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Abstract

A new approach for protection of transmission lines has been presented in this paper. The proposed technique consists of preprocessin
fault current and voltage signal sample using hyperbolic S-transform (HS-transform) to yield the change in energy and standard deviation at
appropriate window variation. After extracting these two features, a decision of fault or no-fault on any phase or multiple phases of the transmiss
line is detected, classified, and its distance to the relaying point found out using radial basis function neural network (RBFNN) with recursive le
square (RLS) algorithm. The ground detection is done by a proposed indigator.' As HS-transform is very less sensitive to noise compared
to wavelet transform, the proposed method provides very accurate and robust relaying scheme for distance protection.
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detection and location calculatiJi—6]. Some of the recent
1. Introduction papers in this aref8,4,6] have used only the sampled current
values at the relaying point during faults for classification of
Different types of transient phenomena occur on the transfault types and distance calculations.
mission line. From these transient phenomena, faults on trans- |n recent years, neural networks are trained to recognize fault
mission lines need to be detected, classified, located accuratepatterns associated with the voltage and current waveforms from
and cleared as fast as possible. In power transmission line protegre relaying point due to their superior ability to learn and gener-
tion, faulty phase identification and location of fault are the twoglize from training patterns. However, in the fault classification
most important items which need to be addressed in a reliablgnd location tasks, the neural networks cannot produce accurate
and accurate manner. Distance relaying techniques based on f&ults due to the inaccuracies in the input phasor data and the
measurement of the impedance at the fundamental frequeng¥quirement of a large number of neural networks for different
between the fault location and the relaying point have attractegategories of fault.
wide Spread attention. The Sampled voltage and current data at Another pa‘[tern recognition technique based on wavelet
therelying pointare used to locate and classify the faultinvolvingransform has been found to be an effective tool in monitor-
the line with or without fault resistance present in the fault pathing and analyzing power system disturbances including power
The accuracy of the fault classification and location alsoquality assessmerii3] and system protection against faults.
depends on the amplitude of the dc offset and harmonics iplthough wavelets provide a variable window for low and high
comparison to the fundamental component. Fourier transformsrequency currents in the voltage and current waveforms during
differential equations, waveform modeling and Kalman filters faults, their capabilities are often significantly degraded owing to
and wavelet transforms are some of the techniques used for fagke existence of noises riding high on the siglin particular,
as the spectrum of the noises coincides with that of the tran-
sient signals, the effects of noises cannot be excluded by means
* Corresponding author. Tel.: +91 9437108895; fax: +91 674 2725312.  Of some kinds of filters without affecting the performance of
E-mail address: sbhsamant@rediffimail.com (S.R. Samantaray) the wavelet transform. Another powerful time—frequency anal-
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ysis known as S-transform has found applications in geoscienamnd voltages, it may be advantageous to use awindow having fre-
and power engineerin@—10]. The S-transform is an invertible quency dependent asymmetry. Thus, at high frequencies where
time—frequency spectral localization technique that combinethe window is narrowed and time resolution is good, a more sym-
elements of wavelet transforms and short-time Fourier transmetrical window needs to be chosen. On the other hand, at low
form. The S-transform uses an analysis window whose widtlirequencies where a window is wider and frequency resolution
is decreasing with frequency providing a frequency dependeris less critical, a more asymmetrical window may be used to pre-
resolution. This transform may be seen as a continuous wavelgéent the event from appearing too far ahead on the S-transform.
transform with a phase correction. It produces a constant relaFhus an hyperbolic window of the form given below is used.

tive bandwidth analysis like wavelets while it maintains a direct

2y2

link with Fourier spectrum. The S-transform has an advantagqavhy = 211 exp{ —f°X } (4)

in that it provides multi resolution analysis while retaining the \/ 2r(any + Bhy) 2

absolute phase of each frequency. This has led to its applicatiqpnere

for detection and interpretation of events in a time series like the

power quality disturbancd41]. X = M( —t—&+ oy — Phy \/(f —1—&%+ Aﬁ
The feature extraction from the faulted current signal, a vari- 2oty By Zahyﬂ hy Y

ant of the original S-transforrfiLl2] is used where a pseudo- ()

Gaussian hyperbolic window is used to provide better time angh the above expressionddrny < fpy and is defined as
frequency resolutions at low and high frequencies unlike the

S-transform using the Gaussian window. Here the hyperbolic /(Bny — ahy)zx\ﬁy
window has frequency dependence in its shape in addition t§ = o

its width and height. The increased asymmetry of the window hyPny
at low frequencies leads to an increase in the width in the fre- The translation by ensures that the peaiy,, occurs at
quency domain, with consequent interference between majar— = 0. Atf= 0, Wyyis very asymmetrical, but wh¢increases,
noise frequencies. In this paper the hyperbolic S-transform (HSthe shape oW,y converges towards that of the symmetrical
transform) is used to calculate the change in energy and standa@hussian windowVys given in Eq.(2). For different values of
deviation of the fault current and voltage signal which are fed taxny and ny and with Azy =1, Fig. 1 shows the nature of the
the RBFNN for fault classification and location determinationwindow as the function of time — . As seen from the figure
from the relaying point. PSCAD package is used to generatthe change in the shape from an asymmetrical window to a sym-
fault data for varying location, fault resistance and inceptionmetrical one occurs more rapidly with increasfiighe discrete

(6)

angle and changed source impedance. version of the hyperbolic S-transform of the faulted voltage and
current signal samples at the relaying point is calculated as
2. Hyperbolic S-transform for feature extraction N-1
Sln, jl = Y Hlm + n]G(m. n) expG2mm) 7)
The original S-transforn8] is defined as m=0
/] F2(r—1) wheren is the total number of samples and the indiees, j are
S(z, f) / h(t){ exp{ 2} n=0,1,...,.N-1,m=0,1,...,N—1andj=0,1,...,N— 1.
- v2m The G(m, n) denotes the Fourier transform of the hyperbolic
window and is given by
X exp2rft) ¢ dt (1) -
2 —f°X
. G = 2l ep( =15 ®)
whereS denotes the S-transformkf), which is the actual fault \/ 2 (any + Py) 2n

current or voltage signal varying with time, frequency is denoted

byf, and the quantity is a parameter which controls the position L ' ' ' '

of Gaussian window on the time-axis. A small modification of 0.91 ]
'w\_> =1

the Gaussian window has been suggested for better performance o.sf
0.7 7

| £l [—f2(x —1)]
A/ Zﬂags exp 20[55

Wos(t — 1, f ags) = 2 0.6 ]

amplitude

and the S-transform with this window is given by

0.5
0.4+ o l \\\ f=0.25 7
S(z, f, otg) = /_ (-1, fag) expl2rifyd (3) | ]

0.2¢ |
. . . ) 0.1} =8 _.h\ :
whereags is to .be chosen for providing suitable time and fre- o*‘“’"/- i \H \\ e
quency resolution. -3 2 -1 0 1 2 3
In applications, which require simultaneous identification time

time—frequency signatures of different faulted phase currents Fig. 1. Varying windowWhy atf=1, 0.5, and 0.25.



here

(otny + Bhy) Bry — athy < )
X = t+ /12 + An 9
2ahyBry 2ahyBhy g ©)
andH(m, n) is the frequency shifted discrete Fourier transform
H[m] and is given by l l
N1 Current or Voltage Gaussian Window
Hm) = > " h(k) exp(—i2mnk) (10) Signal A(1) function 1,
m=0
The computational steps of the hyperbolic S-transform are: l l
() H[m] of the faulted voltage and current wave form samples | 1 (m, n)=FFT(h(1) G(m, n)=FFT(Wy)
are calculated and shifted to git#n + m];
(ii) thelocalizing hyperbolic Gaussian winddm, n] is eval- l
uated,;
(i) H[n+m] andG[m, n] are multiplied and the inverse Fourier H (m+ n))

transform of the product is found out to give the rows of | (shifting H (m,n))
S[n, j] corresponding to the frequenay

The hyperbolic S-transform is found to be a complex matrix i
S [5. N]. Fig. 2shows the flow chart for HS-transform.

Hm+m) * Gim ,n)
3. System studied l

The model network shown fRig. 3has been simulated using ‘
PSCAD (EMTDC) package. The network having two areas S (n, )=IFFT(H(n, m) * G(m, n))
connected by the transmission line of 400kV. The transmis-
sion line has zero sequence impedafi) = 96.45 +j335.262
and positive sequence impedarigd)=9.78 +j110.23%2 and
Es=400kV, Er =400/3 kV. The relaying point is as shown in
Fig. 3, where data is retrieved for different conditions. Isola-
tion of over voltage and high frequency components can be
performed according to the required level of decomposition
and reconstruction. The sampling rate is 1.0 kHz at 50 Hz base
frequency. The change in energy and standard deviation are cal-
culated from the S-transform of the current and voltage signa®nd

Fig. 2. Flow chart for HS transform.

one cycle ahead and one cycle back from the fault inceptionsd_ stdabs(h 12
Fig. 4shows the fault voltage and current signal for three phase dabs(he) (12)
fault. The proposed scheme is depicted aSig 5. where hgthe HS-transform coefficient is for one cycle ahead of

fault inception and hsis the HS-transform coefficients for one
cycle before the inception of the fault. For faulted phase identifi-
cation, simulations are carried out for faults at intervals of 10 km
from the sending end for a total line length of 300 km. For each
of these fault locations inception angB,(fault resistanceR;)

and source impedancgd) are varied to provide the change in

4. Fault classification
4.1. Feature extraction

For faulty phase identification or fault classification only cur-
rent signal is preprocessed through HS-transform to find out the
features. The HS-transform outputs of the faulted current signal 300 ki ]
for different types of faults at 10-90% of the line with differ- |
entincidence angles, source impedance and fault resistances a\ ~ | -
used to provide the following pertinent features, which can be
used to classify the type of fault. Change in the signal energy anc Relaying
standard deviation of the HS-transform contour are obtained as S Point

Er

Fault

ce=Ef— Ep = {abs(hS}z - {abs(hﬁ}z (11) Fig. 3. Transmission line model.
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Fig. 4. Fault voltage and current signal for three-phase fault.
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energy and standard deviation as presentethbles 1 and 2
Fromthe tables, itis seen that the faulted phases exhibit high outables 1 and 2hat the change in energy ce depends on the
put in the form of change in energy (ce) and standard deviatiomagnitude of the fault resistand®, the value of ce is less for

(sd) in comparison to the un-faulted phases.

Table 1

Change in energy (ce) and sd values for different fatil{s0<2, fault at 10%,
inception angle 18Q source impedancés =5 +j30%2)

|
RBFNN {———p  Faulty phases
classifierand 1 ——»
ground Ground
detector I—— jetection
RBFNN — Fault Location

locator

Fig. 5. Protection scheme for proposed method.

For a line-to-line ground (LG) type, it is found from

higher values oRs. It is found from these tables that the current

Table 2

Change in energy (ce) and sd values for different failts 00<2, fault at 30%,
inception angle 180 source impedancés =6 +j36%2)

Fault a b c Fault a b c
ce, sd, ce, sd, ce. sd. ce, sd, ce, sd, ce. sd.
LG LG
ag 49.6137 0.6269 3.3263 0.0698 1.0416 0.0481 ag 15.8385 0.2117 0.2464 0.0396 0.0230 0.0378
bg 1.7655 0.0859 24.9729 0.3148 3.1497 0.0920 bg 0.9986 0.0647 11.2101 0.1739 1.1876 0.0647
cg 2.1833 0.0592 1.0604 0.053834.9404 0.5415 cg 0.4431 0.0475 0.2272 0.044214.9927 0.2370
LLG LLG
abg 49.7764 0.6724 18.9028 0.2907 2.0117 0.0610 abg  16.4559 0.2231 8.9539 0.1491 0.1174 0.0415
bcg 3.3505 0.0703 36.7778 04392 439432 0.6116 bcg 0.2905 0.0323 11.7237 0.1727 12.5895 0.1969
cag 42.5899 0.5139 2.4216 0.0841 24.9239 0.4324 cag 13.4441 0.1825 0.4681 0.0559 15.3726 0.2517
LL LL
ab 24.2053 0.3070 22.2882 0.2856 0.0001 0.0350 ab 9.9518 0.1473 8.1618 0.1281 0.0000 0.0350
bc 0.0001 0.0350 11.5396 0.2076 10.1772 0.2003 bc 0.0000 0.0350 8.2121 0.1577 7.1622 0.1526
ca 26.7541 0.3909 0.0001 0.0350 28.0509 0.4028 ca 13.1622 0.1526 0.0001 0.0350 12.3702 0.1854
LLL LLL
abc 28.3546 0.3984 19.6354 0.3125  22.3698 0.3678 abc 12.3698 0.1759  10.2365 0.1548 9.3687 0.1987
LLLG LLLG
abcg  33.7419 04424 16.2684 0.2178  23.1498 0.3767 abcg 13.4585 0.1874 8.5023 0.1370  12.1127 0.2046

Bold values show the faulted phase.

Bold values show the faulted phase.



signals in the faulted phases exhibit greater ce and standard devi- The width associated with thgh center is adjusted as

ation values in comparison to the un-faulted phases. Here ce

ce,, Ce. represent change in energy ang,ssbi,, sd. represent
standard deviation in, b andc phases, respectively.

4.2. Classification using radial basis function neural
network (RBFNN)

1 Ja
ki) = || 3 D_IICk() = C; ()11 (20)
aj:l

whereN, is the hidden neurons.
The weights of the RBF classifier can be trained using the
linear recursive lease square (RLS) algorithm. The RLS is

Even if HS-transform gives information regarding the faulty employed here since it has a much faster rate of convergence

phase inVOlved, the RBFNN classifier is used to CIaSSify fault%ompared to the gradient search and least means square (LMS)
in the proposed method to overcome the error due to assigijigorithms.

ing threshold value to the parameters for fault identification

including all operating conditions. After feature extraction using
HS-transform, RBFNN is used to detect the faulty phase or mul

tiple phases involving fault. The RBFNN4] used here has an

input layer, a hidden layer consisting of Gaussian node functiort’j = wji —
a set of weightd¥, to connect the hidden layer and output layer.

Letx be the input vector= (x1, x2, . . ., xp)", whereD represents
input dimension. The output vector (o1, 02, . . ., o), where
Nisthe numbers of output node. FBtraining patterns, RBFNN
approximates the mapping from the set of infiat {x(1), x(2),
..., x(P)}, to the set of outputs) ={o(1), 0(2), .. ., o(P)}. For
an input vector(r), the output ofith output node produced by
an RBF is given by

Mtot Mot

0j(t) =) _wijgi() = Zwijew

im1 im1 Oi

(13)

where ¢is the center of the'th hidden nodeg; is the width of
the ‘I'th center, andn;qt is the total number of hidden nodes.
If output of the hidden neurons, by vector notation

@ = (#1(0), $2(1). - . ., rot(t)) (14)
and weight vector
w; = (wyj, w2j, ..., Wiotj)
RBFNN output can be written as
0j = wj(pT (15)

P(i — 1)p" (i)

K =57+ Pli — 1)p' () (21)
1) + k()[d;(i) — w;(i — D" ()] (22)
P(i) = %[P(i — 1) — k(i)p(i) P(i — 1)] (23)

wherex is real number between 0 andA(0) =a~11, anda is a
small positive number and ;(0) = 0.

The computational steps involved in implementing of
RBFNN for fault classification are:

1. for each class c initial centers are first input sets that is
m¢ =minit (initialization);
2. train the RBFNN using current set of centers to get cross
validation error for class @ = {e1, e2. .., en,} (clustering
of centers);
3. em (Meang)) < etargetthat isem has not decreased by 0.15%
over last iteration, go to step 5 (convergence test);
. addeinc centers tav; classes with highest error, to get a new
m, then go to step 2;
5. the RBFNN is used with the one with the current

N

The learning rate of the RBFNN is 0.1 and the center and
the weights are updated in every iteration that is by new training
inputto the RBFNN. Here only fault current signal is considered
for feature extraction. Six inputs to the RBFNN fault classifier

In our implementation these sets of centers are trained witfonsisting of cef and sdj) values of all the three phases’ (
K-means clustering approach, where the centers are initiallfepresents only current signal) are presented to the RBFNN and
defined as the first training, inputs that correspond to a specific correspondingly three outputs are generated from the RBFNN,

class c. The center vector is given by

CC(l = 0) = {X(C]_), x(62)9 BRI x(cmc)}

At each iteration, following a new inputx(i) is presented, the
distance for each of the centers is denoted by

(16)

pi(@) = 1x(@) — cje-pll, wherej=1,2,...,mc a7
Thekth center is updated by the following equation:

Ci()) = Cili — 1) + el pr ()| (18)
wherek that is chosen as thiethat minimizesp; (i), as

k = arg(min(p;(i))) (29)

ande is the learning rate.

which gives the faulty phases involved. The RBFNN architecture
for fault classification is shown iRig. 6.

The RBFNN consists of three outputs representirig' %',

‘c’, phases. During training these outputs are assigned ‘1’ or ‘0’
considering whether the fault is involved with that phase or not.
For example, ‘abg’ fault case the output will be assigned ‘110’
The training set include data (ce and sd) for 5, 15, 25, 35, 45,
55, 65, 75, 85, 95% fault location for different fault inception
angles, fault resistance,different source impedance for 10 types
of faults (ag, bg, cg, abg, bcg, cag, ab, bc, ca, abc, abcg). The
flow chart for fault classification is shown Fig. 7.

The performance of the RBFNN is tested for ce and sd values
of different faults with varying location and fault resistance.
Tables 3—Gresent some of the classification results for faulted
transmission lineTable 3shows the performance of RBFNN



a- phase

Table 3
Fault at 10% of line with 45inception angle

ceq(i) Faulttype R;=20%Q Rt =200
sdy(i) a b c a
""”(f) b phase ag 0.9995 0.0025 0.0321 09987 00125 0.0241
sdy(i) bg 0.0325 1.0012 0.0125 0.9847 0.0541 0.0287
cg 0.0124 0.0354 1.0035 0.0354 0.0412 1.0036
. abg 1.0048 0.9968 0.0014 1.0003 0.9974 0.0254
sdu(i) ¢- phase beg 0.0036 1.0051 0.9874 0.0025 0.9964  0.9984
cag 1.0012 0.0041 1.0065 1.0041 0.0069 1.0954
ab 1.0098 0.9947 0.0298 1.0089 1.0074 0.0541
bc 0.0036 1.0051 0.9857 0.0041 0.9874 0.9968
ca 0.9945 0.0054 1.0087 1.0069 0.0654 1.0658
Fig. 6. RBFNN architecture for fault classification. abc 1.0052 0.9998 0.9999 1.0023 0.9986 0.9979
abcg 1.0095 0.9991 0.9984 0.9948 0.9874 1.0019
for 10% of the line and 45inception angle forR; =20 and
20022. The respective valuesinb, c columns for ‘ab’ case with
Ri =20, a=1.0098,b=0.9947,c=0.0298 depicts the phases
involved with the fault ared’ and ‘b’ only. The classification
Fault current retrieved at
relaying end
HS-Transtform
A 4
ce and sd values computed
RBFNN 1
(output fora, b, ¢ Ground
phase) Dete_ctor
No Ifa ph= 1.0
Ifb ph= 1.0
Ifcph=1.0
(either
combinations)
Ground Ground
Involved o not
No Fault Fault Involved
detected
v v v
a-g, b-g, c-g, ab- ab, be, ca, abe
g, be-g, ca-g, fault
abe-g fault

Fig. 7. Flow chart for fault classification.



Table 4 Table 7

Fault at 30% of line with 60inception angle Index values for fault at 10% of the line at different fault resistance
Faulttype R;=20Q R; =200 Fault type IndexRs =0%Q) Index (Rs =200%2)
a b ¢ a b c ag 0.0365894 0.1258974
abg 0.0251478 0.1548695
Sg 10025 00002 00013 09995 0.0026 0.0014 0.0000005 0.0000003
g 00041  1.0098  0.0054 09987 00036  0.0254 . 04587925 0.4258974
cg 0.0254  0.0369 1.0008 0.0256 0.0036  1.0095
abg 1.0056  0.9995 0.0024 1.0096 0.9996  0.0025
bcg 0.0089  1.0009 1.0004 0.0012 0.9956  1.0236
cag 0.9996  0.0365 ~ 0.9996  1.0006 0.0065  0.9954 0 signals of every kind of fault at various locations, fault
ab 1.0025 09968 00214 1.0006 1.0068  0.0036 U 9 _ Y \ '
be 0.0006 0.9985 0.9965 0.0036 1.0069 1.0063 resistance, and |ncept|0n angle. Observation of all test results
ca 1.0548 0.0698 1.0057 0.9958 0.0365 0.9968 ascertains that the RBFNN performs excellent even at different
abc 1.0028 0.9965 1.0026 ~ 0.9947  0.9968  0.9998nception angles, fault location and fault resistance and pre-fault
abcg 10026 1.0058 10008 09965 10045  0.9968|nading conditions.
Table 5 4.3. Ground detection
Fault at 50% of line with 9Dinception angle
Faulttype  Rr=20Q Rr = 2000 Usually RBFNN may not give ground detection properly.

Therefore ground detection task is not included in the RBFNN

4 b ¢ a b ¢ classifier. For detecting the involvement of ground, an index is
ag 1.0089  0.0045 0.0125 0.9989 0.0126  0.0123 proposed as given below:
bg 0.0214  1.0254  0.0654  0.9954  0.0254  0.0058 )
cg 00047 0.009 10025 00214 00236 09954, . min(ce,, C&, C€:) (24)
abg 1.0048 0.9987 0.0125 1.0258 0.9965  0.0036 max(ce, ce,, ce.)
bcg 0.0012 1.0857 0.9954 0.0415 0.9854  1.0254
cag 0.9995 0.0254 0.9914 1.0032 0.0052 1.0063 The ground detection is carried out in conjunction with the
ab 1.0025 09912  0.0041  1.0897  1.0036  0.0213 RBENN classification. Test result showing the values of index
22 cl)'lgg:;: g:gggi cl)'.ggég cl)'.gggg 8:?)32?2’ (1):?)?)23 for ag, abg, ab, abcg faults at 10% of line and fault resistances of
abc 0.9996 09994 10058 1.0023 09948 1.00540and 20Q2 are given inTable 7 When the index value exceeds
abcg 1.0056 1.0002 1.0036 0.9968 1.0025 0.9997the threshold value of 0.005, it indicates the involvement of fault

with ground. This value of index has been tested for different
types of fault with various operating conditions.

approach takes a particular phase to be involved with fault if its

corresponding values greater than a threshold value of 0.5 el Fault location using RBFNN

it categorizes the phase to be ‘undisturbed’. Simildidple 4

provides the fault classification results for different faults at 30%  Once the fault is classified, the control unit activates the fault
of line with 60° inception angle. Alsdable Sprovides the fault  |ocating RBFNN to locate the fault. Here RBFNN with RLS
classification results for different faults at 50% of line wittf90 algorithm is used to build the fault locator. In this case the learn-
inception angle where akable 6presents fault classification ing rate of the RBFNN is 0.1 and the center and the weights are
at 70% of line with 30 inception angle. The RBFNN has been updated in every iteration that is by new training input to the
trained by 3000 sets of data which comprises ce and sd for faulteRBFNN. Here for fault location both voltage and current signal
are considered and tuned through HS-transform to yield change

Table 6 in energy and standard deviation. There are 12 inputs consisting

Fault at 70% of line with 3Dinception angle of 6 for current signal (cé) and sd{) for each phase) and 6 for

Faulttype R =209 R = 20002 voltage signal (ce() and SD.(v) for each phase) are fed to the

RBFNN and correspondingly one output is generated from the

a b ¢ a b ¢ RBFNN, which is the distance of the fault from the relaying

ag 1.0095 0.0023 0.00254 0.9987 0.0254 0.0036 point. The RBFNN has been trained using 3000 sets of data that

bg 0.0014  1.0001 0.0025 09994 0.0058 0.0254 comprises ce and sd for faulted current and voltage signals of

€9 0.0065 0.0045  1.0001 ~ 0.0254  0.0036  1.0058 every kind of fault at various locations (15, 25, 35, 45, 55, 65,

abg 10048 09987 00012 10025 09925 0.0012 "o oy o ssion I fault resist i "

bcg 00125 10024 10025 00254 09958 1.0026 'O+ 85 95% of transmission line), fault resistance, and inception

cag 0.9998 0.0125 0.9968 10032 00036 1.0254angle. The RBFNN architecture for fault location determination

ab 1.0012 09998 0.0125  1.0045 10.365 0.0025is given inFig. 8.

bc 0.0254 0.9945 0.9941 0.0145 0.9968 0.9958 The percentage error is Computed as

ca 1.0025 0.0654 1.0254  0.9995 0.0036  1.0025

abc 0.9945 1.0023  1.0045 1.0254  0.9991  0.9967 0 |actual distance- calculated distange

abcg 09985 1.0025 1.0014 09968 1.0065 0.9995€TOr (%)= x 100 (25)

protected line length



Table 11
Fault location for LLL faults

ce,y(i) Distance (%) Fault resistancgj Error (%)
sdafi) 10 0 0.99
o (o 200 1.32
ceal¥) Fault
sda(v) Location 30 0 1.08
. 200 1.01
. 50 0 0.96
sde(v) . 200 1.26
n
@ 70 0 0.94
B, 200 1.12
Fig. 8. RBFNN architecture for fault location. % 208 1;
Table 8
Fault location for L-G faults
Distance (%) Fault resistancgs{ Error (%) Table 12
Fault location for LLL-G faults
10 0 1.01
200 0.89 Distance (%) Fault resistancgs{ Error (%)
30 0 0.99 10 0 1.36
200 1.12 200 1.41
50 0 111 30 0 0.98
200 1.03 200 1.12
70 0 0.99 50 0 1.45
200 0.96 200 1.36
90 0 1.00 70 0 0.96
200 1.06 200 1.11
90 0 0.98
Table 9 200 1.02
Fault location for LL-G faults
Distance (% Fault resistancg, Error (% . ,
) ik ) The location error shown ifables 8—12or 10, 30, 50, 70, 90%
10 0 1.23 and L-G, LL-G, LL, LLL, LLL-G fault with fault resistance
200 111 R; from 0 to 200R2. The location error for 10% of line with
30 0 1.26 L-G fault with R =02 is 1.01% and witlR; = 2002 is 0.89%.
200 111 LikewiseTables 9—1&how the percent error for LL-G, LL, LLL
50 0 1.02 and LLL-G fault, respectively. The error is the least in case of
200 112 L-G fault that is 0.89% at 10% of line and goes up to 1.89% in
70 0 1.89 case of LL-G fault at 70% of the transmission line.
200 0.96
90 0 1.00 6. Conclusion
200 1.23
An efficient fault classification and location determination
Table 10 using HS-transform and RBFNN is presented in this paper.
Fault location for LL faults . .
HS-transform based time frequency analysis is used for feature
Distance (%) Fault resistancky Error (%)  extraction by computing the standard deviation and change in
10 0 123 energy at varying window. After feature extraction, RBFNN is
200 1.23 used for faulty phase detection and classification. The change
30 0 0.98 in energy and standard deviation are the input to the RBFNN,
200 1.03 which provides the output for classification. The output is very
50 0 102 nearly ‘1’ for faulty phase and ‘0’ for un-faulted phase. The clas-
200 0.98 sification result given iTables 3—6hows the effectiveness of
RBFNN for accurately identifying the faulted phase. Once the
70 0 0.97 : o X
200 1.03 faulty phases are identified, the fault distance can be computed
by RBFNN. RBFNN locator gives the distance of the fault from
% 208 g'gg the relaying point and the error calculated for all kinds of faults

is below 2%. The trained networks are capable of providing fast




and precise classification and location for different types fault:
with various inception angle and fault resistance.
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