage

Fig. 3. The proposed hybrid scheme for data compression and reconstruc-
tion.
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After threshold operation, the number of retained SWT
coefficients is smaller than the original input data P repre-
sented by P = 1 × N. After thresholding operation is per-
formed the number of data is reduced to P1. Then the CR by
the SWT method alone is given by CR1 = P/P1. In the pro-
cess the energetic SWT coefficients and the original input
data are represented by B-bits. In the next stage, we propose
a RBFNN to compress the energetic coefficients further. The
RBF structure we choose consists of three layers with same
number of input and output nodes but less number of hidden
nodes. This choice is made to achieve further compression
in this encoding stage. It is to be noted that the input and
hidden layers are used for compression and the output layer
is utilised for expansion purpose. The training of these net-
works is carried out using the conventional back propaga-
tion (BP) algorithm. The trained RBF network thus formed
represents the second stage of compression-reconstruction
scheme. Each threshold-coefficient obtained from the first
stage is converted into B-bit and is fed to the network and
the corresponding reduced number of bit patterns (B1-bit)
available at the hidden node denotes its compact represen-
tation. Thus, the RBF network offers a CR given by CR2 =
B/B1. Hence, the overall CR of the hybrid scheme is CR =
CR1 × CR2 = (P × B)/(P1 × B1).

For training purpose, a given pattern is simultaneously ap-
plied both at the input and output of the neural structure and
learning is continued until the mean squared error (MSE)
attains a possible minimum value. At this stage, learning is
discontinued and the corresponding trained network repre-
sents a compression-reconstruction network. The portion of
the trained network from the input to the hidden nodes per-
forms compression operation whereas the remaining portion
acts as reconstruction network. The overall reconstruction of
the data takes place in the reversed order. Firstly, each of the
reduced bit pattern (B1-bit) is applied to the RBF-expander
which reconstructs its original B-bit. Each estimated B-bit
pattern represents the corresponding threshold-coefficients.
After obtaining threshold coefficients the inverse operation
of the SWT is then applied to these data to reconstruct the
original input signal.

The overall performance of the complete hybrid scheme
is evaluated in terms of MSE (in dB) and PER in the recon-
structed are defined as

MSE = 10

[
log10

(
1

N

N∑
i=1

∥∥x(i) − x̂(i)
∥∥2

)]
(8)

PER =
[

(vector norm of compressed coefficients)2

(vector norm of uncompressed coefficients)2

]
×100 (9)

The proposed compression scheme is general in nature in
the sense that it can be applied to any type of signal. This
is because the RBF network is trained with random binary
pattern but not with any specific patterns.

3. Test results

The proposed data compression technique is applied to
many PQ issues such as: sag, swell, harmonics, interruption,
oscillatory transient and fluctuation shown in Fig. 4(a)–(f).
All the data are generated using the MATLAB code at a
sampling rate of 3 kHz. For neural network training η = 0.1
and γ = 0.04 are considered. To demonstrate the efficacy of
the proposed technique some test cases are presented below.
For all simulation study a pure sinusoidal signal of 50 Hz
and 1 p.u. amplitude is considered. The proposed technique
is compared with the standard DCT and DWT (DB-4)-based
approaches.

3.1. Voltage spike

A disturbance signal containing a spike for 3 ms dura-
tion is considered first. The signal is decomposed by the
SWT up to fourth level and the corresponding filter out-
puts are shown in Fig. 5. It is evident from these figures
that each filter output contains the information of different
frequency components of the disturbance signal at differ-
ent levels and can accurately localise the disturbance point.
Subsequently, a threshold parameter is selected based on
the maximum absolute value of the transformed coefficients
and then the discarding operation takes place. In the next
stage of RBFNN compression, the retained transform coef-
ficients are taken into consideration. These compressed data
are then utilised to accurately reconstruct the original sig-
nal using the reverse operation of the forward process as
shown in Fig. 3. The reconstructed spike signal depicted in
Fig. 6 reveal that the disturbance signal is successfully re-
trieved from the transformed coefficients. The ratio between
the number of original signal data to the number of data re-
tained after the thresholding is termed as the compression
ratio (CR) and in the present case CR = 15 is considered.
With lower CR values, it is observed with simulations that
the signal is better retrieved than at CR = 15. It is obvi-
ous that with higher CR value less data are retained after
thresholding stage and hence accuracy is sacrificed in re-
constructing the signal. However, high CR value is preferred
for data communication and storage requirements. Further,
in case of the combined scheme we have considered signal
decomposition up to fourth level with an objective to reduce
the computational burden. In practical application, a com-
promise is made between these diverging factors.

For spike signal at CR = 15, the energy retained by the
combined approach is 98.47% as compared to 92.45 and
93.76% by the DCT and DWT approaches, respectively.
Similarly, the corresponding MSE for the combined ap-
proach is −25.76 dB and that for the DCT and the DWT is
−14.76 and −15.26 dB, respectively. This clearly demon-
strates better compression capability of the new technique
compared to conventional approaches. In the following dif-
ferent PQ signals are considered to see the performance of
the new approach.
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Fig. 4. Different signals considered: (a) 50 Hz, signal with spike; (b) 50 Hz, signal with sag; (c) 50 Hz, signal with swell; (d) 50 Hz, signal with third
and fifth harmonics; (e) 50 Hz, signal with momentary interruption and (f) 50 Hz, signal with oscillatory transient.

3.2. Voltage sag

A voltage sag is a sudden reduction (10–90%) in the
voltage magnitude, lasting for 0.5 cycle to several seconds.
Such a phenomenon may be caused by switching opera-
tion associated with temporary disconnection of supply,
flow of heavy current associated with the starting of large
motor load or the flow of fault currents. The effect of
voltage sag on equipment depends on both the magnitude
and its duration. To evaluate the performance of the com-
bined approach a 20% sag case of 3.5 cycles of duration
signal is considered (Fig. 4(b)). For the sag waveform at
CR = 15, the percentage of energy retained as obtained

in DCT, DWT and the combined approaches are 92.5,
95.8 and 98.23%, respectively (Table 1). Further, the MSE
level for combined scheme is −24.56 dB as compared to
−14.25 and −16.93 dB for DCT and DWT, respectively.
This information clearly indicates better accuracy of recon-
struction of the proposed scheme over each of the DCT and
DWT.

3.3. Voltage swell

When the voltage signal increases by 10–90% it is known
as voltage swell. They often appear on the sound phases
of a power system where phase-to-ground fault occurs or
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when heavy motor loads are switched off. Swell may stress
the delicate equipment components to premature failure.
Fig. 4(c) depicts the waveform of a voltage swell (80%)
lasting for three cycles. Similar to the sag case at differ-
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Fig. 6. Reconstructed spike signal at CR = 15 using (a) integrated and (b) DWT scheme.

Table 1
Percentage of energy retained and the MSE (dB) obtained using the DCT, DWT and integrated technique for all the PQ events date at CR = 15

Signal Energy retained (%) MSE (dB)

DCT DWT Integrated approach DCT DWT Integrated approach

Spike 92.45 93.76 98.47 −14.76 −15.26 −25.76
Sag 92.50 95.80 98.23 −14.25 −16.93 −24.56
Swell 92.38 95.43 98.64 −14.57 −16.87 −22.01
Harmonics 92.28 95.23 96.75 −15.17 −16.33 −23.45
Momentary Interruption 91.98 94.78 97.23 −15.63 −16.89 −25.47
Oscillatory transient 92.94 95.26 96.85 −14.76 −15.63 −24.74
Voltage Fluctuation 92.67 94.45 98.54 −14.73 −16.63 −23.78

ent CR values, the reconstructed signals by the combined
scheme show higher accuracy both in terms of energy re-
tained and MSE as compared to that of DCT and DWT. For
example, at CR = 15, the percentage of energy retained
as obtained by the DCT and DWT approaches are 92.38
and 95.43, respectively, as compared to 98.64 by the new
approach (Table 1). Further, the MSE for the waveform
in case of new scheme is as low as −22.01 dB as com-
pared to −14.57 and −16.87 dB for the DCT and DWT,
respectively. In the case of voltage swell also, superior per-
formance of the combined scheme of data compression is
observed.

3.4. Harmonically distorted signal

With the introduction of more power electronic equip-
ments in distribution system, the power quality is further
degraded as they produce significant amount of different
harmonics. Such harmonic pollution in voltage signal leads
to poor performance of converter circuit. A fundamental
voltage signal (50 Hz) of 1 p.u. distorted by 30% third har-
monic and 10% fifth harmonic (Fig. 4(d)) is considered
to evaluate the performance of the combined data com-
pression technique. AT CR = 15, the proposed scheme
reconstructs the signal with 96.75% of energy as compared
to 92.28 and 95.23% by the DCT and DWT, respectively.
Further, for the same waveform and CR value the MSE
index for the combined scheme is −23.45 dB as compared
to −15.17 and −16.33 dB obtained by the DCT and DWT,
respectively.
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3.5. Momentary interruption

Interruptions can be considered as voltage sags with 100%
amplitude and are mainly due to short circuit faults being
cleared by the protection. Supply interruption for few cycles
will greatly influence the performance of glass and computer
industries. For evaluating the performance of the combined
data compression technique a voltage signal interrupted for
three cycles as shown in Fig. 4(e) is considered. The new
scheme reconstructs the signal with 97.23% of energy (91.98
and 94.78% for the DCT and DWT, respectively). Sim-
ilarly, the MSE for the combined scheme is −25.47 dB
as compared to −15.63 and −16.89 dB for the DCT and
DWT, respectively. This simulation study is extended to
other CR values and it is, general, found that the combined
scheme is a better candidate for data compression of such
signals.

3.6. Oscillatory transient

Transient disturbances are shorter than the sags and
swells. A transient disturbance waveform may have os-
cillatory characteristic and such signals are found during
capacitor bank switching. An oscillatory transient signal is
shown in Fig. 4(f), which persists for 5 ms only. As men-
tioned in Table 1 for CR = 15 the percentage of energy
retained by DCT, DWT and the combined approaches are
92.94, 95.258, 96.85%, respectively. Further, the MSE for
the combined scheme is −24.74 as compared to −14.76 and
−15.63 dB obtained by the DCT and DWT approaches, re-
spectively. In this type of signal also, the combined scheme
outperforms the other two.

3.7. Voltage fluctuation

Voltage fluctuation refers to slow (0.5–30 Hz) modula-
tion of the voltage magnitude. Cyclic and acyclic loads with
temporal variation or sudden starting of large induction mo-
tors can cause voltage fluctuation. The amplitude of a si-
nusoidal voltage signal (1 p.u., 50 Hz) is modulated by a
low-frequency component of 0.05 p.u., 5 Hz and is shown
in Fig. 4(g). At CR = 15, the reconstructed signal by the
combined scheme retains 98.54% of energy as compared
to 92.67% by the DCT and 94.45% by DWT. Again, the
MSE index for the combined approach is −23.78 dB and
that for the DCT and DWT are −14.73 and −16.63 dB,
respectively. This result clearly shows the superiority of
the proposed approach to compress the voltage fluctuation
signal.

Further, a study is made by varying the CR value and
to see the effects on the performance of the approaches.
The CR value is changed (by varying the threshold value)
and the corresponding percentage of energy retained in the
reconstructed signal is evaluated using all the three methods.
Fig. 7 depicts the performance graph for voltage sag case and
it is clear that for CR value above 5 the combined approach
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provides higher energy retaining capacity compared to that
of the other two methods. For the same sag case, the MSE
is also calculated for the reconstructed signal for different
values of CR. Fig. 8 shows the MSE as obtained by different
approaches. The curves in the two figures clearly show that
for CR value above 6 the new approach is more accurate
in reconstructing the signal as compared to the DCT or the
DWT. Similar results are also obtained for other types of
signals.

4. Conclusion

In this paper, a combined scheme using SWT and neural
network is applied for compression of data pertaining to
PQ events. The SWT is a bi-orthogonal wavelet and pro-
vides better time-frequency localisation than DCT or DWT.
The compression performance of the new approach is as-
sessed through computer simulations where the results are
compared with DCT and DWT approaches. Percentage of
energy retained and MSE of reconstructed PQ signals are
calculated and it is found that the integrated approach pro-
vides better compression performance than DCT or DWT.
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