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Abstract

The concepts of fuzzy products and their duals, namely, fuzzy coproducts are already known for fuzzy topological spaces.
In this paper the concepts of fuzzy equalizers and fuzzy pullbacks and their duals, namely, fuzzy coequalizers and fuzzy
pushouts are introduced for fuzzy topological spaces and various results concerning fuzzy products, fuzzy equalizers and
fuzzy pullbacks and their duals are explored. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ever since the introduction of the revolutionary
concept of fuzzy set by Zadeh [12] and fuzzy topo-
logical space by Chang [1], numerous topological
concepts in general topology have been generalized
successfully to fuzzy settings. There are many inter-
esting universal objects, such as, products, equalizers,
pullbacks and their duals, namely, coproducts, co-
equalizers, pushouts [6] in general topology, out of
which only two, namely, products and coproducts
have been studied in fuzzy settings by Hutton [5],
Mashhour et al. [7], Pu and Liu [8,9] and Wong
[10,11]. In this paper we introduce the concepts of
fuzzy equalizers, fuzzy pullbacks and their duals,
namely, fuzzy coequalizers, fuzzy pushouts for fuzzy
topological spaces and explore the results concerning
all such universal objects.

2. Preliminaries

Most of the concepts, notations and de�nitions
which we have used in this paper are standard by
now. But, for the sake of completeness, we recall the
terminologies used in the sequel. The other unex-
plained notations and de�nitions can be referred from
[1,8,9,12].
Let X be a nonempty set. A fuzzy set (f-set) A in

X is a function A :X → [0; 1]. 1X and 0X are the con-
stant fuzzy sets taking values 1 and 0, respectively,
on X . The collection of all fuzzy sets in X is denoted
by IX . We denote fuzzy sets in X by capital letters
A; B; C; : : : . A fuzzy topological space (fts) is denoted
by (X; T ) or simply by X unless explicitly mentioned
otherwise. Also in this paper, we de�ne fuzzy func-
tions via fuzzy points xt as has been done in [10,11],
even though by the usual concept of Zadeh [12], for
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any function f :X →Y and any fuzzy set A in X
with f(A)(y)= sup{A(x): f(x)=y} we always get
f(xt)=f(x)t .

3. Fuzzy product

In fact, the concepts of fuzzy products have already
appeared in the research work of Hutton [5], Mashhour
et al. [7], Pu and Liu [8] and Wong [10,11]. In order to
emphasize the universal property of the products we
formally put this concept in the form of a theorem.

Theorem 3.1. For any arbitrary family {A�: �∈L}
of fuzzy topological spaces the following hold:
(1) There exists a pair (P; p�) where P is an fts

and p� :P→A� is a fuzzy continuous (f-continuous)
map for each �∈L.
(2) (Universal property) For any fts X and a fam-

ily {’� : X →A�; �∈L} of f-continuous maps; there
exists a unique f-continuous map � :X →P such that
p��=’� for each �∈L.

Proof. (1) We take P to be the Cartesian product∏
A� [10] together with the product fuzzy topology

[10]. Recall that the product fuzzy topology on the
Cartesian product

∏
A� is the weakest fuzzy topol-

ogy that makes the projections p� :
∏

A�→A� f-
continuous [10]; moreover, the family of fuzzy open
sets (f-open sets) of the form p−1

� (U�), where U� is
f-open in A�, forms a subbase for the product fuzzy
topology on

∏
A� [10].

(2) De�ne � :X →P by �(xt)= (’�(xt))�∈L for all
fuzzy points (f-points) [8] xt ∈X . Clearly p��=’�

for each �∈L. � is f-continuous since for any f-open
set V =p−1

� (U�) (belonging to the fuzzy subbase) in
P; �−1(V )= �−1p−1

� (U�)=’−1
� (U�) is fuzzy open in

X (since ’� is f-continuous) for each �∈L.

De�nition 3.2. The pair (P; p�) in Theorem 3.1 is
called the fuzzy product of the family {A�: �∈L} of
fuzzy topological spaces.

The following proposition is an immediate conse-
quence of Theorem 3.1; it may be referred to as mass
cancellation law for fuzzy products.

Proposition 3.3. If (P; p�) is a fuzzy product of the
family {A�: �∈L} of fuzzy topological spaces and

’;  : X →P; X being an fts; are f-continuous maps
such that p�’=p� for each �∈L, then ’=  .

Proof. Consider the family {p�’ : X →A�; �∈L} of
f-continuous maps. By Theorem 3.1(2) p�’=p� 
factors through p� (’ and  being the factorizing f-
continuous maps). From the uniqueness of factoriza-
tion in the fuzzy products, it follows that ’=  .

Proposition 3.4. The fuzzy product of a family
{A�: �∈L} of fuzzy topological spaces is unique
upto fuzzy homeomorphism.

Proof. Let (P; p�) and (Q; q�) be two fuzzy prod-
ucts of the family {A�: �∈L} of fuzzy topological
spaces. By the universal property of (P; p�), there
exists a unique f-continuous map ’ :Q→P such
that p�’= q�, for each �∈L. Similarly by the uni-
versal property of (Q; q�) there exists a unique f-
continuous map  :P→Q such that q� =p�, for
each �∈L. Thus p�= q� =p�’ for each �∈L.
Also p�=p�1P for each �∈L. From the uniqueness
condition of the factorization of the fuzzy products,
it follows that ’ =1P; similarly, one proves that
 ’=1Q. Thus P and Q are fuzzy homeomorphic [1].

4. Fuzzy coproduct

The dual notion of fuzzy product is fuzzy coproduct.
The concept of fuzzy coproduct has already appeared
in the research work of Wong [10,11] and Pu and Liu
[9]. In order to emphasize the couniversal property we
put this concept in the form of a theorem.

Theorem 4.1. For any arbitrary family {A�: �∈L}
of fuzzy topological spaces the following hold:
(1) There exists a pair (S; i�), where S is an fts and

i� :A�→ S is an f-continuous map for each �∈L.
(2) (Couniversal property) For any fts X and a

family {’�: A�→X; �∈L} of f-continuous maps,
there exists a unique f-continuous map � : S→X such
that �i�=’� for each �∈L.

Proof. (1) We take S to be the fuzzy topological sum∐
A� [10] of the family {A�: �∈L} of fuzzy topolog-

ical spaces, i.e., S is the union of the disjoint fuzzy
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topological spaces A�×{�}; therefore,

S =
∐

�∈L

A�=
∨

�∈L

(A� × {�}):

An f-set U is f-open in S if and only if U ∧(A�×{�})
is f-open in A�×{�}, for each �∈L. We observe that
U ∧ (A� × {�}) is the restriction U |(A�×{�}) of the
fuzzy set U to the (ordinary) set A� × {�} [10]. We
have fuzzy inclusion maps i� :A�→ S; �∈L, de�ned
by i�(zt)= (zt ; �); zt ∈A� and i� is f-continuous [10].
(2) De�ne � : S→X by �(zt ; �)=’�(zt) for

zt ∈A�; �∈L. Clearly, � is the only fuzzy map with the
property that �i�=’�. For proving the f-continuity
of �, consider any f-open set V in X. Then

�−1(V ) =
∨

�∈L

(�−1(V ) ∧ (A� × {�}))

=
∨

�∈L

’−1
� (V )

which is f-open in S since ’� is f-continuous for each
�∈L. Thus � is f-continuous.

De�nition 4.2. The pair (S; i�) in Theorem 4.1 is
called the fuzzy coproduct of the family {A�: �∈L}
of fuzzy topological spaces.

The following proposition is an immediate conse-
quence of Theorem 4.1; it may be referred to as mass
cancellation law for fuzzy coproducts.

Proposition 4.3. If (S; i�) is a fuzzy coproduct of the
family {A�: �∈L} of fuzzy topological spaces and
’;  : S→Y; Y being an fts, are f-continuous maps
such that ’i� =  i� for each �∈L; then ’=  .

Proof. The arguments of the proof are dual to the
arguments of the proof of Proposition 3.3.

Proposition 4.4. The fuzzy coproduct of a family
{A�: �∈L} of fuzzy topological spaces is unique upto
fuzzy homeomorphism.

Proof. The arguments of the proof are dual to the
arguments of the proof of Proposition 3.4.

5. Fuzzy equalizer

We now deal with another universal construction,
namely the fuzzy equalizer.

Theorem 5.1. For any pair of f-continuous maps
f; g :A→B the following hold:
(1) There exist an fts E and an f-continuous map

e :E→A such that fe= ge.
(2) (Universal property) For any fts X and f-

continuous map ’ :X →A satisfying f’= g’, there
exists a unique f-continuous map � :X →E such that
’= e�.

Proof. (1)We de�neE byE={xt ∈A:f(xt)= g(xt)}
and impose the fuzzy subspace topology [4] on E.
The fuzzy inclusion map e :E→X is de�ned by
e(xt)= xt ; xt ∈E; clearly e is f-continuous [10] and
fe= ge.
(2) De�ne an f-map � :X →E by �(xt)=’(xt); xt

∈X . Since f(’(xt))=f’(xt)= g’(xt)= g(’(xt)),
we see that ’(xt)∈E. Since e�(xt)= e(�(xt))= �(xt)
=’(xt); xt ∈X we have e�=’: � is f-continuous
since for any f-open set U in E; �−1(U )=
�−1(e−1(U ))= �−1e−1(U )=’−1(U ) is f-open in X
(since ’ is f-continuous). Clearly, � is unique.

De�nition 5.2. The pair (E; e) in Theorem 5.1 is
called the fuzzy equalizer of the f-continuous maps
f; g :A→B.

6. Fuzzy coequalizer

The dual notion of fuzzy equalizer is fuzzy co-
equalizer.

Theorem 6.1. For any pair of f-continuous maps
f; g :A→B the following hold:
(1) There exist an fts Q and an f-continuous map

q :B→Q such that qf= qg.
(2) (Couniversal property) For any fts X and f-

continuous map ’ :B→X satisfying ’f=’g, there
exists a unique f-continuous map � :Q→X such that
’= �q.

Proof. (1) De�ne Q̃ by Q̃= {(f(xt); g(xt)): xt ∈A}⊂
B × B. Note that Q̃ need not be a fuzzy equivalence
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relation on B [10]. Let R be the smallest fuzzy subset
of B×B containing Q̃ that de�nes a fuzzy equiva-
lence relation ∼ on B; for ys ∈B, let [ys] denote the
fuzzy equivalence class of ys. Let Q=B=∼; Q has
the quotient fuzzy topology [10]. De�ne q :B→Q
by q(ys)= [ys]; ys ∈B; q is f-continuous [10].
Since for any xt ∈A; f(xt)∼ g(xt), it follows that
q(f(xt))= [f(xt)]= [g(xt)]= q(g(xt)), i.e., qf = qg.
(2) De�ne an f-map � :Q→ X by �([ys])=’(ys).

To show that � is well de�ned, let [ys] = [zu]∈Q, i.e.,
q(ys)= q(zu) such that (ys; zu)∈R. Now if we de�ne
Rq= {(ys; zu)∈B× B: ’(ys)=’(zu)} then it is easy
to see that Rq is a fuzzy equivalence relation. More-
over, since ’(f(xt))=’(g(xt)) for every xt ∈A, it
follows that (f(xt); g(xt))∈Rq; hence Q̃⊂Rq. There-
fore Rq⊃R (as R is the smallest fuzzy equivalence re-
lation on B containing Q̃). Thus, (ys; zu)∈R⊂Rq and
we have ’(ys)=’(zu). � is therefore well de�ned. �
is unique, f-continuous [10] and ’= �q.

De�nition 6.2. The pair (Q; q) in Theorem 6.1 is
called the fuzzy coequalizer of the f-continuous maps
f; g :A→B.

7. Fuzzy pullback

We shall now deal with another universal construc-
tion, namely, the fuzzy pullback.

Theorem 7.1. For any pair of f-continuous maps

A
f→ C

g← B the following hold:
(1) There exist an fts P and f-continuous maps

� :P→ A; � :P→ B such that f�= g�.
(2) (Universal property) For any fts X and f-

continuous maps ’ :X → A;  :X → B satisfying
f’= g , there exists a unique f-continuous map
� :X → P such that ’= ��;  = ��.

Proof. (1) Let P= {(xt ; ys)∈A× B: f(xt)= g(ys)}
⊂A × B where A × B has product fuzzy topology
[10] and P has fuzzy subspace topology [4]. Let
� :P→ A; � :P→ B be de�ned by �(xt ; ys)= xt ;
�(xt ; ys)=ys for all (xt ; ys)∈P, the usual fuzzy pro-
jection maps [10]; � and � are f-continuous [10].
Clearly, for any (xt ; ys)∈P; f(�(xt ; ys))=f(xt)=
g(ys)= g(�(xt ; ys)), so that f�= g� and hence, (1)
holds.

(2) De�ne an f-map � : X →P by �(zu)= (’(zu);
 (zu)). Since f’(zu)= g (zu), it follows that
(’(zu);  (zu))= �(zu)∈P. Clearly, ’= �� and
 = ��. To show that � is f-continuous, recall that the
f-open sets of P are of the form U ×V = �−1(U ) ∧
�−1(V ) where U and V are f-open in A and B, respec-
tively; hence �−1(U ×V )= �−1(�−1(U )∧ �−1(V ))
= �−1�−1(U )∧ �−1�−1(V )=’−1(U )∧  −1(V ) is
f-open in X since ’ and  are f-continuous [1]. For
showing the uniqueness of �, suppose that there exists
another �′ :X →P such that ’= ��′;  = ��′. Thus
��= ��′=’ and ��= ��′=  . By the uniqueness
property of the fuzzy projection maps (Theorem 3.1)
we have �= �′.

De�nition 7.2 The triplet (P; �; �) as stated in
Theorem 7.1 is called the fuzzy pullback of the
f-continuous maps

A
f→C

g←B:

8. Fuzzy pushout

The dual notion of fuzzy pullback is fuzzy pushout.

Theorem 8.1. For any pair of f-continuous maps

B
f←A

g→C

the following hold:
(1) There exists an fts Q and f-continuous maps

� :B→Q; � :C→Q such that �f= �g.
(2) (Couniversal property) For any fts X and

f-continuous maps ’ :B→X;  :C→X satisfying
’f=  g; there exists a unique f-continuous map
� :Q→X such that ’= ��;  = ��.

Proof. (1) Let B ∨ C be the disjoint union of
B and C, i.e., B ∨ C =(B×{1}) ∨ (C ×{2}).
On B ∨ C de�ne a fuzzy equivalence relation
∼ so that (f(xt); 1)∼ (g(xt); 2), xt ∈A. Let Q=
(B ∨ C)=∼; Q has the quotient fuzzy topol-
ogy [10]. Let � :B→Q and � :C→Q be de-
�ned by �(ys)=[(ys; 1)]; ys∈B; �(zu)=[(zu; 2)];
zu ∈C. Clearly, �(f(xt))= [(f(xt); 1)]= [(g(xt); 2)]
= �(g(xt)); xt ∈A, so that �f= �g. � and � are
f-continuous [10].
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(2) De�ne � :Q→X by �([(ys; 1)])=’(ys);
�([(zu; 2)])=  (zu). Clearly ’= �� and  = ��. To
show that � is f-continuous, consider an f-open set U
in X . Since ’ is f-continuous ’−1(U )= �−1(�−1(U ))
is f-open in B. Since � is an f-identi�cation [1], we
conclude that �−1(U ) is f-open in Q. For showing
the uniqueness of �, suppose that there exists an-
other �′ :Q→X such that ’= �′� and  = �′�. Thus
��= �′�=’ and ��= �′�=  . By the uniqueness
property of the fuzzy quotient map (Theorem 4.1) we
have �= �′.

De�nition 8.2. The triplet (Q; �; �) as stated in
Theorem 8.1 is called the fuzzy pushout of the
f-continuous maps

B
f←A

g→C:

9. Some results

The proof of the following theorem shows that
fuzzy pullbacks and fuzzy equalizers can be related
via fuzzy products.

Theorem 9.1. The following are equivalent:
(a) The fuzzy equalizer of any two f-continuous

maps f; g :A→B exists.
(b) The fuzzy pullback of any two f-continuous

maps A
f→C

g←B exists.

Proof. (a)⇒ (b): Consider the arbitrary f-continuous

maps A
f→C

g←B. Let A×B be the fuzzy product

of the fuzzy topological spaces A and B with fuzzy
projection maps pA :A×B→A and pB :A×B→B.
Let (E; e) be the fuzzy equalizer of the f-continuous
maps fpA; gpB :A×B→C; so e :E→A×B is
f-continuous and fpAe= gpBe (Theorem 5.1). Let
pAe= qA and pBe= qB; so qA :E→A, qB :E→B.
We claim that the triplet (E; qA; qB) is the fuzzy pull-

back of the f-continuous maps A
f→C

g←B. Let the fts

X and f-continuous maps ’ : X →A and  : X →B
be arbitrary with f’= g . Since A×B is the fuzzy
product of the fuzzy topological spaces A and B, by
Theorem 3.1, there exists a unique f-continuous map
� :X →A×B such that pA�=’; pB�=  . Since

(fpA)�=f(pA�)=f’= g = g(pB�)(gpB)� and
(E; e) is the fuzzy equalizer of the f-continuous maps
fpA and gpB, by Theorem 3.1, there exists a unique
f-continuous map � :X →E such that e�= �. Hence
qA�=pAe�=pA�=’; qB�=pBe�=pB�=  . Thus
the required fuzzy pullback is obtained.
(b)⇒ (a): Consider an arbitrary pair of f-

continuous maps f; g :A→B. Consider the f-con-
tinuous maps

A
�→B×B �B←B

de�ned by �(xt)= (f(xt); g(xt)); xt ∈A and �B(ys)
= (ys; ys), respectively. Let (E; e; e′) be the fuzzy
pullback of � and �B (Theorem 7.1) so that
e :E→A and e′ :A→B are f-continuous maps with
�e=�Be′. We claim that (E; e) is the fuzzy equal-
izer of the f-continuous maps f; g :A→B. We note
that p1�=f;p2�= g and p1�B=1B; p2�B=1B
where pi :B×B→B are the fuzzy projection maps,
i=1; 2. Therefore fe=p1�e=p1�Be′=1Be′= e′,
ge=p2�e=p2�Be′=1Be′= e′ and hence fe= ge.
Let X be an arbitrary fts and ’ : X →A be an
arbitrary f-continuous map with f’= g’. Then
p1�’=f’= g’=1Bg’=p1�Bg’, p2�’= g’=
1Bg’=p2�Bg’. By Theorem 3.1, �’=�Bg’. Since
(E; e; e′) is the fuzzy pullback of the f-continuous
maps A

�→B×B �B←B, by Theorem 7.1, there exists a

unique f-continuous map � :X →E such that ’= e�
(and e′�= g’) and this proves the point.

Theorem 9.1 can be dualized as follows:

Theorem 9.2. The following are equivalent:
(a) The fuzzy coequalizer of any two f-continuous

maps f; g :A→B exists.
(b) The fuzzy pushout of any two f-continuous

maps B
f←A

g→C exists.

Proof. The proof can be obtained by dualizing the
arguments of the proof of Theorem 9.1.
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