
X-DualMake: Novel Immediate Mode Scheduling
Heuristics in Computational Grids

Sanjaya Kumar Panda1, Pratik Agrawal2 and Durga Prasad Mohapatra3
1, 3 Department of Computer Science and Engineering

1 Indian School of Mines Dhanbad, India, 2IBM Bangalore, India, 3 National Institute of Technology Rourkela, India
1 sanjayauce@gmail.com, 2 pratikag99@gmail.com, 3 durga@nitrkl.ac.in

Abstract—Scheduling is an important aspect in grid
computing. Now-a-days, the computational grids are the
important platform for job scheduling. The performance of the
computational grids can be improved using an efficient
scheduling heuristic. In job scheduling, a user submits the job to
the grid resource broker. Then the broker is responsible for
dividing the job into a number of tasks. Moreover, it also maps
the tasks and the resources to find the perfect match. The
primary goal of scheduling is to minimize the processing time and
maximize the resource utilization. In this paper, we have
proposed three immediate mode heuristics such as First-
DualMake, Best-DualMake and Worst-DualMake (named as X-
DualMake). These heuristic are scheduled based on the resource
idle time. We have also presented five existing heuristics such as
MET, MCT, OLB, KPB and SA. The eight heuristics are
simulated and the experimental results are discussed. The
heuristics are compared using two performance measures
makespan and resource utilization.

Keywords—Grid Computing; Scheduling; Task; Resource;
Immediate Mode; Grid Resource Broker; Makespan; Data Set

I. INTRODUCTION
In recent years, grid computing provides high performance

computing solution for many scientific or critical applications.
The grid computing system is loosely coupled and message
passing distributed system where computing resources are
autonomous and communication between nodes are performed
by passing messages using a high speed interconnection
network [1]. The resources are not sharing the clock, memory,
bus and peripherals. They are having their local private
memory. It is of two types, homogeneous and heterogeneous.
Two homogeneous resources can have the same operating
system, architecture, peripherals etc. But two heterogeneous
resources can have different operating system, architecture,
peripherals etc [2]. For instance, one resource has a Linux
operating system while other resources may have Windows or
Unix operating system.

Grid computing is heterogeneous in nature. It is also
decentralized architecture. Message Passing Interface (MPI)
and Parallel Virtual Machines (PVM) allow the network of
heterogeneous resources to make a huge computational power
and storage [3-4]. Grid computing is used to solve large scale
complex problem. The problem is divided into a set of smaller
sub-problems. Each sub-problem is solved by a heterogeneous

resource. At last, the sub-solutions are grouped together to
form a unified solution. In other words, the user submits the job
to the grid and gets back results without the knowledge about
the grid. It is referred as a Single System Image (SSI) [5]. It is
an illusion to user. Note that, a user does not have any record
about the job and resource assignment. Sharing is not limited to
the file, but it can be extended to hardware, software, storage,
computation power and many more. But sharing in a company
or an organization is known as a virtual organization [6].

The scheduling components are task, resource, Grid
Resource Broker (GRB) and Grid Referral Service (GRS) [7-
8]. GRS is maintaining a list of resources. But GRB schedules
the task to the resource based on the scheduling strategy. It is
also a mapping module which map the task and the resource.
The goal of scheduling is to minimize the scheduling length (or
makespan) and maximize the resource utilization. However,
scheduling in the heterogeneous grid environment is a NP-
Complete problem [9, 10-13]. For this we need heuristic that
gives close to optimal solution. Researchers are coming up
with different heuristics to improve over existing approaches.
The details of these heuristic are discussed in Section III.

The remainder of the paper is organized as follows: Section
II presents the related work. Section III presents a survey on
the immediate mode heuristic with an example. Section IV
proposes three immediate mode heuristic: First-DualMake (F-
DM), Best-DualMake (B-DM) and Worst-DualMake (W-DM).
Section V shows the simulation results. This section compares
the eight heuristics. We conclude this paper in Section VI.

II. BACKGROUND AND RELATED WORK
Let T = {T1, T2,..., Tt} indicates a set of t independent tasks

and R = {R1, R2,..., Rr} indicates a set of r resources. We
assume that the tasks are arriving one after another in numeric
order. The unit of each task is in seconds. The problem is to
map the task to the resource which minimizes the total
processing time and maximizes the resource utilization.

Maheswaran et al. and Xhafa et al. have discussed five
immediate mode heuristics [12, 14]. These heuristics are
implemented in discrete event simulator. The heuristics are
compared using Braun et al. benchmark instances [10]. It is
stated that MCT is a benchmark in the immediate mode
heuristic [12]. Apart from the above heuristics, Braun et al.
have discussed some more heuristics such as duplex, genetic

algorithm, tabu, simulated annealing and A* heuristic and these
heuristics are implemented in an interactive software
application [10]. It is also stated that min-min heuristic
performs better than all other heuristics (i.e. both immediate
and batch mode).

Scheduling has two phases: resource selection (matching)
and ordering the tasks (scheduling). When a task has arrived,
the GRB finds the makespan of each resource. The task is
assigned to the resource having less makespan [15]. Rasooli et
al. have introduced two rules for matching and three rules for
scheduling [15]. Grosan, Dail et al. and Chin et al. have
proposed various scheduling applications based on job shop
scheduling, mesh based application and list scheduling
respectively [16-18].

Quality of service (QoS) refers to bandwidth, speed,
memory etc. QoS min-min heuristic combines the QoS and
min-min heuristic in which meta tasks are divided into high
QoS and low QoS resource. However, the low QoS tasks can
be executed in both low QoS and high QoS resource [19].
Many batch mode heuristics have been proposed in grid
environment [13, 20-28]. However, the idle time of resources is
not considered so far.

III. SCHEDULING ALGORITHMS

There are many immediate mode scheduling heuristics in
computational grids. The heuristics are listed as follows.
A. Minimum Execution Time (MET) Heuristic

It is also known as limited best assignment (LBA) [9]. It
assigns the task to the resource which takes the least execution
time. If two resources are taking same execution time, then one
of the resources is selected randomly. It serves the task at First
In First Out (FIFO) basis. As soon as a task arrives, it
schedules the task to the corresponding resource. This heuristic
is not considering the resource ready time. So, the task may be
scheduled to the resource which has already overloaded. It
causes a load imbalance problem. It also suffers from the least
resource utilization problem. Each task takes O(r) time to find
a resource [12] where r represents number of resources.

TABLE I. A 4 × 4 EXPECTED ET MATRIX
Task / Resource R1 R2 R3 R4

T1 20 54 49 97
T2 74 105 81 93
T3 33 87 58 40
T4 51 76 69 123

Let us consider an example shown in Table I. There are
four tasks <T1, T2, T3 and T4> and four resources <R1, R2, R3
and R4>. Assume that all the resources are idle. Task T1 has 20
time units in resource R1. Also it has least execution time in
resource R1. So, Task T1 is assigned to resource R1. Like Task
T1, Task T2 has least execution time in resource R1. So, it is also
assigned to resource R1. As we notice here, even if other
resources are idle, it has not considered that resource. It leads
to load imbalance problem. Similarly, Task T3 and Task T4 are
assigned to resource R1. The makespan is 178.

B. Minimum Completion Time (MCT) Heuristic
It assigns the task to the resource which takes the least

completion time. If two resources are taking same completion
time, then one of the resources is selected randomly.

Completion time is the sum of execution time (ET) and ready
time (RT). It is shown in Equation 1. Unlike MET, MCT
heuristic considers the resource ready time. Generally, it gives
better results than MET heuristic. In MCT, load imbalance is
reduced to some extent. This heuristic does not assign the task
to the overloaded resource. It means the task may not map to
least execution time resource. Each task takes O(r) time to find
a resource [12].

 Completion Time = Execution Time + Ready Time (1)

Let us consider the same example shown in Table I. The
ready time is initially set to zero. Task T1 has 20 time units in
resource R1, 54 time units in resource R2, 49 time units in
resource R3 and 97 time units in resource R4. The least
completion time is taken by resource R1. So, it is assigned to
resource R1. Now, ready time of resource R1 is 20. Note that,
task T2 has 94 time units in resource R1. So, task T2 is assigned
to resource R3. Similarly, task T3 and task T4 are assigned to
resource R4 and resource R2 respectively. The makespan is 81.

C. Opportunistic Load Balancing (OLB) Heuristic
It assigns the task to the resource which is idle soonest. It is

not considering the execution time and/or the completion time
of the task. If two resources are idle in same time for a
scenario, then one of the resources is selected randomly. It only
considers the resource ready time. Each task takes O(r) time to
find a resource [9, 12].

TABLE II. A 5 × 3 EXPECTED ET MATRIX
Task / Resource R1 R2 R3

RT 89 73 50
T1 70 80 108
T2 285 80 301
T3 189 290 76
T4 60 97 115
T5 135 367 37

Let us consider an example shown in Table II. As per RT,
resource R3 is idle in 50. So, task T1 is assigned to resource R3
without considering the execution time. Next task T2 is
assigned to resource R2 because it is idle soonest. Similarly,
task T3, task T4 and task T5 are assigned to resource R1,
resource R2 and resource R3 respectively. The makespan is 278.

D. K-Percent Best (KPB) Heuristic
It selects the resource based upon the value of K. When the

value of K is 100, it chooses one resource from all available
resources. For the same value of K, it works like MCT
heuristic. For K = (100/r), it works like MET heuristic. If K
value is small then it selects one resource from very few
resource(s). If K value is close to 100, then it selects one
resource from more resources. The value of K makes a subset
of resources. If K value is close to 50 then it selects best 50%
resources. It also reduces time of a task to map with all
resources. But it may lead to load imbalance problem. KPB
has an overall complexity of O(r log r) time [12].

Let us consider the same example shown in Table I.
Assume that the value of K is 50. So, it will select one
resource from best two resources because we have four
resources in the Table I matrix. The best two resources for
task T1 are resource R1 and resource R3. Then it uses MCT

heuristic to assign a task to the resource. So, task T1 is
assigned to resource R1. Like task T1, the best two resources
for task T2 are resource R1 and resource R3. But it gives less
completion time in resource R3. So, it is assigned to resource
R3. Similarly, task T3 and task T4 are assigned to resource R4
and resource R1 respectively. The makespan is 81.

E. Switching Algorithm (SA)
It is a hybrid algorithm. It uses both MET and MCT

heuristic. Let rmax indicates the maximum ready time of all
available machines, rmin indicates the minimum ready time of
all available machines and Π indicates the load balance index.
Π can be calculated using Equation 2. The value of Π lies in
between 0 to 1. In SA, two threshold values are used i.e. Πl
(low load balance index) and Πh (high load balance index). The
initial value of Π is set to zero and it starts with MCT heuristic.
If Π is reached to Πh or above, then it uses MET heuristic to
decrease Π. If Π is decreased to Πl or below, then it uses MCT
heuristic to increase Π. SA has an overall complexity of O(r)
time [12].

 Π = rmin / rmax (2)

Let us consider an example shown in Table II. Assume that
the value of Πl = 0.2 and Πh = 0.6 respectively. Initially, Π
value is (50/89) = 0.562 and MCT heuristic is applied to the
first task. Task T1 is assigned to resource R2. Then rmin and rmax
are calculated. Here rmin is 50 and rmax is 153. Π = (50/153) =
0.326. So, we apply MCT heuristic for the upcoming task. Task
T2 is assigned to resource R2. The value of rmin is updated to 50
and rmax is updated to 233. Π = (50/233) = 0.214. Again, we
apply MCT heuristic for the upcoming task. Task T3 is
assigned to resource R3. The value of rmin is updated to 89 and
rmax is updated to 233. Π = (89/233) = 0.381. Task T4 and task
T5 are assigned to resource R1 and resource R3 respectively.
Finally Π is 0.63. So, the upcoming task is executed using
MET heuristic. The makespan is 233.

IV. PROPOSED HEURISTICS
Heuristics are categorized into two modes: immediate

(online) mode and batch (offline) mode. A task can be mapped
to a resource as quickly as possible. It is referred as immediate
mode heuristic. In contrary, a group of tasks can be mapped to
the resources; it is referred as batch mode heuristic. We
propose three immediate mode heuristics: (i) First-DualMake
(F-DM) (ii) Best-DualMake (B-DM) and (iii) Worst-DualMake
(W-DM). These heuristics are based on the idle time of the
resource. The goal of these heuristic is to reduce the idle time
of each resource instead of task completion time. For this, we
need to calculate the resource ready time. It is called as Pre-
makespan. It is the maximum ready time of all available
resources. After each task has been executed, the makespan is
recalculated. It is called as Post-makespan. In each heuristic,
the name DualMake stands for Pre-makespan and Post-
makespan.

A. Notations Used and Their Definitions
Notation Definition
Rj jth Resource
Ti ith Task
RTj Initial Ready Time of resource j

Mpr Pre-Makespan
Mpo Post-Makespan
TI [Rj] Idle Time of Resource j
RT [Rj] Ready Time of Resource j
ETij Execution Time of task i on Resource j
RIT [Rj] Remaining Idle Time of resource j
Rc Current Resource
X Total number of tasks
Y Total number of resources

B. First-DualMake (F-DM) Heuristic

In this heuristic, the first indicates the first available
resource for the upcoming task. If there is no resource
available, then the first task is assigned to most probable idle
time resource. It first searches for available resources which
has the enough idle time. It stops when it finds an available
resource. Makespan is calculated after each assignment of task.
We present the pseudo code of our proposed F-DM heuristic as
follows.

First the ready time of each resource is determined. For
loop in lines 1 to 3 of the heuristic calculates the ready time. In
line 4, Pre-makespan is calculated. To determine the idle time
of each resource, we need to calculate the difference between
Pre-makespan and ready time of the resource. Line 5 to 7 for
loop shows how to calculate the idle time. Then line 8 gives the
ascending order of the idle time. Resources are sorted
accordingly. Task assignment is done in line 9 to 18. The do
loop is used to select one resource which is suitable for the task
i. In line 11, the remaining idle time is calculated. It is the
difference between idle time and the execution time of the task
i on the resource j. It may be a negative value. If all values are
negative, then it is assigned to most probable idle time
resource. Line 12 shows this one. For positive values, the task
Ti is assigned to resource Rc. Finally, we calculate the Post-
makespan. The heuristic shown above is applicable for one
task. For multiple tasks, we need to iterate the heuristic
multiple times. Let us consider an example shown in Table III.
There are four tasks <T1, T2, T3 and T4> and two resources <R1
and R2>. RT in Table III shows the ready time of the resources.
Assume that task is arriving one after another in numeric order.
In F-DM heuristic, Pre-makespan is calculated. It is 112 in this
example.

1. for all resource Rj
2. Read RTj
3. end for
4. Calculate the Mpr
5. for all resource Rj
6. TI [Rj] = Mpr – RT [Rj]
7. end for
8. Sort the resource Rj with respect to TI [Rj] in

ascending order
9. do Ti ∈ T
10. for all resource Rj
11. RIT [Rj] = TI [Rj] - ETij
12. Rc = Rj
13. if RIT [Rj] ≥ 0
14. Go to Step 18
15. end if
16. end for
17. end do
18. Assign Ti to resource Rc
19. Calculate the Mpo

TABLE III. A 4 × 2 EXPECTED ET MATRIX
Task / Resource R1 R2

RT 85 112
T1 41 46
T2 7 11
T3 32 14
T4 24 28

Idle time of resource R1 and resource R2 is 27 and 0
respectively. Then the idle times are sorted in ascending order.
It is 0 and 27 respectively. Accordingly, resources are sorted
i.e. resource R2 and resource R1. Task T1 takes 41 and 46 in
resource R1 and resource R2 respectively. No resource is
capable to execute task T1. So, it is forcibly assigned to
resource R1 because it has more idle time. The Post-makespan
is 126. The idle time of resource R1 and resource R2 is updated
to 0 and 14 respectively. Task T2 takes 7 and 11 in resource R1
and resource R2 respectively. The task T2 can be assigned to
resource R2 because the difference between the idle time of
resource R2 and execution time of task T2 on resource R2 is
greater than and equal to zero. Now, the Post-makespan is
same as the previous iteration. Similarly, task T3 and task T4 are
assigned to resource R2 and resource R1 respectively. The
makespan is 150.

C. Best-DualMake (B-DM) Heuristic

In this heuristic, the best indicates the best available
resource for the upcoming task. If no resource is available to
map, then the task is assigned to most probable idle time
resource. It searches the entire available resources and chooses
a resource which is the smallest idle time. Unlike the F-DM,
this heuristic is an alternative to choose one resource. It works
like the F-DM if no resource has sufficient idle time. We
present the pseudo code of our proposed B-DM heuristic as
follows.

 Like F-DM, it calculates the ready time of each resource.
Line 1 to 7 in B-DM is same as F-DM. In B-DM, the resources
are not sorted before assignment. Remaining idle time is
calculated in line 10. Tasks are sorted using remaining idle
time. Thereafter, resources are sorted accordingly. The do loop
in lines 13 to 15 do loop finds an idle resource for task Ti. It
iterates until the remaining idle time value is positive as well as
the j value is less than the number of resources. If the iteration

fails, then it is assigned to the most probable idle resource.
Finally, the Post-makespan is calculated. It is the Pre-makespan
for the next task. Let us consider an example shown in Table
IV. There are four tasks <T1, T2, T3 and T4> and three resources
<R1, R2 and R3>. RT in Table IV shows the ready time of the
resources. At first, Pre-makespan is calculated. It is 112 in the
Table IV example. Idle time of resource R1, resource R2 and
resource R3 are 27, 0 and 17 respectively. Task T1 takes 41, 46
and 43 in resource R1, resource R2 and resource R3 respectively.
Then it calculates remaining idle time. The remaining idle time
is sorted in ascending order. The values are negative. It means
no resource is able to execute task T1. So, it is forcibly assigned
to resource R1 as it has more idle time. The Post-makespan is
126. The idle time of resource R1, resource R2 and resource R3
are updated to 0, 14 and 31 respectively. Task T2 takes 7, 11
and 14 in resource R1, resource R2 and resource R3 respectively.
The task T2 can be assigned to either resource R2 or resource
R3. According to B-DM heuristic, it is assigned to resource R2
because the idle time of resource R2 is reduced to an extent.
Now, the Post-makespan is same as the previous iteration.
Similarly, task T3 and task T4 are assigned to resource R3.The
makespan is 126. Generally, both B-DM and W-DM heuristics
are not measured in two resource environment because it acts
like the F-DM heuristic.

TABLE IV. A 4 × 3 EXPECTED ET MATRIX
Task / Resource R1 R2 R3

RT 85 112 95
T1 41 46 43
T2 7 11 14
T3 32 14 23
T4 24 28 6

D. Worst-DualMake (W-DM) Heuristic
In this heuristic, the worst indicates the worst available

resource for the upcoming task. It is similar to B-DM. But, it
selects the worst resource instead of best resource. It searches
the entire available resources and chooses a resource which is
the largest idle time. It assigns the task to the resource which
holds the largest idle time. It is same as MCT heuristic. The
idle time of a task in W-DM same as the earliest completion
time of a task. As a part of the complete idle time scenario, we
have shown in this paper. We present the pseudo code of our
proposed W-DM heuristic as follows.

 In W-DM, Line 1 to 11 is same as B-DM. In this heuristic,
Line 12 finds the maximum remaining idle time of entire
resources. If none of the resource is sufficient idle time, then it

1. for all resource Rj
2. Read RTj
3. end for
4. Calculate Mpr
5. for all resource Rj
6. TI [Rj] = Mpr – RT [Rj]
7. end for
8. do Ti ∈ T
9. for all resource Rj
10. RIT [Rj] = TI [Rj] – ETij
11. end for
12. Sort RIT [Rj] and its corresponding Rj in

ascending order
13. do RIT [Rj] < 0 && j < Y
14. j = j + 1.
15. end do
16. end do
17. Assign Ti to resource in index j
18. Calculate the Mpo

1. for all resource Rj
2. Read RTj
3. end for
4. Calculate Mpr
5. for all resource Rj
6. TI [Rj] = Mpr – RT [Rj]
7. end for
8. do Ti ∈ T
9. for all resource Rj
10. RIT [Rj] = TI [Rj] - ETij
11. end for
12. Find max(RIT [Rj])
13. end do
14. Assign Ti to resource Rj
15. Calculate the Mpo

works like the F-DM heuristic. Unlike the F-DM and B-DM
heuristic, it does not require sorting function. Let us consider
an example shown in Table IV. There are four tasks <T1, T2, T3
and T4> and three resources <R1, R2 and R3>. At first, Pre-
makespan is calculated. It is 112 in the Table IV example. Idle
time of resource R1, resource R2 and resource R3 are 27, 0 and
17 respectively. Task T1 takes 41, 46 and 23 in resource R1,
resource R2 and resource R3 respectively. Then it calculates
remaining idle time. The calculated values are negative. It
means no resource is able to execute task T1. So, it is forcibly
assigned to resource R1 because it has more idle time. The
Post-makespan is 126. The idle time of resource R1, resource
R2 and resource R3 are updated to 0, 14 and 31 respectively.
Task T2 takes 7, 11 and 14 in resource R1, resource R2 and
resource R3 respectively. The task T2 can be assigned to either
resource R2 or resource R3. According to W-DM heuristic, it is
assigned to resource R3 because the difference between the idle
time of resource R3 and the execution time of task T2 on
resource R3 is more than the idle time of resource R2 and the
execution time of task T2. Now, the Post-makespan is same as
the previous iteration. Similarly, task T3 and task T4 are
assigned to resource R2 and resource R3 respectively. The
makespan is 126.

V. SIMULATION AND RESULTS
 The proposed heuristics are implemented and compared
using the benchmark instances by Braun et al. [10]. We have
used MATLAB R2010b to simulate the heuristics. We have
taken different sizes of EET matrices such as 512 tasks and 16
resources and 1024 tasks and 32 resources. In each size, 12
different types of instances are compared. The instances are
consisting of three parameters: distribution, the nature of the
matrix and task-resource heterogeneity. The general
representations of these instances are u_a_bbcc.o. Here, ‘u’
indicate the distribution is uniform followed by ‘a’ indicates
the nature of the matrix i.e. c – consistent, i – inconsistent and s
– semi-consistent. Then, bb indicates the task heterogeneity
and cc indicates the resource heterogeneity i.e. either high (hi)
or low (lo). We have taken Πl = 0.6 and Πh = 0.9 in SA
heuristic for all types of instance. We have used two
performance measures to evaluate the heuristics. They are
makespan and resource utilization. First, we simulated for 512
tasks and 16 resources. The existing heuristic results for 512 ×
16 instances are also shown in Xhafa et al. and Chaturvedi et
al. [11, 14]. The makespan comparison of the proposed and the
existing heuristics is shown in Table V. Next, we simulated for
1024 tasks and 32 resources. The makespan comparison of the
proposed and the existing heuristics is shown in Table VI. The
resource utilization comparisons of both data sets are jointly
shown in Table VII. In this paper, we have seen that W-DM (or
MCT) heuristic and B-DM heuristic is best among all the
heuristics present in the literature (for consistent matrices). The
KPB heuristic is best for inconsistent matrices among all other
heuristics.

VI. CONCLUSION
In this paper, eight immediate mode heuristics are

discussed and implemented in MATLAB R2010b. None of the
heuristic is giving better result in all instances. As we know,
scheduling in heterogeneous grid environment is a NP-
Complete problem; there is no such algorithm exist that will
solve in a polynomial time. We have observed that MCT

heuristic gives better results in consistent. But, KPB gives
better results in 512 × 16 inconsistent matrices (hilo, lohi and
lolo instances) and semi-consistent matrices (hihi, hilo and lolo
instances). Among the three proposed heuristics, the W-DM
heuristic is similar to MCT heuristic. After MCT heuristic, B-
DM heuristic gives better results in consistent matrices.

REFERENCES
[1] H. Attiya and J. Welch, “Distributed Computing”, John Wiley and Sons,

2000.
[2] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, “Heuristics

for Scheduling Parameter Sweep Applications in Grid Environments”,
9th Heterogeneous Computing Workshop, pp. 349-363, 2000.

[3] A. Chakrabarti, “Grid Computing Security”, Springer, 2007.
[4] I. Foster and C. Kesselman, “The Grid – Blueprint for a New Computing

Infrastructure”, Morgan Kaufmann Publishers, 1998.
[5] R. Buyya, “High Performance Cluster Computing”, Pearson Education,

2008.
[6] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”, International Journal of High
Performance Computing Applications, Vol. 15, No. 3, pp. 200-222,
2001.

[7] A. Abraham, R. Buyya and B. Nath, “Natures Heuristics for Scheduling
Jobs on Computational Grids”, Eighth IEEE International Conference on
Advanced Computing and Communications, 2000.

[8] M. Murshed and R. Buyya, “Using the GridSim Toolkit for Enabling
Grid Computing Education”, International Conference on
Communication Networks and Distributed Systems Modeling and
Simulation, 2002.

[9] R. Armstrong, D. Hensgen and T. Kidd, “The Relative Performance of
Various Mapping Algorithms is Independent of Sizable Variances in
Run-time Predictions”, Seventh IEEE Heterogenous Computing
Workshop, pp. 79-87, 1998.

[10] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys and B. Yao, “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems”, Journal of Parallel and
Distributed Computing, Vol. 61, No. 6, pp. 810-837, 2001.

[11] A. K. Chaturvedi and R. Sahu, “New Heuristic for Scheduling of
Independent Tasks in Computational Grid”, International Journal of Grid
and Distributed Computing, Vol. 4, No. 3, pp. 25-36, 2011.

[12] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund,
“Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems”, Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, 107-131, 1999.

[13] D. D. H. Miriam and K. S. Easwarakumar, “A Double Min Min
Algorithm for Task Metascheduler on Hypercubic P2P Grid Systems”,
International Journal of Computer Science Issues, Vol. 7, No. 4, pp. 8-
18, 2010.

[14] F. Xhafa, J. Carretero, L. Barolli and A. Durresi, “Immediate mode
scheduling in grid systems”, International Journal of Web and Grid
Services, Vol. 3, No. 2, pp. 219-236, 2007.

[15] A. Rasooli, M. Mirza-Aghatabar and S. Khorsandi, “Introduction of
Novel Rule Based Algorithms for Scheduling in Grid Computing
Systems”, Second Asia International Conference on Modelling &
Simulation, 2008.

[16] C. Grosan, “A Multiobjective Metaheuristic for Job-Shop Scheduling”,
Informatica, Vol. 54, No. 1, pp. 97-102, 2009.

[17] H. Dail, F. Berman, and H. Casanova, “A Decoupled Scheduling
Approach for Grid Application Development Environments”, Journal of
Parallel and Distributed Computing, Vol. 63, No. 5, pp. 505-524, 2003.

[18] S. H. Chin, J. H. Lee, T. M. Yoon and H. C. Yu, “List Scheduling
Method for Srevice Oriented Grid Applications”, Second International
Conference on Semantics, Knowledge and Grid, 2006.

[19] H. Xiaoshan, X. H. Sun and G. V. Laszewski, “QoS Guided Min-Min
Heuristic for Grid Task Scheduling”, Journal of Computer Science and
Technology, Vol. 18, No. 4, pp. 442-451, 2003.

[20] F. Dong, J. Luo, L. Gao and L. Ge, “A Grid Task Scheduling Algorithm

Based on QoS Priority Grouping”, Fifth International Conference on
Grid and Cooperative Computing, 2006.

[21] K. Etminani and M. Naghibzadeh, “A Min-Min Max-Min Selective
Algorithm for Grid Task Scheduling”, 3rd IEEE/IFIP International
Conference on Internet, 2007.

[22] H. Decai, Y. Yuan, Z. Li-jun and Z. Ke-qin, “Research on Tasks
Scheduling Algorithms for Dynamic and Uncertain Computing Grid
Based on a+bi Connection Number of SPA”, Journal of Software, Vol.
4, No. 10, pp. 1102-1109, 2009.

[23] S. Parsa and R. Entezari-Maleki, “RASA: A New Grid Task Scheduling
Algorithm”, International Journal of Digital Content Technology and its
Applications, Vol. 3, No. 4, pp. 91-99, 2009.

[24] S. K. Panda, S. K. Bhoi and P. M. Khilar, “A Semi-Interquartile Min-
Min Max-Min (SIM2) Approach for Grid Task Scheduling”,

International Conference on Advances in Computing, Springer, Vol.
174, pp. 415-421, 2012.

[25] S. K. Panda, S. K. Bhoi and P. M. Khilar, “RRTS: A Task Scheduling
Algorithm to Minimize Makespan in Grid Environment”, Second
International Conference on Internet Computing and Information
Communications, Springer, Vol. 216, pp. 2012.

[26] S. K. Panda and P. M. Khilar, “A Three-Stage Approach for Grid Task
Scheduling”, Second IEEE International Conference on Parallel,
Distributed and Grid Computing, pp. 441-446, 2012.

[27] S. K. Panda and P. M. Khilar, “A Two-Step QoS Priority for Scheduling
in Grid”, Second IEEE International Conference on Parallel, Distributed
and Grid Computing, pp. 502-507, 2012.

[28] Z. Jinquan, N. Lina and J. Changjun, “A Heuristic Scheduling Strategy
for Independent Tasks on Grid”, Eighth International Conference on
High-Performance Computing in Asia-Pacific Region, 2005.

TABLE V. NUMERICAL RESULTS OF MAKESPAN VALUE FOR 512 × 16 INSTANCES
Instance MET MCT OLB KPB SA F-DM B-DM W-DM
u_c_hihi 4.7472E+07 1.1423E+07 1.4377E+07 1.2497E+07 1.2613E+07 1.3359E+07 1.1980E+07 1.1423E+07
u_c_hilo 1.1851E+06 1.8589E+05 2.2105E+05 2.0115E+05 1.9455E+05 1.9837E+05 1.9480E+05 1.8589E+05
u_c_lohi 1.4531E+06 3.7830E+05 4.7736E+05 4.0029E+05 4.2627E+05 4.4870E+05 3.9477E+05 3.7830E+05
u_c_lolo 3.9582E+04 6.3601E+03 7.3066E+03 6.8463E+03 8.1671E+03 6.7718E+03 6.4801E+03 6.3601E+03
u_i_hihi 4.5085E+06 4.4136E+06 2.6102E+07 4.5087E+06 4.6922E+06 1.0856E+07 7.6376E+06 4.4136E+06
u_i_hilo 9.6610E+04 9.4856E+04 2.7279E+05 9.3006E+04 1.0298E+05 1.8464E+05 1.3080E+05 9.4856E+04
u_i_lohi 1.8569E+05 1.4382E+05 8.3361E+05 1.4382E+05 1.4391E+05 3.3721E+05 2.5974E+05 1.4382E+05
u_i_lolo 3.3993E+03 3.1374E+03 8.9380E+03 3.1230E+03 3.4853E+03 5.4797E+03 4.4006E+03 3.1374E+03
u_s_hihi 2.5162E+07 6.6939E+06 1.9465E+07 6.5142E+06 7.1277E+06 1.2331E+07 9.3984E+06 6.6939E+06
u_s_hilo 6.0536E+05 1.2659E+05 2.5036E+05 1.2354E+05 1.4905E+05 1.6985E+05 1.5567E+05 1.2659E+05
u_s_lohi 6.7469E+05 1.8615E+05 6.0323E+05 1.8796E+05 1.9432E+05 3.6149E+05 2.8610E+05 1.8615E+05
u_s_lolo 2.1042E+04 4.4361E+03 8.9384E+03 4.4052E+03 5.8370E+03 6.2136E+03 5.5996E+03 4.4361E+03

TABLE VI. NUMERICAL RESULTS OF MAKESPAN VALUE FOR 1024 × 32 INSTANCES
Instance MET MCT OLB SA F-DM B-DM W-DM
u_c_hihi 1.5447E+08 3.2833E+07 4.2817E+07 3.7301E+07 3.5554E+07 3.3651E+07 3.2833E+07
u_c_hilo 1.5504E+07 3.2458E+06 4.4054E+06 3.2458E+06 3.9253E+06 3.9253E+06 3.2458E+06
u_c_lohi 1.4151E+04 3.0587E+03 4.4132E+03 3.0587E+03 3.7370E+03 3.2375E+03 3.0587E+03
u_c_lolo 1.5675E+03 3.2628E+02 4.4475E+02 4.1438E+02 4.0760E+02 3.3570E+02 3.2628E+02
u_i_hihi 7.4620E+06 7.5671E+06 8.4914E+07 7.5671E+06 2.3937E+07 1.6626E+07 7.5671E+06
u_i_hilo 7.6598E+05 7.1313E+05 7.8322E+06 7.1313E+05 2.7569E+06 1.5649E+06 7.1313E+05
u_i_lohi 8.5439E+02 7.5410E+02 8.6143E+03 7.5410E+02 2.2689E+03 1.7735E+03 7.5410E+02
u_i_lolo 9.1120E+01 7.2390E+01 9.0081E+02 7.2390E+01 2.8137E+02 1.5366E+02 7.2390E+01
u_s_hihi 8.4821E+07 1.9008E+07 7.7562E+07 1.9008E+07 3.5030E+07 2.6025E+07 1.9008E+07
u_s_hilo 8.0988E+06 1.8255E+06 8.1962E+06 1.8255E+06 3.7373E+06 2.4675E+06 1.8255E+06
u_s_lohi 8.3377E+03 1.8220E+03 7.9978E+03 1.8220E+03 4.3091E+03 2.4676E+03 1.8220E+03
u_s_lolo 8.0161E+02 1.9423E+02 8.2890E+02 1.9423E+02 3.6628E+02 2.6774E+02 1.9423E+02

TABLE VII. NUMERICAL RESULTS OF RESOURCE UTILISATION VALUE FOR BOTH 512 × 16 AND 1024 × 32 INSTANCES
Instance MET

(512
× 16)

MCT
(512
× 16)

OLB
(512
× 16)

KPB
(512
× 16)

SA
(512
× 16)

F-DM
(512
× 16)

B-DM
(512
× 16)

W-DM
(512
× 16)

MET
(1024
× 32)

MCT
(1024
× 32)

OLB
(1024
× 32)

SA
(1024
× 32)

F-DM
(1024
× 32)

B-DM
(1024
× 32)

W-DM
(1024
× 32)

u_c_hihi 1 0.9539 0.9467 0.972 0.8905 0.9173 0.9740 0.9539 1 0.9355 0.8980 0.8058 0.9702 0.9698 0.9355
u_c_hilo 1 0.9707 0.9203 0.974 0.9209 0.9681 0.9736 0.9707 1 0.9461 0.8886 0.9461 0.8625 0.9562 0.9461
u_c_lohi 1 0.9690 0.9285 0.969 0.8326 0.9206 0.9762 0.9690 1 0.9226 0.8625 0.9226 0.8623 0.9424 0.9226
u_c_lolo 1 0.9515 0.9232 0.960 0.7279 0.9566 0.9733 0.9515 1 0.9501 0.8646 0.7075 0.8666 0.9713 0.9501
u_i_hihi 0.6286 0.9329 0.9512 0.929 0.8469 0.9546 0.9801 0.9329 0.6605 0.9122 0.9410 0.9122 0.9549 0.9665 0.9122
u_i_hilo 0.7506 0.9598 0.9559 0.954 0.8167 0.9196 0.9840 0.9598 0.6058 0.9126 0.9621 0.9126 0.9726 0.9607 0.9126
u_i_lohi 0.5366 0.9496 0.9340 0.937 0.9481 0.9547 0.9604 0.9496 0.5799 0.9167 0.9613 0.9167 0.9741 0.9733 0.9167
u_i_lolo 0.7404 0.9657 0.9796 0.968 0.7977 0.9674 0.9782 0.9657 0.5264 0.9178 0.9302 0.9178 0.9885 0.9768 0.9178
u_s_hihi 0.1971 0.9283 0.9671 0.928 0.8631 0.9863 0.9670 0.9283 0.0577 0.9134 0.9290 0.9134 0.9594 0.9711 0.9134
u_s_hilo 0.2142 0.9383 0.9246 0.951 0.7813 0.9802 0.9923 0.9383 0.0602 0.9326 0.9510 0.9326 0.9771 0.9746 0.9326
u_s_lohi 0.2167 0.9539 0.9620 0.946 0.8911 0.9831 0.9813 0.9539 0.0604 0.8980 0.9430 0.8980 0.8548 0.9705 0.8980
u_s_lolo 0.2212 0.9519 0.9510 0.950 0.7086 0.9514 0.9758 0.9519 0.0614 0.9037 0.9489 0.9037 0.8977 0.9711 0.9037

