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Abstract.  Magnetic relaxation measurements at 5K, 50K and 120K on BiFeO3 prepared by sol-gel auto combustion 

method shows stretched -exponential decay. These results shows the two factors viz, cooperative dynamics and rate of 

dynamics of spin, may be responsible for the low temperature magnetic-glassy behavior, concluded from bifurcation of 

zero field cooled (ZFC) and field cooled (FC) data of dc magnetization.  Temperature dependent dielectric measurement 

shows a possible phase transition, seen in the dielectric-relaxation time and dielectric constant in the range 200 – 240K. 

Comparison of dielectric and magnetization data indicates a possibility of magneto-electric coupling.  

Keywords: Sol-gel method, Magnetic relaxation, Cole-Cole plot. 

PACS: 75.10.Nr, 76.60.Es 

INTRODUCTION 

Bismuth Ferrite (BFO) is considered as a unique 

prototype among all the multiferroics even though it 

exhibits a weak magnetoelectric coupling. Recently, a 

lot of attention has been focused on the low 

temperature studies due to various noticeable phase 

transitions observed in this compound
1
. Particular 

interest of many researchers is to understand the origin 

of electrical anomaly and the spin freezing behavior 

seen at low temperatures
2
. In this context, this study 

reports the results of low temperature dielectric 

properties and magnetic relaxation behavior in the 

multiferroic compound of BiFeO3. 

EXPERIMENTAL DETAILS 

The pristine BiFeO3 sample is prepared by a sol-

gel auto-combustion method
3
 and characterized by x-

ray and neutron diffraction
4
. The magnetization 

measurements are carried out using Quantum Design 

make 9T PPMS-VSM in the temperature range of 2K 

to 350K. The temperature dependent impedance 

measurements are performed using a lock-in amplifier 

(SR 830) and closed cycle refrigerator (Janis) 

equipped with temperature controller (Lakeshore-

331).  

RESULTS AND DISCUSSIONS 

The magnetic relaxation measurements are carried 

out at 5K, 50K and 125K, (temperature range over 

which zero-field cooled (ZFC) and field-cooled (FC) 

curves bifurcate) using the following protocol. The 

sample is cooled from 350K to the target temperature 

in ZFC mode and allowed enough time for temperature 

to stabilize. Then a 6 Tesla magnetic field is applied at 

the rate of 100 Oe/sec and the field is held constant for 

one hour. Subsequently the field is reduced to zero (at 

100 Oe/sec) and the magnetization is measured 

continuously as function of time for 14400 secs (4 

hours). Fig.1 shows the normalized M(t)/M(t=0) 

versus time at T=125K. It can be seen the 

magnetization is continuously decreasing with time 

and it has not stabilized even after 4 hours. The 

exponentially decay of magnetization with time is 
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FIGURE 1.  Normalized ZFC of BFO measured as a function 

of time at T = 125K. Inset shows the variation of relaxation 

component (n) and relaxation time (τ) with temperature. 
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fitted to a stretched exponential Eq.1.  
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Here, M0 and Mr represent the intrinsic magnetic 

moment and glassy component mainly contributing to 

relaxation effect, respectively. Similar fitting of the 

magnetic relaxation data taken at other temperatures 

are attempted. Both the parameters (M0 and n) are 

found to decrease with decrease in temperature. The 

values of M0 are M0 (emu/gm) = 0.005 (120K), 0.0016 

(50K) and 0.00089 (5K). The decrease in M0 seems to 

indicate an increasing glassiness in the compound as T 

is lowered. Inset of Fig.1 shows the variation of 

relaxation component (n) and relaxation time (τ) as 

function of temperature. At 5K, the value of n is 0.75 

indicating fractal-exponential decrease and hence 

showing slight glassiness of the sample. With increase 

in temperature this value decreases to 0.68, indicating 

improvement in the exponential decrease. The plot of τ 

is indicating relatively faster dynamics at low 

temperature. Hence, from these data, it is very clear 

that two process are responsible for the glassy 

behavior of BFO: a non-cooperative spin dynamics as 

seen from the value of ‘n’ and rate of spin dynamics 

(may be due to spin frustration), evident from the 

value of ‘τ’. 

Fig. 2 shows the Cole Cole (ε′′ vs. ε′) plot obtained 

from impedance data in the temperature range of 300K 

to 20K. At room temperature, the data corresponds to a 

single semi-circle. As the temperature is lowered, the 

shape of the semicircle becomes asymmetric and only 

the high frequency region could be fitted to a semi-

circle. With further decrease of temperature, the 

asymmetry increases with simultaneous decrease in the 

radius as well as center of the semicircle. For 

temperature below 200K, a second semicircle at low 

frequency appears. For T < 160K, the radius and 

center of first semicircle saturates with no further 

temperature induced variation. The semicircles are 

fitted to the following equation. 
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From the fitting of Eq (2) to the dielectric data, one 

obtains ε
∞

= 0 and α = 0. The dielectric constant ε0 

(calculated using Eq. (2)) and relaxation time τ 

(calculated using Eq. (3)), as a function of temperature 

are shown in fig 3. 

From the thermal response of dielectric and relaxation 

time, the plot may be categorized under three regions 

as I (T > 240K), II (160 < T < 240K) and III (T < 

160K). Initially, as the sample is cooled from 300K, ε0 

decreases slowly whereas τ increases and attains 

maxima at T ~ 240K. On further lowering T, both ε0 

and τ decreases very steeply till 200K and then slowly 

till 160K. Below 160K both ε0 and τ becomes constant 

of temperature. The τ reflects the relaxation processes 

happening in the sample. This plot indicates two kinds 

of relaxation process (1) at high temperature (region I) 

and (2) at low temperature (region III), separated by a 

transition region II. Inset of fig. 3 shows the dc 

magnetization at 0.1 T with ZFC and FC plots. 

Interestingly, depending upon the response of ZFC and 

FC, the magnetization plot can also be divided into 

three regions of nearly same temperature range. At 
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FIGURE 2.  Cole - cole plot of ε′′ against ε′ measured in the 

temperature range of 300K to 20K. Solid lines correspond to 

the fitting of Eq. (2) to the experimental data points. 
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FIGURE 3.  Variation of dielectric constant (open symbol) 

and relaxation time (solid symbol) with temperature. The 

lines are only guide to eye. The inset shows the temperature 

dependence of magnetization, ZFC and FC at 0.1T 
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300K, the ZFC and FC data overlaps nicely and at low 

temperature the two bifurcates, which starts T ~ 240K. 

Further, the bifurcation is found to be growing 

gradually towards low temperature. Bifurcation in 

ZFC and FC data is considered as a measure of glassy 

nature in the sample. Hence the transition seen in the 

ε0 and τ plot may have their origin in the glassiness of 

the sample. There are also some reports on the 

possibility of magnetic glassy and coupled with weak 

polarization in the similar temperature range
1
. Hence, 

a magneto-dielectric measurement may be needed for 

better insight. 
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