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Efficient Architecture for Bayesian
Equalization Using Fuzzy Filters

Sarat Kumar PatraGtudent Member, IEEEand Bernard MulgrewMember, IEEE

Abstract—A normalized Bayesian solution is derived for digital transmitted sequence and can be representéftasd). Here
communication channel equalization which uses estimates of \we assume that the communication system is binary in nature
scalar channel states. This equalizer is termed as a normalized so that the transmitted symbs{k) is taken from+1 or —1

Bayesian equalizer with scalar channel states (NBEST). The . - . . .
relationship between the NBEST and fuzzy equalizers is derived With €qual probability. This makes the analysis easier and the

and computational aspects of fuzzy equalizers are investigated Same can be extended to any digital communication system
using different types of fuzzy basis functions. It is shown that the in general.

fuzzy equalizer in general demands much lower computational  The process of adaptive equalization can be classified into
complexity than the optimum equalizer. Ways to further reduce two categories, namely, sequence estimation and symbol de-
the computation complexity of fuzzy equalizers is proposed and ., . . ! . .

their performance evaluated. A novel scheme to select a subset ofCISION equalization. The optimal solution for the sequence
channel states close to the received vector, resulting in consider-estimation equalizer is maximume-likelihood sequence estima-
able reduction in the computational complexity, is also proposed. tion (MLSE) [1]. This equalizer can be implemented using

A fuzzy equalizer with this modified membership function is the Viterbi algorithm [2]. The process of MLSE demands

shown to perform close to the Bayesian equalizer. high computational complexity and requires knowledge of the

Index Terms—Bayesian equalizers, digital communication sys- channel. Generally the channel information is not available at

tems, equalizers, fuzzy systems. the receiver end. For this reason a channel estimator is included
in the MLSE equalization. The channel estimation can be
I. INTRODUCTION a difficult process under certain circumstances, e.g., when

the channel is associated with nonlinear terms. The symbol

HE SPEED OF transmission of information over a com; . . : . : )
decision equalizers are relatively simple and computationally

munication system is limited due to the effect of mterl—ess complex than the MLSE. They in fact do not always

symbol interference (ISI) in the presence of noise. The procer%squire an explicit channel estimate. The optimal solution for

of removing the effects of ISI in the presence of noise tos mbol equalizer can be formed from the Bayes probabilit
faithfully reconstruct the transmitted symbols is termed equ%}- y q yes p y

o A ) ory [3] and is termed the Bayesian equalizer. The symbol
ization. The structure of the communication system discussed . - . . . :

. L ecision equalizer can also be considered as an inverse filter
here is presented in Fig. 1.

The information symbol to be transmittetk) is transmitted I[gllsv'g?r?;:mars] ig?gt?ﬁvl lsn;e:rrrzgﬁ:sﬁlaesfga;nsaLg;rétTgLssl)'kaere
through a linear dispersive channel described by q 9

used. The adaptive filter here finds the channel inverse in

np—1 the presence of noise providing a linear decision boundary.
r(k) = Z a;s(k — 1)+ e(k). (1) Generally the decision function demanded by an optimal
i=0 equalizer is nonlinear in nature. The problem of equalization

. : . oo can be considered as a classification problem where the
Heren,, is the channel tap length witdy being the individual . o : :

. . : ._equalizer classifies the received signal vector to one of the
taps ande(k) refers to the additive white Gaussian noise.

(AWGN). The noise-free received sample of the channel %gnal constellations. W'th this pe_r_spe_cuve, the equal|zat|or_1
gan be treated as a nonlinear classification problem and for this

referred to asi(k) and the received samples are referrer ason the performance of the linear equalizers are far from
as (k). The equalizer reconstructs the transmitted symbo P q

s(k) by observing the noisy received signal vectdk) — optimal. This has led to the search for nonlinear equalizers
(r(k), r(k — 1), r(k —m + 1T € R™, wherem is th_e that can provide a nonlinear decision function. Nonlinear

order of the equalizer. Normally a delay is associated Wifgqualizers using an artificial neural networks (ANN's) [5], [6],

detection and the equalizer output is a delayed form of t J and radial basis function (RBF) networks [5], [8]’ [l haye
I quatiz utput y been successfully developed. The ANN equalizer provides
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Fig. 1. A communication system.

space is computationally complex and require long trainirghannel states respectively and they are equal. With the
sequences. This has led to the search for other nonlineasumption of binary transmission, the sign of the decision
equalization techniques. A fuzzy equalizer based on a fuziynction in (2) is sufficient to provide the decision and scaling
adaptive filter was proposed in [12] and an equalizer basesms can be ignored. With this, the decision function can be
on a fuzzy system was proposed in [13]. These equalizeepresented as

performed well but could not provide the Bayesian equalizer ", I 12

decision function. Additionally, the equalizer based on a fuzzy f(r(k) = Zpi eXP(M) (3)
adaptive filter demanded high computational complexity. This =1 20¢

aper investigates a new form of implementation of Bayesia .
pap . g. . b y wrherens is the number of channel states, equaltet™—1
equalizers using fuzzy filters.

. P ‘ : .
The paper is outlined in six sections. Section Il discussg\'s'th ng =mn =ns/2 andp; are the Wf'ghts associated
the Bayesian equalizer and derives the process of its fuzwi}h each of the centerg; = 11if ¢; € nJ andp; = —1

it c; € n. It is also observed that each of the channel

implementation. Section Il introduces the training schemes * .
) ) . State vectors has: components which can be represented as
for fuzzy equalizers. Section IV discusses the advantages™o T .
= [€io, i1, Ciz, * Cim—1)]© € R™. Rewriting the squared

. . . . . C;

|mplem§ant|ng a fuzzy equalizer over thg Bay(_aS|an equallz%l’. rm of (3) as a summation and exploiting the properties of

In Section V we present some of the simulation results, a . :
. i . the exp function yields

Section VI provides the conclusions.

n m—1
_\ [lr(k — 1) — call?
Il. BAYESIAN EQUALIZER AND ITS FUzZzY IMPLEMENTATION fr(k)) = sz{ g eXp( 202 *

i=1

The general symbol decision equalizer depicted in Fig. 1Jﬁ1erecil is the (1 +1)th component of channel state vector

characterized by equalizer order and delayd. The optimal : .
decision function for this equalizer is derived from Baye,gt()lzgespondmg o the/ + 1)th component of the input vector

probability theory [3] and can be represented as [14] Equations (3) and (4) provide alternative realizations of

nT 5 iz the Bayesian decision function. In (3) the Euclidian distance
Fe(k)) = Z (zﬂgg)—mﬁ exp< [l (k) _ < | ) between input vector(k) and each of the channel states
20¢ c; is first calculated. The result is then scaled by/(202)
" & - and the exponential function is evaluated. These are linearly
_ Z (27”},2)7"1/2 exp —lIr(k) — ] I ) combined to provide the decision function. Alternatively in (4),
‘ 207 scalar distances are calculated, scaled-ty(2+2) and the
exponential function evaluated. The products of exponential
Herer(k) represents the equalizer input vectof, represents functions associated with particular channel states are linearly
the channel noise variance, ae € R™ andc; € R™ combined to provide the decision function. Both of these func-
are the positive and negative channel states, respectively. Tibas require the knowledge of channel states for estimating
termsnt and n; are the number of positive and negativehe decision function. It was noted in [15] that (4) may be

i=1

=1
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preferable to (3) for implementation. This approach is adoptedere z/;l” is the membership function generated from the
here. scalar centecﬁj, corresponding to théj + 1)th center of the

In line with the normalized radial basis function derivedi+1)th input scalar. In thig; is a free design parameter of the
by Chaet al. [16], we can form a normalized Bayesiarfilter which is adjusted during the training process. Here
equalizer which forms an estimate of the transmitted symbasrresponds to all possible combinations of the membership
themselves rather than a decision function. This we repres@mction taking one from each input scalar angd = M™.
as a normalized Bayesian equalizer with scalar channel staré® membership function is generated with (7) wherés
(NBEST). The NBEST provides a localized behavior angeplaced byy. The superscript is used for convenience and
nonlocalized behaviors whereas the equalizer in (3) providg® terms! and j specify all the parameters of the function.

localized behavior The equalizer function (8) finds a weighted sum of the fuzzy
5o { 1 < r(k —1) — Cil||2>} basis functions (FBF's) [21]-[23] given by
rp Iy exp | —————— o
o vy (1 e AV frateth) = AL 1 ©
8 — — C; Ne m—1 ;571"
Z?:Sl {Hﬁol eXP(‘%) } > ity { 11 1/’;}

(5) Itmay be noted that this FBF uses a singleton fuzzifier, product

The estimation of the decision function for Bayesian equahference, center of gravity (COG) defuzzifier, and Gaussian
izer given by (3) and (5) needs the channel states. The charmeimbership function, and the filter in (8) forms the linear
states can be estimated during the training period. An insiglgmbination of these FBF's.
into the equalizer decision function in (5) reveals that the On observing the decision functions of NBEST (6) and
equalizer containg, channel states each @t dimensions. the fuzzy equalizer (8), it can be seen that the NBEST has
The number of scalar channel states for any channéfiss n, = 271 terms and the fuzzy equalizer has = M™
2™ Each of them components ofn, channel states areterms. From this it is seen that the number of terms in NBEST
taken from the set ofM scalar channel states. With thids a subset of the terms in the fuzzy filter. If the channel states
understanding, the equalizer decision function can be preseraeel known to the receiver, the corresponding weights: of

as terms of the fuzzy filter can be assigned/—1 depending on
S p‘{ Hm—l U} the values of; in NBEST and the remaining. —n, terms can

fr(k)) = === =0 (6) be neglected to provide the optimum decision function. Hence

2ol {Hl=0 zj} the fuzzy equalizer decision function can be represented by

(6) where onlyn, fuzzy basis functions out of the available
n. functions are used. This reduces the computations involved
1 <r(k _- c;]> with n. — n, fuzzy basis functions and provides an optimum

where ¢} is a basis function of the form

P =exp|—= (7) decision function. With this we can represent (6) as the fuzzy

2 Te implementation of the Bayesian equalizer.

Hered)ﬁj‘ is the basis function output generated from the scalgr Fuzzy Equalizer Structure
centerc;’, corresponding to thg + 1 scalar center of + 1
element ofr(%), where0 <! < (m—1)and0 < j < (M —1).
1 in (6) corresponds to the channel states number added
convenience] and j are sufficient to specify the parameter

m—1

for the equalizer. In (6), computation §f;";' #; is the same
as the computation ofxp(=Ir®zedly jn (3),

The structure of the fuzzy equalizer is presented in Fig. 2.
If—g?re, the incoming signal sample is presented to the mem-
gership function generator. Each of the components of the
membership function generator produces an ouggjutchar-
acterized by its centej{ which are placed at the scalar channel
states. Heré corresponds to the equalizer input number and
] j represents the fuzzy center at the scalar channel states. The
A. Fuzzy Implementation membership functions are to be generated from each of the

Wang and Mendel [12] proposed fuzzy LMS and fuzzyeceived scalars. The equalizer input vector is formed from
RLS filters and used them for nonlinear channel equalizatiahe time-delayed samples of the reveived scalar. With this the
Subsequently, fuzzy filters of different structures were usedembership function for input scalatk — 1) will be the
for equalization [17]-[20] in a variety of applications. In ourdelayed membership functions for inputk). This can be
fuzzy implementation of the Bayesian equalizer we use thepresented as
architecture of [12] which was used in conjunction with the Sk = i (k— 1) (10)
RLS training algorithm. In this fuzzy filter, setting the mem- LN -1
bership function centers with scalar channel states, the spregfbre1 <1 < (m —1) and0 < 5 < M — 1.
parameter with the channel noise variance and generating thehe inference block of the equalizer has units. Each of
memberShip functions with (7), an equalizer with fUZZy filtefhese units receives 0n|y OWF‘; from each of themn inputs

can be represented as to the equalizer, and the combination of these is decided by
S 9‘{ Hm—l }ij} the combination of the scalar channel states constituting the
fr(r(k)) = &=L 2L 220=0 71 (8) channel states. The output of the inference units are suitably

- Ne m—1 15
i IS '} weighted and added to provide and b. The output of the
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Fig. 2. Fuzzy implementation of Bayesian equalizer.

TABLE | The weightsp; of the equalizer decision function asel and
_ THE CHANNEL STATES CALCULATION FOR CHANNEL —1 for positive and negative states, respectively.
0.5+ 1.0z WITHm =2, d=0,n, =8 ANDM =4 . . .
For fuzzy implementation, the centers for membership func-
No. s(k) s(k-1) s(k-2) 7(k) 7(k-1) tion generators are placed at scalar channel states,
1 1 115 15 Positive +0.5, —0.5 and —1.5. The basis function}?, ¢, 2, ¢3
2 1 1 115 05 channel corresponding to'(k — 1), will be a delayed version of9,
3 I 1 05 05 states P5, 3, ¢3 corresponding to-(k). The inference block will
a1 1 05 -1 cc;nsist ofn, = 8 subblocks. The products¢?, ¢8¢?, p2ot,
3 i 10 1.2 31 343
5 1 1 105 15 Negative P51 are addeq to provide and</).0 1> P01, Pod1, Po¢y are
, . added to provideh. The calculation of the decision function
6 1 1 -1 0.5 -0.5 channel X .
3 next is straightforward.
7 -1 -1 1 1.5 0.5 states LS . . . .
) X L s s The decision boundary of this equalizer is presented in
1 15

Fig. 3. Here Fig. 3(a) presents the decision boundary of the
fuzzy equalizer and the Bayesian equalizer when the channel
states and noise statistics are known, where as in Fig. 3(b) the
equalizer is computed by the equalizer function presentedfifzzy equalizer uses the estimated channel states and noise
(6) which is (a — b)/(a + b). The output of the decision statistics and the Bayesian equalizer uses the true channel pa-
function passed through the sigmoid nonlinearity forms tirameters. This shows that the fuzzy equalizer is able to provide
detected sample. We consider an example to illustrate tag@ear optimal decision boundary even at a low SNR of 8 dB.
working of this equalizer: The fuzzy equalizer developed here uses an FBF with

Example 1: We consider the channél,,; (z) = 0.5+~~1. product inference and COG defuzifier. Owing to the close
The equalizer order ig» = 2 and delayd = 0. The signal-to- relationship of this equalizer with the Bayesian equalizer, this
noise ratio (SNR) is 8 dB. This provides = 8 andM = 4. equalizer can also be implemented with an RBF [9] with scalar
The channel states for this equalizer are presented in Tablednters [24]. However, use of a fuzzy system to implement
The channel states for this af&k),#(k — 1)]*. The scalar this equalizer provides the possibity of using other forms of
channel states constitute each of the possiptg or #(k—1). inference rules and defuzzification processes. This can provide
It is also seen that the:-dimensionaln, channel states take some of the alternate forms of fuzzy implementation of the
their components from the availablg scalar channel states.Bayesian equalizer.
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Here max;, corresponds to the maximum of the available
ns inferences andp, . is the weight associated with the
maximum inference. With this decision function, (12) and
(13) use maximum defuzzification, where the output of the
equalizer is based on the maximum of thginference rules
and the weight associated with it. The equalizer (12) uses
product inference where as (13) uses the minimum inference
rule. In both of these defuzzification processes, computation
of weighted sum of the inference is replaced by a comparison
operation.

With the above analysis, a variety of fuzzy equalizers to
approximate the Bayesian decision function can be designed.
These equalizers can provide alternative equalizer architec-
tures with a reduction in computational complexity.

IIl. Fuzzy EQUALIZER TRAINING

The fuzzy equalizer developed here can be trained in two
steps.

Fig. 3. Fuzzy equalizer decision boundary for charthgH-1.0z—!, equal- A. Step L. Channel State Estimation
izer orderm = 2, delayd = 0 with 8-dB SNR. (a) Actual states,. (b) Bayesian The estimation of the decision function using the fuzzy
equalizer with actual states and fuzzy equalizer with estimated states. . .
equalizer given by (6) and (8) needs the scalar channel
_ . . states and their combination which forms the channel states.
1) Inference Rule:The fuzzy equalizer discussed abovegtimation of these requires the channel information which in
works with product inference. The output of each of thg gt cases is not available. However, these can be estimated

ns inference rules are generated with the product rule. It & ing the training period and can be achieved in the following
also seen from the membership function generator (7) “Wﬁys [14].

the membership for any input i8 < ¢; < 1. Hence the
output of any of the inference rules will be in the range
[0,1] and will always be less than the smallest membership
input to the rule. For this reason the product inference rule
can be approximated by minimum inference rule. With this
modification the equalizer decision function would be

3oicy pi{mingo ' }

« The channel model can be identified using some algo-
rithms like the LMS. With the knowledge of the channel
it is straightforward to calculate the scalar channel states
and their combination which forms the channel states.
This technique may fail if the channel suffers from
nonlinear distortion.

e The scalar channel states can be computed with scalar

Flr(k)) = Y, {minygt ;J} ’ (11) supervised clustering. This in conjuction with the training
. . Z_. _ B . signal can provide the scalar states combinations that form
Here min;" ;" selects the minimum of the: inputs to each the channel states [11]. The number of scalar channel

of the components of the inference block. With this, the states depend On|y on channel order and hence will

computation of the products has been replaced by comparisons demand a smaller training sequence compared to vector
which are easy to implement in hardware. channel state estimation. Fig. 4 presents the learning
2) Defuzzification ProcessThe output layer of the fuzzy curve for scalar channel state estimation for channel
equalizer [see (6) and (8)] finds a weighted sum of the g ,(z) = 0.5+ 0.8121 4 0.31z~2. Here the channel
inference rules and normalizes this with the inference output. state estimation has been averaged over 20 experimants.
The weights associated with the inference rulessatg¢—1. It From the training curves it is seen that the scalar chan-

is seen that the rule nearest to the input vector would provide ne| states converge to the desired states in around 30
the maximum output, and the contribution from the remaining jterations.
rule will be minimal. These characteristics of the decision
function can be utilized by replacing the COG defuzzifier wit% S . ; ;
. o : e ; . B. Step 2: Equalizer Weight Update
a maximun defuzzifier. This defuzzifier can be combined either P . g P )
with product inference or with the minimum inference. With Once the scalar channel states have been estimated, the

this, the equalizer decision function can be represented asfuzzy rules can be formed. Next the equalizer is constructed
) m—t i) with weights of the inference rules assigned-td/—1 de-
_ DPmax Ina‘xizsl{ Hl:O { }

3 12) Pending on whether the rule belongs to a positive or negative
F(x(k)) oLl (12) | iv
max;> { [Ty &/ } channel state. The channel states and the noise statistics
P Max™ {minmﬂ U} estimation can involve some error. In order to compensate for
fr(k)) = 2= —"i=L =0 11 (13) this the weights associated with the rules can be fine tuned with

n, som—1 i) ] . L . .
HlaXi:l{lnlnl:O zj} a gradient descent algorithm and a training signal. This step



PATRA AND MULGREW: ARCHITECTURE FOR BAYESIAN EQUALIZATION

817

2 3 I [ § ] TABLE 1
E 'tAC'ntM(ll Stt"lttes* COMPUTATIONAL COMPLEXITY COMPARISON FORBAYESIAN
__________________ s 'm_‘l_f_i__‘_l_efj::; EQuALIZERS, NBEST, AND Fuzzy EQUALIZERS AND FOR
s Y i EQuALIZERS WiITHm = 4, nj, = 3, n, = 64, AND M = 8
5 ’
e Equalizer Add/ Mul Div. e7*
/ Type Sub
117 - cTTT TTTTTerTTTTITTTT T T N
e Baycsian(RBF) 2mny, mn, n, T,
" bbb b e Ty S N NBEST Mtn, MAmn, M4+1 M
L L —
§ 0.5 |/ FUZZY M+n, M4+mn, M+1 M
7
< Bayesian (RBF) 512 256 64 64
= e T NBEST 72 264 9 8
S FUZZY 72 264 9 8
B \
S0 Ly L e
IR e S A TABLE Il
i COMPUTATIONAL COMPLEXITY COMPARISON FORDIFFERENT FUzzY EQUALIZERS
A T T AND FOR EQUALIZERS WITHm = 4, nj, = 3, ng = 64 AND M = 8
B I
‘\_\ Inf Defuzz Add/ Mul Div. ¢ * Compare
N N : Type Type Sub
1 s R Prod COG M +n, M+ mn, M+l M
| | : | | | Min. COG M+n, M +n, M+1 M (m-—1)n,
2 ‘ ‘ Prod Max. M M+(m-1Dn,+1 M+1 M 7
10 20 30 40 50 60 70 80 90 100 Min. Max. M M +1 M+1 M mung
Tteration number Prod COoG 72 264 9 8
Fig. 4. Scalar channel states training curve for chatngh+ 0.81z—1 +  Min coG 2 & 9 8 192
0.31z72, the actual channel statgsl.62, +1.0, +0.62, and+0.00. Prod Max. 8 201 9 8 64
Min. Max. 8 9 9 8 256

would take only a few samples as the initial weight assignment

is very close to the final values. . L . .
« Evaluation ofexp and division in a Bayesian equalizer are

related ton, which in turn is exponentially related to the

equalizer order but in the fuzzy equalizer they are related
to M which is independent of the equalizer order. Hence,
with the increase in the equalizer order the reduction in

IV. ADVANTAGES OF THE FuUzzY EQUALIZER

We have seen that the fuzzy implementation of NBEST
provides the Bayesian equalizer decision function. An insight
into the Bayesian decision function (4) and the fuzzy imple- computational complexity for fuzzy equalizer over the
mentation of NBEST shows some of the advantages of fuzzy Bayesian equalizer can be exponentially related.
implementation of a Bayesian equalizer. These advantages are Introduction of the minimum inference rule and maximum
summarized below. defuzzification replaces the product computation by a
comparison operation which is very easy to implement
and fast to process in real time implementation. The
computations involved for estimation of each symbol with
this modification is presented in Table Ill. The second part
of the table provides the typical figure for an equalizer
with m = 4, n;, = 3, and M = 8. From this it is
seen that using minimum inference or maximum defuzzi-
fication replaces the product computation by comparison
operation considerably. These provide an alternate ap-

A. Computational Complexity

After training is complete, the equalizer parameters are fixed
and the actual detection of transmitted symbols starts. The
computational requirements of a fuzzy equalizer and NBEST
are the same. The computations required for estimating each
of the samples with the Bayesian equalizer and its RBF
implementation, NBEST and the fuzzy equalizer are listed in
Table 1. The second part of the table provides the typical
computational requirements for an equalizer with = 4, proximation to the Bayesian decision function evaluation
ny = 3, and M = 8. From this table, the following inferences ~ With a reduction in the computational complexity.
can be arrived at with regard to the computational advantagesn this paper we have compared the computational complex-
of fuzzy implementation of Bayesian equalizer. ity of a fuzzy equalizer with a Bayesian equalizer which can be

» Fuzzy implementation of the Bayesian equalizer providé®plemented with an RBF. The Bayesian equalizer provides

a significant reduction in addition, division argtp(z) the optimum performance for symbol spaced equalizers pro-
evaluations. viding the upperbound for bit error rate (BER) performance for

» The time shift property of the membership functiomny symbol spaced equalizers. The computational complexity

generation provides a considerable reduction in evaluatiadavantages and disadvantages of Bayesian equalizer against
of exp(z) functions and division. MLSE and linear equalizers are discussed in [25] and [14].
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TABLE IV
CoMPUTATIONAL COMPLEXITY COMPARISON FORFUZzY EQUALIZERS WITH

Region of faulty decision

Regin/n of decision

MOoDIFIED MEMBERSHIP FUNCTION GENERATION FOR SUBSET STATE SELECTION
AND FOR EQUALIZERS WITHmM = 4, nj, = 3, ng = 64, AND M =8
Inf Defuzz Add/ Mul Div. ¢ Compare

Type Type Sub
Prod COG M+2 M+ 2m 3 2
Min. COG M+2 M+2 3 2 < (m-—1)2m
Prod Max. M M+4+2m-1)+1 3 2 <2m
Min. Max. M M+1 3 2 < m2™
Prod CoG 10 16 3 2
Min. COG 10 10 3 2 < 48

Y Prod  Max. 8 15 3 2 <16
Min. Max. 8 9 3 2 < 64

r(k — 1) are shown along the sides. Consider an input vector

15 05 05 L5 [0.0, —0.75]%. This input vector provides nonzero membership
(k) functions for$, ¢Z and¢?, ¢1. These, when translated with
Fig. 5. Decision boundary for membership function modification for channénference rules with channel states intotwo dimensions, would
0.5+ 1.0:7", equalizer order = 2, delayd = 0. provide only two nonzero inference rules corresponding to
the channel statgs-0.5, —1.5] and[0.5, —0.5]*". The region
B. Subset State Selection of space that will be covered by the membership functions is

. . . - _shown shaded in the figure. The decision function for this input
. In the Bayesian e_zquallzer (3), the eq_uallzer(_jeusmn funCt'(f’Qgion is a straight line equidistant from both centers in the
is based on a weighted sum ef basis functions centeredg, ;0 covered by the membership functions. With a change in
at the channel states. From the decision function it can &, i, vector, different sets of inference rules corresponding
seen that the contribution of a channel state to the decmﬁn channel states will be selected, providing a combined
function is invers_ely_related to its_ distance from the inIC’Lﬂecision boundary, as shown. All these individual decision
vector. Under this circumstance, if a set of channel statf8undaries join to provide a nonlinear decision boundary. The

near_the Input vector can be founq, the equalizer de(_:'s'Pébion in which the equalizer is unable to approximate the
function can be approximated with this subset of the ava'labé%cision region is also shown in the figure

ns channel states. Chng [26] proposed a process of selecting &g form of modification of the membership function can

subset of available channel states to approximate the Bayesiaii ce the computational complexity of the equalizer consid-

decision function with a smaller number of channel states. Q?ably. The computation involved per sample calculation with

a fuzzy implementation of the Bayesian equalizer it is Veryiq form of membership function is presented in Table IV.

easy to employ subset state selection to reduce the number 6fpis mqgification of the membership function provides a
inference rules, which reduces the computation involved. ThiS,ra) method for selecting a subset of the available channel
involves modification of the membership function. In generaly,ies reducing the computational complexity. However, if the
all M membership functions corresponding to a input providg g |ar channel states are very closely spaced, this process of
nonzero output irrespective of the input scalar. If an input ‘sselecting only two membership functions may not provide
far from a scalar center, the membership function from th@Bod performance. Under this circumstance, however, more
center will be neglegible and can be neglected. Considerifi,, o nonzero membership functions of the input vector
this, it may be enough to use only the two nearest centefs,y he ysed. With the increase in the number of membership
from the observed received scalars for membership functigihctions, the number of nonzero inference rules will increase,
calculation and the membership functlo'n contribution fro'Broviding a better performance at the cost of higher computa-
other centers can be neglected. This provides only two nonzgg, However, if a subset of all the available scalar channel
membership function out of the availahlé functions for each gates are selected, the numbers of valid fuzzy rules will be
input. This would generate only two nonzero inferences againstq than,. This provides a way of trading performance for
2m+n.—1 Using some simple checks to determine these ru'%mplexity within the equalizers.

the decision function can be computed. We illustrate this with
an example.

Example 2: We consider the problem presented earlier. The
equalizer has eight channel states constructed from four scalafuzzy equalizers developed in the previous sections
channel states. The equalizer decision making capability undegre evaluated with extensive simulations. To study the
this circumstance is presented in Fig. 5. Here the positiperformance of the fuzzy equalizers, BER performance was
channel states are shown@sand negative channel states arevaluated for different fuzzy equalizers and compared with the
shown ad1. The membership function generation f¢k) and Bayesian equalizer performance. The equalizer performance

V. RESULTS AND DISCUSSION
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Fig. 6. Fuzzy equalizer BER performance with different types of fuzzlig. 7. Fuzzy equalizer BER performance with estimated channel states and

systems for channeH.,5(z) = 0.407 — 0.8152~' — 0.407z2, order noise variance for channéf,4(z) = 0.3482 + 0.8704z~" 4 0.3483272,

m = 5, delayd = 3, centers at:1.629, £0.815, and £0.001. Fuzzy-1: orderm = 4, delayd = 1. Fuzzy-1: fuzzy equalizer with product Inference

Product Inference and COG defuzzifier; Fuzzy-2: minimum inference widgnd COG defuzzifier; Fuzzy-2: limiting membership function with product

COG defuzzifier; Fuzzy-3: minimum inference with maximum defuzzifier. inference and COG defuzzifier; Fuzzy-3: limiting membership function with
minimum inference and maximum defuzzifier.

with different types of inference rule and membership function
was studied. The channel considered for thisHig,s(z) = and maximum defuzzifier. In both of these equalizers, only two
0.407 — 0.8152—! —0.4072—2. The BER performance of three©f the membership functions for scalar channel states closest
types of fuzzy equalizers were compared with the Bayesifh input scalarr(k) were considered. From the performance
equa”zer_ The equa"zer performance was evaluated wfHrves it is seen that the fUZZy equalizer with all channel states
knowledge of the channel states and noise statistics. The scéfarperforms close to Bayesian equalizer. When a subset of
centers of the equalizer were placeddsat.629, +0.815 and the channel states is selected by changing the membership
+0.001. The BER performance of the equalizers is presentéénction generator, there is a performance degradation. This
in Fig. 6. Fuzzy-1 refers to the fuzzy equalizer (6) with produ@€erformance degradation is around 3 dB at1®ER. The
inference and COG defuzzifier, Fuzzy-2 refers to the equa“z@erformance of the substate state equalizer is slightly inferior
(11) operating with minimum inference and COG defuzzifide the linear equalizer when the SNR is below 11 dB but
and the Fuzzy_3 (11) works with minimum inference anH]UCh better than the linear equalizer above 11-dB SNR. The
maximum defuzzifier. From their performance curves, it igerformance drop at low SNR condition is due to the fact
seen that all the fuzzy equalizers perform close to the Bayestiat at low SNR conditions the Gaussian spread parameter is
equalizer. The fuzzy equalizers operating with the minimufarge and the membership functions from the scalar channel
inference and maximum defuzzifier also perform close to ti§éates far from the input scalar would have more contribution
Bayesian equalizer with a large reduction in the computatiorfft inference rule compared to high SNR condition when the
complexity. This validates our assumption of the minimurfiPread parameter is small.
inference rule and maximum defuzzification process.

In the second phase of the experiment, the equalizer was VI. CONCLUSION
traineq with both training phases. The channel used for thistne relationship between the optimal Bayesian equalizer
experiment wadoa(2) = 0.3482+0.87042~" +0~348_3Z_2- “and the fuzzy equalizer has been demonstrated. This relation-
First the scal_ar char_mel states_ and the chgnnel noise statl_%mg reduces the computational complexity of the latter and
were determined with supervised clustering. The clusterifigays to fast training algorithms. Further computational ad-
was based on 200 training samples and the result was averagggages have been achieved by modification to the inference
over 50 experiments. From the estimated scalar channel stafgg, and defuzzification techniques. The relationship between
the equalizer membership functions were generated and {Rg o networks has also led to an elegant scheme for state

fuzzy inference rules were created. Next the weights associai@ghction which provides its own computational advantages.
with the inferences were fine tuned with the LMS algorithm
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