
Fault classification and location using HS-transform and
radial basis function neural network

S.R. Samantaraya,∗, P.K. Dashb,1, G. Pandaa,1

a National Institute of Technology, Rourkela, India
b College of Engineering, Bhubaneswar, India

Abstract

A new approach for protection of transmission lines has been presented in this paper. The proposed technique consists of preprocessing the
fault current and voltage signal sample using hyperbolic S-transform (HS-transform) to yield the change in energy and standard deviation at the
appropriate window variation. After extracting these two features, a decision of fault or no-fault on any phase or multiple phases of the transmission
line is detected, classified, and its distance to the relaying point found out using radial basis function neural network (RBFNN) with recursive least
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quare (RLS) algorithm. The ground detection is done by a proposed indicator ‘index’. As HS-transform is very less sensitive to noise comp
o wavelet transform, the proposed method provides very accurate and robust relaying scheme for distance protection.
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. Introduction

Different types of transient phenomena occur on the trans-
ission line. From these transient phenomena, faults on trans-
ission lines need to be detected, classified, located accurately,
nd cleared as fast as possible. In power transmission line protec-

ion, faulty phase identification and location of fault are the two
ost important items which need to be addressed in a reliable
nd accurate manner. Distance relaying techniques based on the
easurement of the impedance at the fundamental frequency
etween the fault location and the relaying point have attracted
ide spread attention. The sampled voltage and current data at

he relying point are used to locate and classify the fault involving
he line with or without fault resistance present in the fault path.

The accuracy of the fault classification and location also
epends on the amplitude of the dc offset and harmonics in
omparison to the fundamental component. Fourier transforms,
ifferential equations, waveform modeling and Kalman filters,
nd wavelet transforms are some of the techniques used for fault

detection and location calculation[1–6]. Some of the rece
papers in this area[3,4,6] have used only the sampled curr
values at the relaying point during faults for classification
fault types and distance calculations.

In recent years, neural networks are trained to recognize
patterns associated with the voltage and current waveforms
the relaying point due to their superior ability to learn and ge
alize from training patterns. However, in the fault classifica
and location tasks, the neural networks cannot produce ac
results due to the inaccuracies in the input phasor data an
requirement of a large number of neural networks for diffe
categories of fault.

Another pattern recognition technique based on wa
transform has been found to be an effective tool in mon
ing and analyzing power system disturbances including p
quality assessment[13] and system protection against fau
Although wavelets provide a variable window for low and h
frequency currents in the voltage and current waveforms d
faults, their capabilities are often significantly degraded owin
the existence of noises riding high on the signal[7]. In particular,
as the spectrum of the noises coincides with that of the
sient signals, the effects of noises cannot be excluded by m
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of some kinds of filters without affecting the performance of
the wavelet transform. Another powerful time–frequency anal-
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ysis known as S-transform has found applications in geoscience
and power engineering[8–10]. The S-transform is an invertible
time–frequency spectral localization technique that combines
elements of wavelet transforms and short-time Fourier trans-
form. The S-transform uses an analysis window whose width
is decreasing with frequency providing a frequency dependent
resolution. This transform may be seen as a continuous wavelet
transform with a phase correction. It produces a constant rela-
tive bandwidth analysis like wavelets while it maintains a direct
link with Fourier spectrum. The S-transform has an advantage
in that it provides multi resolution analysis while retaining the
absolute phase of each frequency. This has led to its application
for detection and interpretation of events in a time series like the
power quality disturbances[11].

The feature extraction from the faulted current signal, a vari-
ant of the original S-transform[12] is used where a pseudo-
Gaussian hyperbolic window is used to provide better time and
frequency resolutions at low and high frequencies unlike the
S-transform using the Gaussian window. Here the hyperbolic
window has frequency dependence in its shape in addition to
its width and height. The increased asymmetry of the window
at low frequencies leads to an increase in the width in the fre-
quency domain, with consequent interference between major
noise frequencies. In this paper the hyperbolic S-transform (HS-
transform) is used to calculate the change in energy and standard
deviation of the fault current and voltage signal which are fed to
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and voltages, it may be advantageous to use a window having fre-
quency dependent asymmetry. Thus, at high frequencies where
the window is narrowed and time resolution is good, a more sym-
metrical window needs to be chosen. On the other hand, at low
frequencies where a window is wider and frequency resolution
is less critical, a more asymmetrical window may be used to pre-
vent the event from appearing too far ahead on the S-transform.
Thus an hyperbolic window of the form given below is used.

Why = 2|f |√
2π(αhy + βhy)

exp

{−f 2X2

2

}
(4)

where

X = αhy + βhy

2αhyβhy
(τ − t − ξ) + αhy − βhy

2αhyβhy

√
(τ − t − ξ)2 + λ2

hy

(5)

In the above expression 0<αhy <βhy andξ is defined as

ξ =
√

(βhy − αhy)2λ2
hy

4αhyβhy
(6)

The translation byξ ensures that the peakWhy occurs at
τ − t = 0. At f = 0,Why is very asymmetrical, but whenf increases,
the shape ofWhy converges towards that of the symmetrical
Gaussian windowWgs given in Eq.(2). For different values of
α andβ and withλ2 = 1, Fig. 1 shows the nature of the
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he RBFNN for fault classification and location determina
rom the relaying point. PSCAD package is used to gen
ault data for varying location, fault resistance and incep
ngle and changed source impedance.

. Hyperbolic S-transform for feature extraction

The original S-transform[8] is defined as

(τ, f ) =
∫ ∞

−∞
h(t)

{ |f |√
2π

exp

{
−f 2(τ − t)

2

}

× exp(−2πft)

}
dt (1)

hereS denotes the S-transform ofh(t), which is the actual fau
urrent or voltage signal varying with time, frequency is den
y f, and the quantityτ is a parameter which controls the posit
f Gaussian window on the time-axis. A small modification

he Gaussian window has been suggested for better perform

gs(τ − t, f, αgs) = |f |√
2παgs

exp
[−f 2(τ − t)]

2α2
gs

(2)

nd the S-transform with this window is given by

(τ, f, αgs) =
∫ ∞

−∞
h(t)ω(τ − t, f, αgs) exp(−2πift) dt (3)

hereαgs is to be chosen for providing suitable time and
uency resolution.

In applications, which require simultaneous identifica
ime–frequency signatures of different faulted phase cur
e.

s

hy hy hy
indow as the function of timeτ − t. As seen from the figur

he change in the shape from an asymmetrical window to a
etrical one occurs more rapidly with increasingf. The discret

ersion of the hyperbolic S-transform of the faulted voltage
urrent signal samples at the relaying point is calculated a

[n, j] =
N−1∑
m=0

H [m + n]G(m, n) exp(i2πmj) (7)

hereN is the total number of samples and the indicesn, m, j are
= 0, 1,. . ., N − 1, m = 0, 1,. . ., N − 1 andj = 0, 1,. . ., N − 1.
TheG(m, n) denotes the Fourier transform of the hyperb

indow and is given by

(m, n) = 2|f |√
2π(αhy + βhy)

exp

(−f 2X2

2n2

)
(8)

Fig. 1. Varying windowWhy at f = 1, 0.5, and 0.25.



here

X = (αhy + βhy)

2αhyβhy
t + βhy − αhy

2αhyβhy

(√
t2 + λhy

)
(9)

andH(m, n) is the frequency shifted discrete Fourier transform
H[m] and is given by

H(m) = 1

N

N−1∑
m=0

h(k) exp(−i2πnk) (10)

The computational steps of the hyperbolic S-transform are:

(i) H[m] of the faulted voltage and current wave form samples
are calculated and shifted to giveH[n + m];

(ii) the localizing hyperbolic Gaussian windowG[m, n] is eval-
uated;

(iii) H[n + m] andG[m, n] are multiplied and the inverse Fourier
transform of the product is found out to give the rows of
S[n, j] corresponding to the frequencyn.

The hyperbolic S-transform is found to be a complex matrix
S

[
N
2 , N

]
. Fig. 2shows the flow chart for HS-transform.

3. System studied

ng
P eas
c mis-
s
a
E in
F la-
t n be
p ition
a base
f e cal-
c ignal
o tion.
F hase
f

4

4

ur-
r t the
f ignal
f er-
e es are
u n be
u y and
s ed as

c

Fig. 2. Flow chart for HS transform.

and

sd= std{abs(hsf)} (12)

where hsf the HS-transform coefficient is for one cycle ahead of
fault inception and hsn is the HS-transform coefficients for one
cycle before the inception of the fault. For faulted phase identifi-
cation, simulations are carried out for faults at intervals of 10 km
from the sending end for a total line length of 300 km. For each
of these fault locations inception angle (δ), fault resistance (Rf )
and source impedance (ZS) are varied to provide the change in

Fig. 3. Transmission line model.
The model network shown inFig. 3has been simulated usi
SCAD (EMTDC) package. The network having two ar
onnected by the transmission line of 400 kV. The trans
ion line has zero sequence impedanceZ(0) = 96.45 + j335.26�
nd positive sequence impedanceZ(1) = 9.78 + j110.23� and
S = 400 kV,ER = 400∠� kV. The relaying point is as shown
ig. 3, where data is retrieved for different conditions. Iso

ion of over voltage and high frequency components ca
erformed according to the required level of decompos
nd reconstruction. The sampling rate is 1.0 kHz at 50 Hz

requency. The change in energy and standard deviation ar
ulated from the S-transform of the current and voltage s
ne cycle ahead and one cycle back from the fault incep
ig. 4shows the fault voltage and current signal for three p

ault. The proposed scheme is depicted as inFig. 5.

. Fault classification

.1. Feature extraction

For faulty phase identification or fault classification only c
ent signal is preprocessed through HS-transform to find ou
eatures. The HS-transform outputs of the faulted current s
or different types of faults at 10–90% of the line with diff
nt incidence angles, source impedance and fault resistanc
sed to provide the following pertinent features, which ca
sed to classify the type of fault. Change in the signal energ
tandard deviation of the HS-transform contour are obtain

e= Ef − EA = {abs(hsf}2 − {abs(hsn}2 (11)



Fig. 4. Fault voltage and current signal for three-phase fault.

Fig. 5. Protection scheme for proposed method.

energy and standard deviation as presented inTables 1 and 2.
From the tables, it is seen that the faulted phases exhibit high out-
put in the form of change in energy (ce) and standard deviation
(sd) in comparison to the un-faulted phases.

Table 1
Change in energy (ce) and sd values for different faults (Rf = 20�, fault at 10%,
inception angle 180◦, source impedanceZS = 5 + j30�)

Fault a b c

cea sda ceb sdb cec sdc

LG
ag 49.6137 0.6269 3.3263 0.0698 1.0416 0.0481
bg 1.7655 0.0859 24.9729 0.3148 3.1497 0.0920
cg 2.1833 0.0592 1.0604 0.053834.9404 0.5415

LLG
abg 49.7764 0.6724 18.9028 0.2907 2.0117 0.0610
bcg 3.3505 0.0703 36.7778 0.4392 43.9432 0.6116
cag 42.5899 0.5139 2.4216 0.0841 24.9239 0.4324

LL
ab 24.2053 0.3070 22.2882 0.2856 0.0001 0.0350
bc 0.0001 0.0350 11.5396 0.2076 10.1772 0.2003
ca 26.7541 0.3909 0.0001 0.0350 28.0509 0.4028

LLL
abc 28.3546 0.3984 19.6354 0.3125 22.3698 0.3678

LLLG
abcg 33.7419 0.4424 16.2684 0.2178 23.1498 0.3767

B

For a line-to-line ground (LG) type, it is found from
Tables 1 and 2that the change in energy ce depends on the
magnitude of the fault resistance,Rf , the value of ce is less for
higher values ofRf . It is found from these tables that the current

Table 2
Change in energy (ce) and sd values for different faults (Rf = 200�, fault at 30%,
inception angle 180◦, source impedanceZS = 6 + j36�)

Fault a b c

cea sda ceb sdb cec sdc

LG
ag 15.8385 0.2117 0.2464 0.0396 0.0230 0.0378
bg 0.9986 0.0647 11.2101 0.1739 1.1876 0.0647
cg 0.4431 0.0475 0.2272 0.0442 14.9927 0.2370

LLG
abg 16.4559 0.2231 8.9539 0.1491 0.1174 0.0415
bcg 0.2905 0.0323 11.7237 0.1727 12.5895 0.1969
cag 13.4441 0.1825 0.4681 0.0559 15.3726 0.2517

LL
ab 9.9518 0.1473 8.1618 0.1281 0.0000 0.0350
bc 0.0000 0.0350 8.2121 0.1577 7.1622 0.1526
ca 13.1622 0.1526 0.0001 0.0350 12.3702 0.1854

LLL
abc 12.3698 0.1759 10.2365 0.1548 9.3687 0.1987

LLLG
abcg 13.4585 0.1874 8.5023 0.1370 12.1127 0.2046

B
old values show the faulted phase.
 old values show the faulted phase.



signals in the faulted phases exhibit greater ce and standard devi-
ation values in comparison to the un-faulted phases. Here cea,
ceb, cec represent change in energy and sda, sdb, sdc represent
standard deviation ina, b andc phases, respectively.

4.2. Classification using radial basis function neural
network (RBFNN)

Even if HS-transform gives information regarding the faulty
phase involved, the RBFNN classifier is used to classify faults
in the proposed method to overcome the error due to assign-
ing threshold value to the parameters for fault identification
including all operating conditions. After feature extraction using
HS-transform, RBFNN is used to detect the faulty phase or mul-
tiple phases involving fault. The RBFNN[14] used here has an
input layer, a hidden layer consisting of Gaussian node function,
a set of weightsW, to connect the hidden layer and output layer.
Letx be the input vectorx = (x1, x2, . . ., xD)T, whereD represents
input dimension. The output vectoro = (o1, o2, . . ., oN)T, where
N is the numbers of output node. ForP training patterns, RBFNN
approximates the mapping from the set of inputX ={x(1), x(2),
. . ., x(P)}, to the set of outputs,O ={o(1), o(2), . . ., o(P)}. For
an input vectorx(t), the output ofjth output node produced by
an RBF is given by

o

mtot∑ mtot∑ −||x(t) − ci||

w
t .

ϕ

a

w

o

with
K itially
d ific
c

C

A e
d

ρ

T

C

w

k

a

The width associated with thekth center is adjusted as

σk(i) =
√√√√ 1

Na

Na∑
j=1

||Ck(i) − Cj(i)||2 (20)

whereNa is the hidden neurons.
The weights of the RBF classifier can be trained using the

linear recursive lease square (RLS) algorithm. The RLS is
employed here since it has a much faster rate of convergence
compared to the gradient search and least means square (LMS)
algorithms.

k(i) = P(i − 1)ϕT(i)

λ + P(i − 1)ϕT(i)
(21)

wj = wj(i − 1) + k(i)[dj(i) − wj(i − 1)ϕT(i)] (22)

P(i) = 1

λ
[P(i − 1) − k(i)ϕ(i)P(i − 1)] (23)

whereλ is real number between 0 and 1,P(0) =a−1 I, anda is a
small positive number andwj(0) = 0.

The computational steps involved in implementing of
RBFNN for fault classification are:

1. for each class c initial centers are first input sets that is
mc = minit (initialization);
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here ci is the center of the ‘i’th hidden node,σi is the width of
he ‘i’th center, andmtot is the total number of hidden nodes

If output of the hidden neurons, by vector notation

= (φ1(t), φ2(t), . . . , φtot(t)) (14)

nd weight vector

j = (w1j, w2j, . . . , wtotj)

RBFNN output can be written as

j = wjϕ
T (15)

In our implementation these sets of centers are trained
-means clustering approach, where the centers are in
efined as the first trainingmc inputs that correspond to a spec
lass c. The center vector is given by

c(i = 0) = {x(c1), x(c2), . . . , x(cmc)} (16)

t each iterationi, following a new inputx(i) is presented, th
istance for each of the centers is denoted by

j(i) = ||x(i) − cj(i−1)||, wherej = 1, 2, . . . , mc (17)

hekth center is updated by the following equation:

k(i) = Ck(i − 1) + α|ρk(i)| (18)

herek that is chosen as thek that minimizesρj(i), as

= arg(min(ρj(i))) (19)

ndα is the learning rate.
. train the RBFNN using current set of centers to get c
validation error for class c,e = {e1, e2 . . . , eNc} (clustering
of centers);

. em (mean(e)) ≤ etargetthat isem has not decreased by 0.15
over last iteration, go to step 5 (convergence test);

. addeinc centers toNc classes with highest error, to get a n
m, then go to step 2;

. the RBFNN is used with the one with the currentm.

The learning rate of the RBFNN is 0.1 and the center
he weights are updated in every iteration that is by new tra
nput to the RBFNN. Here only fault current signal is conside
or feature extraction. Six inputs to the RBFNN fault class
onsisting of ce(i) and sd(i) values of all the three phasesi’
epresents only current signal) are presented to the RBFNN
orrespondingly three outputs are generated from the RB
hich gives the faulty phases involved. The RBFNN architec

or fault classification is shown inFig. 6.
The RBFNN consists of three outputs representing ‘a’, ‘ b’,

c’, phases. During training these outputs are assigned ‘1’ o
onsidering whether the fault is involved with that phase or
or example, ‘abg’ fault case the output will be assigned ‘1
he training set include data (ce and sd) for 5, 15, 25, 35
5, 65, 75, 85, 95% fault location for different fault incept
ngles, fault resistance,different source impedance for 10
f faults (ag, bg, cg, abg, bcg, cag, ab, bc, ca, abc, abcg)
ow chart for fault classification is shown inFig. 7.

The performance of the RBFNN is tested for ce and sd va
f different faults with varying location and fault resistan
ables 3–6present some of the classification results for fau
ransmission line.Table 3shows the performance of RBFN



Fig. 6. RBFNN architecture for fault classification.

for 10% of the line and 45◦ inception angle forRf = 20 and
200�. The respective values ina, b, c columns for ‘ab’ case with
Rf = 20�, a = 1.0098,b = 0.9947,c = 0.0298 depicts the phases
involved with the fault are ‘a’ and ‘b’ only. The classification

Table 3
Fault at 10% of line with 45◦ inception angle

Fault type Rf = 20� Rf = 200�

a b c a b c

ag 0.9995 0.0025 0.0321 0.9987 0.0125 0.0241
bg 0.0325 1.0012 0.0125 0.9847 0.0541 0.0287
cg 0.0124 0.0354 1.0035 0.0354 0.0412 1.0036
abg 1.0048 0.9968 0.0014 1.0003 0.9974 0.0254
bcg 0.0036 1.0051 0.9874 0.0025 0.9964 0.9984
cag 1.0012 0.0041 1.0065 1.0041 0.0069 1.0954
ab 1.0098 0.9947 0.0298 1.0089 1.0074 0.0541
bc 0.0036 1.0051 0.9857 0.0041 0.9874 0.9968
ca 0.9945 0.0054 1.0087 1.0069 0.0654 1.0658
abc 1.0052 0.9998 0.9999 1.0023 0.9986 0.9979
abcg 1.0095 0.9991 0.9984 0.9948 0.9874 1.0019
Fig. 7. Flow chart for
 fault classification.



Table 4
Fault at 30% of line with 60◦ inception angle

Fault type Rf = 20� Rf = 200�

a b c a b c

ag 1.0025 0.0002 0.0013 0.9995 0.0026 0.0014
bg 0.0041 1.0098 0.0054 0.9987 0.0036 0.0254
cg 0.0254 0.0369 1.0008 0.0256 0.0036 1.0095
abg 1.0056 0.9995 0.0024 1.0096 0.9996 0.0025
bcg 0.0089 1.0009 1.0004 0.0012 0.9956 1.0236
cag 0.9996 0.0365 0.9996 1.0006 0.0065 0.9954
ab 1.0025 0.9968 0.0214 1.0006 1.0068 0.0036
bc 0.0006 0.9985 0.9965 0.0036 1.0069 1.0063
ca 1.0548 0.0698 1.0057 0.9958 0.0365 0.9968
abc 1.0028 0.9965 1.0026 0.9947 0.9968 0.9998
abcg 1.0026 1.0058 1.0008 0.9965 1.0045 0.9968

Table 5
Fault at 50% of line with 90◦ inception angle

Fault type Rf = 20� Rf = 200�

a b c a b c

ag 1.0089 0.0045 0.0125 0.9989 0.0126 0.0123
bg 0.0214 1.0254 0.0654 0.9954 0.0254 0.0058
cg 0.0047 0.0096 1.0025 0.0214 0.0236 0.9954
abg 1.0048 0.9987 0.0125 1.0258 0.9965 0.0036
bcg 0.0012 1.0857 0.9954 0.0415 0.9854 1.0254
cag 0.9995 0.0254 0.9914 1.0032 0.0052 1.0063
ab 1.0025 0.9912 0.0041 1.0897 1.0036 0.0213
bc 0.0032 0.9965 0.9912 0.0024 0.9863 0.9995
ca 1.0065 0.0354 1.0069 1.0025 0.0032 1.0069
abc 0.9996 0.9994 1.0058 1.0023 0.9948 1.0054
abcg 1.0056 1.0002 1.0036 0.9968 1.0025 0.9997

approach takes a particular phase to be involved with fault if its
corresponding values greater than a threshold value of 0.5 else
it categorizes the phase to be ‘undisturbed’. SimilarlyTable 4
provides the fault classification results for different faults at 30%
of line with 60◦ inception angle. AlsoTable 5provides the fault
classification results for different faults at 50% of line with 90◦
inception angle where asTable 6presents fault classification
at 70% of line with 30◦ inception angle. The RBFNN has been
trained by 3000 sets of data which comprises ce and sd for faulte

Table 6
Fault at 70% of line with 30◦ inception angle

Fault type Rf = 20� Rf = 200�

a b c a b c

ag 1.0095 0.0023 0.00254 0.9987 0.0254 0.0036
bg 0.0014 1.0001 0.0025 0.9994 0.0058 0.0254
cg 0.0065 0.0045 1.0001 0.0254 0.0036 1.0058
abg 1.0048 0.9987 0.0012 1.0025 0.9925 0.0012
bcg 0.0125 1.0024 1.0025 0.0254 0.9958 1.0026
cag 0.9998 0.0125 0.9968 1.0032 0.0036 1.0254
ab 1.0012 0.9998 0.0125 1.0045 10.365 0.0025
bc 0.0254 0.9945 0.9941 0.0145 0.9968 0.9958
ca 1.0025 0.0654 1.0254 0.9995 0.0036 1.0025
abc 0.9945 1.0023 1.0045 1.0254 0.9991 0.9967
abcg 0.9985 1.0025 1.0014 0.9968 1.0065 0.9995

Table 7
Index values for fault at 10% of the line at different fault resistance

Fault type Index (Rf = 0�) Index (Rf = 200�)

ag 0.0365894 0.1258974
abg 0.0251478 0.1548695
ab 0.0000005 0.0000003
abcg 0.4587925 0.4258974

current signals of every kind of fault at various locations, fault
resistance, and inception angle. Observation of all test results
ascertains that the RBFNN performs excellent even at different
inception angles, fault location and fault resistance and pre-fault
loading conditions.

4.3. Ground detection

Usually RBFNN may not give ground detection properly.
Therefore ground detection task is not included in the RBFNN
classifier. For detecting the involvement of ground, an index is
proposed as given below:

index= min(cea, ceb, cec)

max(cea, ceb, cec)
(24)

The ground detection is carried out in conjunction with the
RBFNN classification. Test result showing the values of index
for ag, abg, ab, abcg faults at 10% of line and fault resistances of
0 and 200� are given inTable 7. When the index value exceeds
the threshold value of 0.005, it indicates the involvement of fault
with ground. This value of index has been tested for different
types of fault with various operating conditions.

5. Fault location using RBFNN
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Once the fault is classified, the control unit activates the
ocating RBFNN to locate the fault. Here RBFNN with R
lgorithm is used to build the fault locator. In this case the le

ng rate of the RBFNN is 0.1 and the center and the weight
pdated in every iteration that is by new training input to
BFNN. Here for fault location both voltage and current sig
re considered and tuned through HS-transform to yield ch

n energy and standard deviation. There are 12 inputs cons
f 6 for current signal (ce(i) and sd(i) for each phase) and 6 f
oltage signal (ce(v) and S.D.(v) for each phase) are fed to t
BFNN and correspondingly one output is generated from
BFNN, which is the distance of the fault from the relay
oint. The RBFNN has been trained using 3000 sets of dat
omprises ce and sd for faulted current and voltage signa
very kind of fault at various locations (15, 25, 35, 45, 55,
5, 85, 95% of transmission line), fault resistance, and ince
ngle. The RBFNN architecture for fault location determina

s given inFig. 8.
The percentage error is computed as

rror (%)= |actual distance− calculated distance|
protected line length

× 100 (25)



Fig. 8. RBFNN architecture for fault location.

Table 8
Fault location for L-G faults

Distance (%) Fault resistance (Rf ) Error (%)

10 0 1.01
200 0.89

30 0 0.99
200 1.12

50 0 1.11
200 1.03

70 0 0.99
200 0.96

90 0 1.00
200 1.06

Table 9
Fault location for LL-G faults

Distance (%) Fault resistance (Rf ) Error (%)

10 0 1.23
200 1.11

30 0 1.26
200 1.11

50 0 1.02
200 1.12

70 0 1.89
200 0.96

90 0 1.00
200 1.23

Table 10
Fault location for LL faults

Distance (%) Fault resistance (Rf ) Error (%)

10 0 1.23
200 1.23

30 0 0.98
200 1.03

50 0 1.02
200 0.98

70 0 0.97
200 1.03

90 0 0.99
200 1.08

Table 11
Fault location for LLL faults

Distance (%) Fault resistance (Rf ) Error (%)

10 0 0.99
200 1.32

30 0 1.08
200 1.01

50 0 0.96
200 1.26

70 0 0.94
200 1.12

90 0 1.11
200 1.22

Table 12
Fault location for LLL-G faults

Distance (%) Fault resistance (Rf ) Error (%)

10 0 1.36
200 1.41

30 0 0.98
200 1.12

50 0 1.45
200 1.36

70 0 0.96
200 1.11

90 0 0.98
200 1.02

The location error shown inTables 8–12for 10, 30, 50, 70, 90%
and L-G, LL-G, LL, LLL, LLL-G fault with fault resistance
Rf from 0 to 200�. The location error for 10% of line with
L-G fault with Rf = 0� is 1.01% and withRf = 200� is 0.89%.
LikewiseTables 9–12show the percent error for LL-G, LL, LLL
and LLL-G fault, respectively. The error is the least in case of
L-G fault that is 0.89% at 10% of line and goes up to 1.89% in
case of LL-G fault at 70% of the transmission line.

6. Conclusion

An efficient fault classification and location determination
using HS-transform and RBFNN is presented in this paper.
HS-transform based time frequency analysis is used for feature
extraction by computing the standard deviation and change in
energy at varying window. After feature extraction, RBFNN is
used for faulty phase detection and classification. The change
in energy and standard deviation are the input to the RBFNN,
which provides the output for classification. The output is very
nearly ‘1’ for faulty phase and ‘0’ for un-faulted phase. The clas-
sification result given inTables 3–6shows the effectiveness of
RBFNN for accurately identifying the faulted phase. Once the
faulty phases are identified, the fault distance can be computed
by RBFNN. RBFNN locator gives the distance of the fault from
the relaying point and the error calculated for all kinds of faults
i fast
s below 2%. The trained networks are capable of providing



and precise classification and location for different types faults
with various inception angle and fault resistance.
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