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Abstract:  Designing and tuning a proportional-integral-derivative (PID) controller appears 

to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) 

objectives such as short transient and high stability are to be achieved. Usually, initial designs 

obtained by all means need to be adjusted. Good responses can be expected for processes 

with various dynamics, including those with low- and high-order, small and large dead time, 

and monotonic and oscillatory responses. The method is developed based on a second-order 

plus dead time modeling technique and a closed-loop pole allocation strategy through the use 

of root locus plot 
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1.  Introduction:  

PID controller has been applied in various 

kinds of industry control fields, as its 

tuning methods are developing. In the past 

few decades, Ziegler-Nicole method which 

is for first-order-plus-time-delay was 

proposed by Ziegler and Nichols[1], 

Chien-Hrones-Reswick method about 

generalized passive systems was proposed 

by Chien, Hrones and Reswick[2], and so 

many tuning methods were developed such 

as pole placement and zero-pole 

elimination method by Wittenmark and 

Astrom, internal model control (IMC) by 

Chien[3]. The gain and phase margin 

(GPM) method was proposed by Astrom 

and Hagglund[4], the tuning formulae 

were simplified by W K Ho[5]. 

 

   They are thus more acceptable than 

advanced controllers in practical 

applications [6] unless response shows that 

it is not fulfill the requirement of the 

application. Owing to their popularity in 

the industrial world, many approaches 

have been developed to determine PID 

controller parameters for single input 

single output (SISO) systems [7]. In spite 

of the enormous amount of research work 

reported in the literature, many PID 

controllers are poorly tuned in practice [8], 

[9]. One of the reasons is that most of the 

tuning methods are derived for particular 

processes and situations, and therefore 

apply well only to their own areas. It is a 

common experience that it is not certain 

which tuning method should be chosen to 

provide good control to a given process. It 

would hence be desirable if there is a 

design method that works universally with 

high performance for general linear 

processes. 

 

    Let us take second order system for 

getting the good response after tuning. In 

this method first we reduce higher order 

system into second order system by using 

model reduction method. Complex 



variable is divided into two parts after 

applying angle condition. This model is 

able to generate peaks in its frequency 

response like those of oscillatory processes 

and these are not possible with the popular 

first-order plus dead time models on which 

most PID tuning formulae are based [10]. 

In spite of the low-order nature of this 

model, the fitting of its Nyquist plot to that 

of the real process is incredibly close over 

a frequency range important for control 

performance. After getting second order 

plus dead time system we need to design 

controllers which cancel out model pole. 

At last we get the integrator plus dead time 

system together with a constant gain that 

serves as a design parameter for 

determining the closed loop pole locations. 

Different closed loop poles are selected 

according to the damping ratio, delay to 

dead time ratio and dead time model. 

Satisfactory responses are obtained by 

using this relatively simple procedure. One 

more thing why it is convenient to use 

second order plus dead time for tuning of 

PID controller instead of first order plus 

dead time is that it generates peaks in the 

frequency response of oscillatory 

processes. Although first-order models are 

widely used for low-order modeling, they 

carry only real poles. Hence they are 

unable to generate peaks in the frequency 

response of oscillatory processes. So we 

are using second order plus dead time for 

PID tuning. 

 

    The paper is organized as follows: 

Section II includes higher order reduction 

method in which higher order system 

reduced into second order system and 

Section III include the PID tuning method 

in which damping ratio and speed of the 

response are used for tuning. Result and 

discussions are provided in Section IV. 

Section V concludes the paper.  

2. Higher Order Reduction Method: 

The transfer function  or the 

frequency response  of a process is 

given. The single loop controller 

configuration as shown in Fig.1 is adopted. 

A PID controller in the form of  

( ) I
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is to be used to control the process. The 

tuning objective is, to find out ,  and 

 in such way that it improve the 

response of the system for a general class 

of linear processes with different 

dynamics. 

 

  
Fig.1: Single-loop Controller Feedback System 

 

Consider the second-order plus dead 

time model with following structure:          
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where a, b, c, and t0 are unknowns to be 

determined. Depending on the values of  a, 

b, and c , the model may have real or 

complex poles. Hence it is suitable for 

representing both monotonic and 

oscillatory processes and yet of 

sufficiently low order. In Eq. (2) we first 

put s jw  then divide into two parts, real 

and imaginary part. We know that for 

finding out four unknowns we need four 

equations. So it can be constructed by 

fitting the process gain G(s) at two 

nonzero frequency points into Eq.(2). In 

this method, we pick the two points 

cs jw  and bs jw  where ) π( cG jw    



and ( ) ( 2)bG jw     such that 

( ) ( )c cG jw G jw  and ( ) ( )b bG jw G jw  

It follows that    

( ) ( ) ( )c c cG jw G jw G jw   

( ) ( ) ( )b b bG jw G jw G jw   

 

After solving these equations we get the 

values of a ,b and c that are given below: 
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For getting the value of t0 it is required to 

made some assumptions 
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To derive a good initial guess, we 

approximate sine and cosine function by 

the second order polynomial and then put 

that equation into equation (6), we get 
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From here we get the value of t0 that is 

delay function of the quadratic equation. 

  

3. PID Tuning Method:  

Now for tuning of the controller, first 

find the range, at which system is stable, 

by using Routh-Hurwitz criterion, 

 

                      1 ( ) ( ) 0G s H s   

It is solved to give 

0

b
k

t
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From here, we get the range of k which 

gives sufficient gain that stabilizes the 

system. The equivalent time constant  of 

a process is inversely proportional to its 

speed of response. For monotonic 

processes, the speed of response is 

reflected by the locations of the dominant 

poles. For oscillatory ones, it is related to 

the real part of the complex poles which 

determines the system attenuation and 

hence serves as a measure of the process 

speed. According to equivalent time 

constant principle [11], we have 
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Where a, b, c are model parameters that 

can be obtained from Eq. (3) to (5). 

Another variable is the damping ratio of 

the open loop plant which is defined as 
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The PID Controller which is written in Eq. 

(1) rewrite in new form as 
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 Where ( )DK k  , ( )PK k   and 

( )IK k  .We choose the controller 

zeros which cancel out model poles i.e. 

a  , b   and c  . Then resultant 

open loop transfer function is 
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Its closed loop pole can be selected from 

the root locus of the loop by assigning a 

proper value of k. 

 



Real and complex poles can be obtained 

from the closed loop. So, two possibilities 

are there. First either both are real or 

complex. In this method model pole 

should be cancelled out by controller zero 

but exact cancellation is not possible so 

approximate the zero to the nearest of 

model poles. One more reason for not 

exact cancellation is process can be of  any 

order while model is only of second order. 

For highly oscillatory processes, it is 

possible that the un-cancelled dynamics 

drive the system to heavy oscillation, and 

hence it is reasonable not to create 

additional oscillatory dynamics by having 

complex closed-loop poles. Real closed-

loop poles are chosen for the system 

instead. On the other hand, for non-

oscillatory or lightly oscillatory processes, 

the un-cancelled dynamics will not bring 

the system to severe oscillation, and hence 

it is good to introduce some overshoot by 

selecting complex closed-loop poles so as 

to speed up the response. Based on this 

theory it is separated closed loop selection 

into four parts. 

 

Case1: >0.7071  

Complex closed-loop poles on the root 

locus are chosen in this case. In order for a 

pair of the desired poles, 

 where  is the 

closed-loop damping ratio, to be on the 

root locus for the system, it follows 
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Now magnitude condition then assigns the 

value of k to 
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After applying phase condition on it and 

then put damping ratio = 0.707 
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Case II: 0 0.7071    and 00.15 1
t


   

In this case, we choose the closed-loop 

poles as real double poles on the root-locus        
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 Case III:  0 1
t
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In this case since delay to time constant is 

greater than 1 so value of k is slightly 

greater than in case 1, which is given as 
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 In this case complex close loop pole 

present so value of k is given as 
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P

I

D

K b

K k c

K a

   
   


   
        

 

4. Results and Discussions: 

 

Ex.1: Considered a non-oscillatory higher 

order system  
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By using Model reduction second order 

system is 
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The PID parameters are calculated as 

2.2881
( ) 2.0223 2.2684K s s

s
    

Response of the system has been shown in 

Figure 2. 



 Fig.2: Step response of   
0.5 2 2( ) ( 1) ( 2)sG s e s s    

 

Analytical analysis has been shown in 

Table. 

TABLE I 

PARAMETERS RESPONSE VALUES 

% Overshoot            2% 

Peak Time           9 sec 

Rise Time           3.2sec 

Peak Value             2 

Settling Time            10 sec 

           

Ex.2: Considered a high-order and 

moderately oscillatory process  
0.3
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PID parameters are calculated as 

5.310
( ) 3.780 2.260K s s

s
    

Response of the system has been shown in 

Figure 3. 

 

Fig.3: Step response of 
0.3 2( ) ( 2 3)( 3)sG s e s s s     

 

Analytical analysis has been shown in 

Table. 

Table II: 

PARAMETERS    
RESPONSE 

VALUES 
 

 
Z-N 

method 
Ho Method Proposed 

% Overshoot 20% 11.7% 3.0% 

Peak Time 4.8sec 4.8sec 8.7sec 

Rise Time 2.3sec 2.6sec 2.7sec 

Peak Value 1.20 1.17 1.03 

Settling Time 18.1sec 10.2sec 7.2sec 

 

In this high-order and moderately 

oscillatory process percent overshoot 

decreased by large extent and settling time 

is also reduced. So stability as well as 

speed of the response both improved 

simultaneously compares to the other 

method which is shown in Fig 3. 

5. Conclusion: 

PID controller tuning method that works 

for better performance in a self- regulating 

with different dynamics has been 

proposed. By this method it can be 

improved the performance of the system 

which is either monotonic or oscillatory. 

Higher order system reduced into second 

order plus dead time that is able to model 

process feature. With the help of pole zero 

cancellation in the model and controller, 

closed-loop poles can be easily assigned 

by the conventional root locus analysis 

method. 
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