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Efficient Architecture for Bayesian
Equalization Using Fuzzy Filters
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Abstract—A normalized Bayesian solution is derived for digital
communication channel equalization which uses estimates of
scalar channel states. This equalizer is termed as a normalized
Bayesian equalizer with scalar channel states (NBEST). The
relationship between the NBEST and fuzzy equalizers is derived
and computational aspects of fuzzy equalizers are investigated
using different types of fuzzy basis functions. It is shown that the
fuzzy equalizer in general demands much lower computational
complexity than the optimum equalizer. Ways to further reduce
the computation complexity of fuzzy equalizers is proposed and
their performance evaluated. A novel scheme to select a subset of
channel states close to the received vector, resulting in consider-
able reduction in the computational complexity, is also proposed.
A fuzzy equalizer with this modified membership function is
shown to perform close to the Bayesian equalizer.

Index Terms—Bayesian equalizers, digital communication sys-
tems, equalizers, fuzzy systems.

I. INTRODUCTION

T HE SPEED OF transmission of information over a com-
munication system is limited due to the effect of inter-

symbol interference (ISI) in the presence of noise. The process
of removing the effects of ISI in the presence of noise to
faithfully reconstruct the transmitted symbols is termed equal-
ization. The structure of the communication system discussed
here is presented in Fig. 1.

The information symbol to be transmitted is transmitted
through a linear dispersive channel described by

(1)

Here is the channel tap length with being the individual
taps and refers to the additive white Gaussian noise
(AWGN). The noise-free received sample of the channel is
referred to as and the received samples are referred
as . The equalizer reconstructs the transmitted symbols

by observing the noisy received signal vector
, where is the

order of the equalizer. Normally a delay is associated with
detection and the equalizer output is a delayed form of the
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transmitted sequence and can be represented as . Here
we assume that the communication system is binary in nature
so that the transmitted symbol is taken from or
with equal probability. This makes the analysis easier and the
same can be extended to any digital communication system
in general.

The process of adaptive equalization can be classified into
two categories, namely, sequence estimation and symbol de-
cision equalization. The optimal solution for the sequence
estimation equalizer is maximum-likelihood sequence estima-
tion (MLSE) [1]. This equalizer can be implemented using
the Viterbi algorithm [2]. The process of MLSE demands
high computational complexity and requires knowledge of the
channel. Generally the channel information is not available at
the receiver end. For this reason a channel estimator is included
in the MLSE equalization. The channel estimation can be
a difficult process under certain circumstances, e.g., when
the channel is associated with nonlinear terms. The symbol
decision equalizers are relatively simple and computationally
less complex than the MLSE. They in fact do not always
require an explicit channel estimate. The optimal solution for
a symbol equalizer can be formed from the Bayes probability
theory [3] and is termed the Bayesian equalizer. The symbol
decision equalizer can also be considered as an inverse filter
[4] where an adaptive linear filter based on algorithms like
least mean square (LMS) or recursive least square (RLS) are
used. The adaptive filter here finds the channel inverse in
the presence of noise providing a linear decision boundary.
Generally the decision function demanded by an optimal
equalizer is nonlinear in nature. The problem of equalization
can be considered as a classification problem where the
equalizer classifies the received signal vector to one of the
signal constellations. With this perspective, the equalization
can be treated as a nonlinear classification problem and for this
reason the performance of the linear equalizers are far from
optimal. This has led to the search for nonlinear equalizers
that can provide a nonlinear decision function. Nonlinear
equalizers using an artificial neural networks (ANN’s) [5], [6],
[7] and radial basis function (RBF) networks [5], [8], [9] have
been successfully developed. The ANN equalizer provides
a nonlinear decision function but the convergence of the
network suffers due to its multimodal local minima. The RBF
equalizers, on the other hand, provides localized functional
behavior demanded by the optimal equalizer decision function
but training of the centers is difficult. However, the orthogonal
least square algorithm (OLMS) [10] or clustering [11] can
be used to train the centers. Clustering in multidimensional
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Fig. 1. A communication system.

space is computationally complex and require long training
sequences. This has led to the search for other nonlinear
equalization techniques. A fuzzy equalizer based on a fuzzy
adaptive filter was proposed in [12] and an equalizer based
on a fuzzy system was proposed in [13]. These equalizers
performed well but could not provide the Bayesian equalizer
decision function. Additionally, the equalizer based on a fuzzy
adaptive filter demanded high computational complexity. This
paper investigates a new form of implementation of Bayesian
equalizers using fuzzy filters.

The paper is outlined in six sections. Section II discusses
the Bayesian equalizer and derives the process of its fuzzy
implementation. Section III introduces the training schemes
for fuzzy equalizers. Section IV discusses the advantages of
implementing a fuzzy equalizer over the Bayesian equalizer.
In Section V we present some of the simulation results, and
Section VI provides the conclusions.

II. BAYESIAN EQUALIZER AND ITS FUZZY IMPLEMENTATION

The general symbol decision equalizer depicted in Fig. 1 is
characterized by equalizer order and delay . The optimal
decision function for this equalizer is derived from Baye’s
probability theory [3] and can be represented as [14]

(2)

Here represents the equalizer input vector, represents
the channel noise variance, and and
are the positive and negative channel states, respectively. The
terms and are the number of positive and negative

channel states respectively and they are equal. With the
assumption of binary transmission, the sign of the decision
function in (2) is sufficient to provide the decision and scaling
terms can be ignored. With this, the decision function can be
represented as

(3)

where is the number of channel states, equal to
with , and are the weights associated
with each of the centers. if and
if . It is also observed that each of the channel
state vectors has components which can be represented as

. Rewriting the squared
norm of (3) as a summation and exploiting the properties of
the function yields

(4)

where is the th component of channel state vector,
corresponding to the th component of the input vector

.
Equations (3) and (4) provide alternative realizations of

the Bayesian decision function. In (3) the Euclidian distance
between input vector and each of the channel states

is first calculated. The result is then scaled by
and the exponential function is evaluated. These are linearly
combined to provide the decision function. Alternatively in (4),
scalar distances are calculated, scaled by and the
exponential function evaluated. The products of exponential
functions associated with particular channel states are linearly
combined to provide the decision function. Both of these func-
tions require the knowledge of channel states for estimating
the decision function. It was noted in [15] that (4) may be
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preferable to (3) for implementation. This approach is adopted
here.

In line with the normalized radial basis function derived
by Cha et al. [16], we can form a normalized Bayesian
equalizer which forms an estimate of the transmitted symbols
themselves rather than a decision function. This we represent
as a normalized Bayesian equalizer with scalar channel states
(NBEST). The NBEST provides a localized behavior and
nonlocalized behaviors whereas the equalizer in (3) provides
localized behavior

(5)
The estimation of the decision function for Bayesian equal-

izer given by (3) and (5) needs the channel states. The channel
states can be estimated during the training period. An insight
into the equalizer decision function in (5) reveals that the
equalizer contains channel states each of dimensions.
The number of scalar channel states for any channel is

. Each of the components of channel states are
taken from the set of scalar channel states. With this
understanding, the equalizer decision function can be presented
as

(6)

where is a basis function of the form

(7)

Here is the basis function output generated from the scalar
center , corresponding to the scalar center of
element of , where and .

in (6) corresponds to the channel states number added for
convenience, and are sufficient to specify the parameters
for the equalizer. In (6), computation of is the same

as the computation of in (3).

A. Fuzzy Implementation

Wang and Mendel [12] proposed fuzzy LMS and fuzzy
RLS filters and used them for nonlinear channel equalization.
Subsequently, fuzzy filters of different structures were used
for equalization [17]–[20] in a variety of applications. In our
fuzzy implementation of the Bayesian equalizer we use the
architecture of [12] which was used in conjunction with the
RLS training algorithm. In this fuzzy filter, setting the mem-
bership function centers with scalar channel states, the spread
parameter with the channel noise variance and generating the
membership functions with (7), an equalizer with fuzzy filter
can be represented as

(8)

where is the membership function generated from the
scalar center , corresponding to the th center of the

th input scalar. In this is a free design parameter of the
filter which is adjusted during the training process. Here
corresponds to all possible combinations of the membership
function taking one from each input scalar and .
The membership function is generated with (7) whereis
replaced by . The superscript is used for convenience and
the terms and specify all the parameters of the function.
The equalizer function (8) finds a weighted sum of the fuzzy
basis functions (FBF’s) [21]–[23] given by

(9)

It may be noted that this FBF uses a singleton fuzzifier, product
inference, center of gravity (COG) defuzzifier, and Gaussian
membership function, and the filter in (8) forms the linear
combination of these FBF’s.

On observing the decision functions of NBEST (6) and
the fuzzy equalizer (8), it can be seen that the NBEST has

terms and the fuzzy equalizer has
terms. From this it is seen that the number of terms in NBEST
is a subset of the terms in the fuzzy filter. If the channel states
are known to the receiver, the corresponding weights of
terms of the fuzzy filter can be assigned depending on
the values of in NBEST and the remaining terms can
be neglected to provide the optimum decision function. Hence
the fuzzy equalizer decision function can be represented by
(6) where only fuzzy basis functions out of the available

functions are used. This reduces the computations involved
with fuzzy basis functions and provides an optimum
decision function. With this we can represent (6) as the fuzzy
implementation of the Bayesian equalizer.

B. Fuzzy Equalizer Structure

The structure of the fuzzy equalizer is presented in Fig. 2.
Here, the incoming signal sample is presented to the mem-
bership function generator. Each of the components of the
membership function generator produces an output, char-
acterized by its center which are placed at the scalar channel
states. Here corresponds to the equalizer input number and

represents the fuzzy center at the scalar channel states. The
membership functions are to be generated from each of the
received scalars. The equalizer input vector is formed from
the time-delayed samples of the reveived scalar. With this the
membership function for input scalar will be the
delayed membership functions for input . This can be
represented as

(10)

where and .
The inference block of the equalizer has units. Each of

these units receives only one from each of the inputs
to the equalizer, and the combination of these is decided by
the combination of the scalar channel states constituting the
channel states. The output of the inference units are suitably
weighted and added to provide and . The output of the
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Fig. 2. Fuzzy implementation of Bayesian equalizer.

TABLE I
THE CHANNEL STATES CALCULATION FOR CHANNEL

0:5 + 1:0z�1 WITH m = 2; d = 0; ns = 8 AND M = 4

equalizer is computed by the equalizer function presented in
(6) which is . The output of the decision
function passed through the sigmoid nonlinearity forms the
detected sample. We consider an example to illustrate the
working of this equalizer:

Example 1: We consider the channel .
The equalizer order is and delay . The signal-to-
noise ratio (SNR) is 8 dB. This provides and .
The channel states for this equalizer are presented in Table I.
The channel states for this are . The scalar
channel states constitute each of the possible or .
It is also seen that the -dimensional channel states take
their components from the available scalar channel states.

The weights of the equalizer decision function are and
for positive and negative states, respectively.

For fuzzy implementation, the centers for membership func-
tion generators are placed at scalar channel states

and . The basis functions
corresponding to , will be a delayed version of

corresponding to . The inference block will
consist of subblocks. The products

are added to provide and are
added to provide . The calculation of the decision function
next is straightforward.

The decision boundary of this equalizer is presented in
Fig. 3. Here Fig. 3(a) presents the decision boundary of the
fuzzy equalizer and the Bayesian equalizer when the channel
states and noise statistics are known, where as in Fig. 3(b) the
fuzzy equalizer uses the estimated channel states and noise
statistics and the Bayesian equalizer uses the true channel pa-
rameters. This shows that the fuzzy equalizer is able to provide
a near optimal decision boundary even at a low SNR of 8 dB.

The fuzzy equalizer developed here uses an FBF with
product inference and COG defuzifier. Owing to the close
relationship of this equalizer with the Bayesian equalizer, this
equalizer can also be implemented with an RBF [9] with scalar
centers [24]. However, use of a fuzzy system to implement
this equalizer provides the possibity of using other forms of
inference rules and defuzzification processes. This can provide
some of the alternate forms of fuzzy implementation of the
Bayesian equalizer.
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(a)

(b)

Fig. 3. Fuzzy equalizer decision boundary for channel0:5+1:0z�1, equal-
izer orderm = 2, delayd = 0 with 8-dB SNR. (a) Actual states,. (b) Bayesian
equalizer with actual states and fuzzy equalizer with estimated states.

1) Inference Rule:The fuzzy equalizer discussed above
works with product inference. The output of each of the

inference rules are generated with the product rule. It is
also seen from the membership function generator (7) that
the membership for any input is . Hence the
output of any of the inference rules will be in the range

and will always be less than the smallest membership
input to the rule. For this reason the product inference rule
can be approximated by minimum inference rule. With this
modification the equalizer decision function would be

(11)

Here selects the minimum of the inputs to each
of the components of the inference block. With this, the
computation of the products has been replaced by comparisons
which are easy to implement in hardware.

2) Defuzzification Process:The output layer of the fuzzy
equalizer [see (6) and (8)] finds a weighted sum of the
inference rules and normalizes this with the inference output.
The weights associated with the inference rules are . It
is seen that the rule nearest to the input vector would provide
the maximum output, and the contribution from the remaining
rule will be minimal. These characteristics of the decision
function can be utilized by replacing the COG defuzzifier with
a maximun defuzzifier. This defuzzifier can be combined either
with product inference or with the minimum inference. With
this, the equalizer decision function can be represented as

(12)

(13)

Here corresponds to the maximum of the available
inferences and is the weight associated with the

maximum inference. With this decision function, (12) and
(13) use maximum defuzzification, where the output of the
equalizer is based on the maximum of the inference rules
and the weight associated with it. The equalizer (12) uses
product inference where as (13) uses the minimum inference
rule. In both of these defuzzification processes, computation
of weighted sum of the inference is replaced by a comparison
operation.

With the above analysis, a variety of fuzzy equalizers to
approximate the Bayesian decision function can be designed.
These equalizers can provide alternative equalizer architec-
tures with a reduction in computational complexity.

III. FUZZY EQUALIZER TRAINING

The fuzzy equalizer developed here can be trained in two
steps.

A. Step 1: Channel State Estimation

The estimation of the decision function using the fuzzy
equalizer given by (6) and (8) needs the scalar channel
states and their combination which forms the channel states.
Estimation of these requires the channel information which in
most cases is not available. However, these can be estimated
during the training period and can be achieved in the following
ways [14].

• The channel model can be identified using some algo-
rithms like the LMS. With the knowledge of the channel
it is straightforward to calculate the scalar channel states
and their combination which forms the channel states.
This technique may fail if the channel suffers from
nonlinear distortion.

• The scalar channel states can be computed with scalar
supervised clustering. This in conjuction with the training
signal can provide the scalar states combinations that form
the channel states [11]. The number of scalar channel
states depend only on channel order and hence will
demand a smaller training sequence compared to vector
channel state estimation. Fig. 4 presents the learning
curve for scalar channel state estimation for channel

. Here the channel
state estimation has been averaged over 20 experimants.
From the training curves it is seen that the scalar chan-
nel states converge to the desired states in around 30
iterations.

B. Step 2: Equalizer Weight Update

Once the scalar channel states have been estimated, the
fuzzy rules can be formed. Next the equalizer is constructed
with weights of the inference rules assigned to de-
pending on whether the rule belongs to a positive or negative
channel state. The channel states and the noise statistics
estimation can involve some error. In order to compensate for
this the weights associated with the rules can be fine tuned with
a gradient descent algorithm and a training signal. This step
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Fig. 4. Scalar channel states training curve for channel0:5 + 0:81z�1+

0:31z�2, the actual channel states�1:62; �1:0; �0:62; and�0:00.

would take only a few samples as the initial weight assignment
is very close to the final values.

IV. A DVANTAGES OF THE FUZZY EQUALIZER

We have seen that the fuzzy implementation of NBEST
provides the Bayesian equalizer decision function. An insight
into the Bayesian decision function (4) and the fuzzy imple-
mentation of NBEST shows some of the advantages of fuzzy
implementation of a Bayesian equalizer. These advantages are
summarized below.

A. Computational Complexity

After training is complete, the equalizer parameters are fixed
and the actual detection of transmitted symbols starts. The
computational requirements of a fuzzy equalizer and NBEST
are the same. The computations required for estimating each
of the samples with the Bayesian equalizer and its RBF
implementation, NBEST and the fuzzy equalizer are listed in
Table II. The second part of the table provides the typical
computational requirements for an equalizer with

and . From this table, the following inferences
can be arrived at with regard to the computational advantages
of fuzzy implementation of Bayesian equalizer.

• Fuzzy implementation of the Bayesian equalizer provides
a significant reduction in addition, division and
evaluations.

• The time shift property of the membership function
generation provides a considerable reduction in evaluation
of functions and division.

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON FORBAYESIAN

EQUALIZERS, NBEST, AND FUZZY EQUALIZERS AND FOR

EQUALIZERS WITH m = 4; nh = 3; ns = 64; AND M = 8

TABLE III
COMPUTATIONAL COMPLEXITY COMPARISON FORDIFFERENT FUZZY EQUALIZERS

AND FOR EQUALIZERS WITH m = 4; nh = 3; ns = 64 AND M = 8

• Evaluation of and division in a Bayesian equalizer are
related to which in turn is exponentially related to the
equalizer order but in the fuzzy equalizer they are related
to which is independent of the equalizer order. Hence,
with the increase in the equalizer order the reduction in
computational complexity for fuzzy equalizer over the
Bayesian equalizer can be exponentially related.

• Introduction of the minimum inference rule and maximum
defuzzification replaces the product computation by a
comparison operation which is very easy to implement
and fast to process in real time implementation. The
computations involved for estimation of each symbol with
this modification is presented in Table III. The second part
of the table provides the typical figure for an equalizer
with and . From this it is
seen that using minimum inference or maximum defuzzi-
fication replaces the product computation by comparison
operation considerably. These provide an alternate ap-
proximation to the Bayesian decision function evaluation
with a reduction in the computational complexity.

In this paper we have compared the computational complex-
ity of a fuzzy equalizer with a Bayesian equalizer which can be
implemented with an RBF. The Bayesian equalizer provides
the optimum performance for symbol spaced equalizers pro-
viding the upperbound for bit error rate (BER) performance for
any symbol spaced equalizers. The computational complexity
adavantages and disadvantages of Bayesian equalizer against
MLSE and linear equalizers are discussed in [25] and [14].
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Fig. 5. Decision boundary for membership function modification for channel
0:5 + 1:0z�1, equalizer orderm = 2, delayd = 0.

B. Subset State Selection

In the Bayesian equalizer (3), the equalizer decision function
is based on a weighted sum of basis functions centered
at the channel states. From the decision function it can be
seen that the contribution of a channel state to the decision
function is inversely related to its distance from the input
vector. Under this circumstance, if a set of channel states
near the input vector can be found, the equalizer decision
function can be approximated with this subset of the available

channel states. Chng [26] proposed a process of selecting a
subset of available channel states to approximate the Bayesian
decision function with a smaller number of channel states. In
a fuzzy implementation of the Bayesian equalizer it is very
easy to employ subset state selection to reduce the number of
inference rules, which reduces the computation involved. This
involves modification of the membership function. In general,
all membership functions corresponding to a input provide
nonzero output irrespective of the input scalar. If an input is
far from a scalar center, the membership function from that
center will be neglegible and can be neglected. Considering
this, it may be enough to use only the two nearest centers
from the observed received scalars for membership function
calculation and the membership function contribution from
other centers can be neglected. This provides only two nonzero
membership function out of the available functions for each
input. This would generate only two nonzero inferences against

. Using some simple checks to determine these rules,
the decision function can be computed. We illustrate this with
an example.

Example 2: We consider the problem presented earlier. The
equalizer has eight channel states constructed from four scalar
channel states. The equalizer decision making capability under
this circumstance is presented in Fig. 5. Here the positive
channel states are shown asand negative channel states are
shown as . The membership function generation for and

TABLE IV
COMPUTATIONAL COMPLEXITY COMPARISON FORFUZZY EQUALIZERS WITH

MODIFIED MEMBERSHIPFUNCTION GENERATION FOR SUBSET STATE SELECTION

AND FOR EQUALIZERS WITH m = 4; nh = 3; ns = 64; AND M = 8

are shown along the sides. Consider an input vector
. This input vector provides nonzero membership

functions for and . These, when translated with
inference rules with channel states intotwo dimensions, would
provide only two nonzero inference rules corresponding to
the channel states and . The region
of space that will be covered by the membership functions is
shown shaded in the figure. The decision function for this input
region is a straight line equidistant from both centers in the
space covered by the membership functions. With a change in
the input vector, different sets of inference rules corresponding
to channel states will be selected, providing a combined
decision boundary, as shown. All these individual decision
boundaries join to provide a nonlinear decision boundary. The
region in which the equalizer is unable to approximate the
decision region is also shown in the figure.

This form of modification of the membership function can
reduce the computational complexity of the equalizer consid-
erably. The computation involved per sample calculation with
this form of membership function is presented in Table IV.

This modification of the membership function provides a
natural method for selecting a subset of the available channel
states reducing the computational complexity. However, if the
scalar channel states are very closely spaced, this process of
selecting only two membership functions may not provide
good performance. Under this circumstance, however, more
than two nonzero membership functions of the input vector
may be used. With the increase in the number of membership
functions, the number of nonzero inference rules will increase,
providing a better performance at the cost of higher computa-
tion. However, if a subset of all the available scalar channel
states are selected, the numbers of valid fuzzy rules will be
less than . This provides a way of trading performance for
complexity within the equalizers.

V. RESULTS AND DISCUSSION

Fuzzy equalizers developed in the previous sections
were evaluated with extensive simulations. To study the
performance of the fuzzy equalizers, BER performance was
evaluated for different fuzzy equalizers and compared with the
Bayesian equalizer performance. The equalizer performance
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Fig. 6. Fuzzy equalizer BER performance with different types of fuzzy
systems for channelHch3(z) = 0:407 � 0:815z�1 � 0:407z�2, order
m = 5, delay d = 3, centers at�1:629; �0:815; and�0:001. Fuzzy-1:
Product Inference and COG defuzzifier; Fuzzy-2: minimum inference with
COG defuzzifier; Fuzzy-3: minimum inference with maximum defuzzifier.

with different types of inference rule and membership function
was studied. The channel considered for this is

. The BER performance of three
types of fuzzy equalizers were compared with the Bayesian
equalizer. The equalizer performance was evaluated with
knowledge of the channel states and noise statistics. The scalar
centers of the equalizer were placed at and

. The BER performance of the equalizers is presented
in Fig. 6. Fuzzy-1 refers to the fuzzy equalizer (6) with product
inference and COG defuzzifier, Fuzzy-2 refers to the equalizer
(11) operating with minimum inference and COG defuzzifier
and the Fuzzy-3 (11) works with minimum inference and
maximum defuzzifier. From their performance curves, it is
seen that all the fuzzy equalizers perform close to the Bayesian
equalizer. The fuzzy equalizers operating with the minimum
inference and maximum defuzzifier also perform close to the
Bayesian equalizer with a large reduction in the computational
complexity. This validates our assumption of the minimum
inference rule and maximum defuzzification process.

In the second phase of the experiment, the equalizer was
trained with both training phases. The channel used for this
experiment was .
First the scalar channel states and the channel noise statistics
were determined with supervised clustering. The clustering
was based on 200 training samples and the result was averaged
over 50 experiments. From the estimated scalar channel states,
the equalizer membership functions were generated and the
fuzzy inference rules were created. Next the weights associated
with the inferences were fine tuned with the LMS algorithm
to compensate for the effect of the error in channel states
estimation. This constituted 500 training samples. The BER
performances of the equalizers are presented in Fig. 7. It is
seen from the results that the equalizers with the estimated
channel states performed close to the optimal Bayesian equal-
izer. Here the Fuzzy-1 equalizer works with product inference
and COG defuzzifier (6). The Fuzzy-2 and Fuzzy-3 employ
modified membership function generation discussed in the
previous section. Fuzzy-2 works with product inference with
COG defuzzifier and Fuzzy-3 works with minimum inference

Fig. 7. Fuzzy equalizer BER performance with estimated channel states and
noise variance for channelHch4(z) = 0:3482+ 0:8704z�1+ 0:3483z�2,
orderm = 4, delayd = 1. Fuzzy-1: fuzzy equalizer with product Inference
and COG defuzzifier; Fuzzy-2: limiting membership function with product
inference and COG defuzzifier; Fuzzy-3: limiting membership function with
minimum inference and maximum defuzzifier.

and maximum defuzzifier. In both of these equalizers, only two
of the membership functions for scalar channel states closest
to input scalar were considered. From the performance
curves it is seen that the fuzzy equalizer with all channel states
(6) performs close to Bayesian equalizer. When a subset of
the channel states is selected by changing the membership
function generator, there is a performance degradation. This
performance degradation is around 3 dB at 10BER. The
performance of the substate state equalizer is slightly inferior
to the linear equalizer when the SNR is below 11 dB but
much better than the linear equalizer above 11-dB SNR. The
performance drop at low SNR condition is due to the fact
that at low SNR conditions the Gaussian spread parameter is
large and the membership functions from the scalar channel
states far from the input scalar would have more contribution
on inference rule compared to high SNR condition when the
spread parameter is small.

VI. CONCLUSION

The relationship between the optimal Bayesian equalizer
and the fuzzy equalizer has been demonstrated. This relation-
ship reduces the computational complexity of the latter and
leads to fast training algorithms. Further computational ad-
vantages have been achieved by modification to the inference
rule and defuzzification techniques. The relationship between
the two networks has also led to an elegant scheme for state
selection which provides its own computational advantages.
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