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Abstract— Inrush currents in power transformers are 
detected based on magnitude of second harmonic component. To 
avoid the harmful effects of inrush, amorphous core is widely 
used in recent days. Transformers with amorphous core cause 
low magnitude inrush current and hence the second harmonic of 
inrush current is comparable with that during internal faults. 
This increases the chances for relay mal operation when classical 
techniques of discriminating inrush from other faults are used. 
To overcome this, advanced signal processing techniques like 
wavelets, S-transform, H-transform and pattern recognition tools 
like fuzzy logic, neural network, support vector machine etc. are 
being used in recent days. A combination of wavelets and neural 
network is found to give satisfactory solution to the above 
problem. In this paper, a comparative study using different 
mother wavelets along with different activation function is made 
to enhance the performance. Virtual instrument is used to 
demonstrate the method of fault classification. 

Keywords— wavelets; neural network; virtual instrument; 
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I.  INTRODUCTION  
Power transformers are a class of very expensive and vital 

components of electric power systems. The crucial objective to 
mitigate the frequency and duration of unwanted outages 
related to power transformer puts a high pointed demand on 
power transformer protective relays to operate immaculately 
and capriciously. One of the major problems associated with 
the power transformer relay is the false tripping during 
magnetizing inrush current. It is found that the ratio of second 
harmonic to fundamental component is more in the case of 
inrush than other faults [1-2]. Considering this ratio, a method 
known as harmonic restraint differential protection scheme was 
developed to judge whether the current is inrush or due to 
internal fault. Traditionally, frequency analysis of the currents 
was performed using discrete Fourier transform (DFT). But it 
is well known that DFT is not accurate if the current is 
contaminated by harmonics that are not integer multiples of the 
fundamental, especially when the computation window is very 
short and DFT only accounts for frequency analysis and 
provides no information in the time domain [3]. DFT assumes 
the inrush and fault currents as periodic signal, whereas inrush 
and fault currents are non-stationary and non-periodic 
containing both high frequency oscillations and localized 
impulses superimposed on the power frequency and its 
harmonics [4].  

The first few cycles of inrush current consists of high 
magnitude peaks that cause huge mechanical forces in 
transformer windings [4]. Also the presence of large quantity 
of harmonics in the inrush current can cause damage to power 
factor correction capacitor by exciting resonant overvoltage 
[5]. Hence steps are taken to mitigate the transformer inrush 
current by controlled switching and use of low loss amorphous 
core materials in modern power transformer [5].  The inrush 
current of these transformers produce low second harmonic 
that is comparable with that of fault currents. Hence the 
traditional methods are not reliable. New algorithm based on 
advanced digital signal processing techniques like discrete 
wavelet transform (DWT), wavelet packet transform (WPT), S-
transform, H-transform etc. are being implemented for power 
transformer protection [4-8]. Different pattern recognition tools 
like fuzzy logic, artificial neural network (ANN), principal 
component analysis, support vector machine (SVM) etc. are 
also being used in recent days as classifiers to classify inrush 
current from faults current [9-14]. 

 Instead of using DWT and ANN separately to distinguish 
between inrush and fault currents, the algorithm that uses 
combination of both is proven to be more efficient than other 
methods [1]. However, the procedure used in [1] is complex as 
it involves four layered ANN and data extraction based on 
Parseval’s theorem. In this paper, a simplified method is 
proposed by using statistical data extraction and two layered 
feed forward ANN. This method requires less number of 
iterations for training and found to classify inrush current 
accurately. 

II. SIMULATION OF FAULTS AND INRUSH CURRENTS 

A. Power System Studied 
A simple block diagram model of the power system [1] as 

shown in Fig. 1 is considered for study. The model consists of 
3  components with ratings as shown in Table I. The power 
system model with star-star transformer is simulated in 
MATLAB/SIMULINK environment separately for normal 
operation, internal faults (I), external faults (E) and inrush. 

It is assumed that the power system model is not energized 
at time t = 0+. To simulate different cases required for ANN 
training, the instance of switching is varied so that initial angle 
of voltage changes. To simulate different over excitation cases, 
increased load is considered for study. To simulate internal and 
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external fault patterns, the fault resistance is varied from 0.1 Ω 
to 100 Ω in multiples of 10. To simulate inrush, secondary is 
kept open and switching instances are varied. 
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Fig. 1. Power system model 

TABLE I.  DETAILS OF POWER SYSTEM COMPONENTS 

3 Component Rating 

Power Supply 
(Y connected) 

230 kV, 50Hz,  
source resistance 0.8929 Ω  
source inductance 16.58 mH 

Transformer  
(Y-Y connected) 

450 MVA, 230 kV/500 kV, 50 Hz 
Winding resistance 0.02 pu 
Winding reactance 0.08 pu  
(for both Secondary and Primary) 
Saturable core with no residual flux 

Transmission Line 

100 Km 
Resistance 0.01273 ×10-3  Ω/m,  
Inductance 0.9337×10-6 H/m 
Capacitance 12.04×10-6  F/m 

R-L Load  
(Y connected) 450 MW, 530 MVAR 

Current transformers 
(Δ connected) 3000/5 (LV side), 800/5 (HV side) 

 

Initially, differential current measured during normal 
operating condition, inrush and fault conditions are simulated 
by closing the switches at 0.1 s, 0.1s and 0.05 s respectively. 
The three phase current signals coming from the differential 
measurement during normal operating condition and inrush are 
shown in Fig. 2 and Fig. 3 respectively. Finite current observed 
during normal condition is due to the difference in the current 
transformer (CT) ratio. 

Although different fault conditions (internal and external 
faults) are considered for different patterns, only the severe 
fault (L-L-L-G and L-L-L) currents are shown in Fig. 4, Fig. 5 
and Fig. 6. 

III. WAVELET ANALYSIS 
The transient currents during fault, inrush and over 

excitation conditions are fast decaying, oscillating and consists 
of high frequency, so Daubichies’s wavelet of level 6 (db6) 
suits best for the analysis purpose. The performance of 
different mother wavelets is given in Table V.   

 As the sampling frequency is 20 kHz, the highest 
frequency that the signal could contain will be 10 kHz. This 
frequency is observed at the output of high frequency filter 
which gives the first Detail. Thus, the band frequencies 
between 10 kHz to 5 kHz are captured in Detail-1. Similarly 
the band frequencies are captured for other Details as given in 

Table II. The wavelet analysis using db6 as the mother wavelet 
is performed up to Detail 5 level for the differential current 
signals of all the cases to extract the Detail coefficients. The 
analysis is carried out for 20 ms during 0.1 s to 0.12 s.   
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Fig. 2. Differential current during normal operation 
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Fig. 3. Differential inrush current of a three phase power transformer 
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Fig. 4. Differential current during internal L-L-L-G fault 
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Fig. 5. Differential current during internal L-L-L fault 
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Fig. 6. Differential current during external L-L-L-G fault 
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A. Wavelet Analysis in Inrush Case 
Wavelet analysis for inrush case at the instant when 

switching takes place at 00 angle of the source voltage is shown 
in Fig. 7. Fig. 7(a) represents the original current signal of 
phase A. It is seen that the current waveform is distorted in 
shape. Abrupt changes in the slope of inrush current are 
observed at the edges of the gaps. These sudden changes are 
visible as ripples in the wavelet plots shown in Fig. 7(b) - 7(f). 
These ripples of significant magnitude are the major 
characteristics of inrush current.  
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(a) Original current signal 
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(b) Detail coefficient at level 1 decomposition. 
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(c) Detail coefficient at level 2 decomposition. 
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(d) Detail coefficient at level 3 decomposition. 
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(e) Detail coefficient at level 4 decomposition. 
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(f) Detail coefficient at level 5 decomposition. 

Fig. 7. Wavelet analysis of phase-A differential current for inrush 

B. Wavelet Analysis in Internal Fault Case 
The power system is energized at 0.05s and fault is created 

at 0.1s in the secondary side of the power transformer and lasts 
for one cycle. Wavelet analysis for internal fault case at the 
instant when switching takes place at 00 angle of the source 
voltage and fault resistance 100 Ω for the time 0.1s to 0.12 s is 
shown in Fig. 8. Fig. 8(a) represents the original current signal 
of phase-A during L-G fault. The fault occurs on the high 
voltage side of power transformer between phase-A and 
ground.  A high frequency distortion is observed in the fault 
current waveforms as shown in Fig. 8(a). This distortion is the 
consequence of the effects of distributed inductance and 
capacitance of the transmission line. This distributed 
inductance and capacitance lead to significant second harmonic 
in the internal fault during the transient period. Hence the 
distributed inductance and capacitance poses difficulty in an 
accurate discrimination between magnetizing inrush current 
and internal fault currents by the conventional protection 
method based on DFT.  

From the Detail coefficients (1 to 5) shown in Fig. 8 (b)-(f), 
it is observed that there are several spikes immediately after 
fault inception time in L-G fault. One important observation to 
distinguish between the inrush and internal fault is that the 
ripples during inrush sustain over long time than the case of 
internal fault.  

Similarly other internal fault situations like L-L-G fault, 
three phase symmetrical line to ground and line to line fault 
and external fault are simulated by creating those in the 
secondary side of the power transformer for the time same as 
that of L-G fault. 

TABLE II.  FREQUENCY BAND OF DIFFERENT DETAIL COEFFICIENTS 

Level of Detail coefficient Frequency band 
d1 5 kHz-2.5 kHz 
d2 2.5 kHz-1.25 kHz 
d3 1.25 kHz-0.625 kHz 
d4 0.625 kHz - 0.3125 kHz 
d5 0.3125 kHz-0.15625 kHz 

IV. PERFORMANCE OF ANN AND IMPLEMENTATION IN 
LABVIEW 

The statistical data obtained from the decomposed signals 
of wavelet analysis at level 1 to 5 are used to train and test the 
ANN. The ANN consists of three layers with 9 nodes in the 
input layer, 9 nodes in the output layer. The nodes of the 
hidden layer are varied for optimization. Back propagation 
algorithm is used to train the ANN. The activation function 
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used in the ANN is of sigmoid type. The training and testing 
data are statistical features obtained for the three phases. The 
mean, standard deviation and norm (root mean square value) of 
the decomposed Detail coefficients for the three phases are 
used as input data as these statistical variables are distinct and 
significant as observed from the analysis and acts like principal 
components.  
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(a) Original fault current 
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(b) Detail coefficient at level 1 decomposition. 
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(c) Detail coefficient at level 2 decomposition. 
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(d) Detail coefficient at level 3 decomposition. 
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(e) Detail coefficient at level 4 decomposition. 
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(f) Detail coefficient at level 5 decomposition. 

Fig. 8. Wavelet analysis of phase-A differential current for L-G fault 

The output data is unity for the condition represented by the 
input and zero for others. Table III shows the different nodes 

representing the different conditions. The input data are 
normalized before training or testing by dividing the maximum 
value of data of a row with other data. 

    Neural network training and testing programs are written 
and simulated in Matlab. After performing analysis for 
obtaining the optimal values for neural network it is found that, 
learning rate of 0.2, the momentum factor of 0.9 and 16 nodes 
in hidden layer gives least error and faster convergence. The 
ANN is trained with 108 patterns and tested with 72 patterns 
for each Detail coefficients separately. Percentage accuracy 
with which ANN is able to classify the different cases during 
testing is given in Table IV. From the table, Detail-3 (1.25 
kHz-0.625 kHz) is found give better classification. This 
indicates that for the above configuration of ANN, input and 
output patterns formed using Detail-3 is well suited for 
discrimination of inrush from faults.  

    The weights obtained after training with Detail-3 input 
and output pattern are used to construct a virtual instrument 
ANN using LabVIEW. The fault waveforms and inrush 
waveforms are fed as inputs to virtual instrument. To indicate 
type of fault, LED indicators are used on the front panel. After 
testing with several input waveforms, the virtual instrument is 
found to classify the waveforms as expected. Fig. 9 shows the 
front panel of virtual instrument with input data of inrush and a 
glowing LED corresponding to inrush. 

TABLE III.  TARGET DATA SET OF THE ANN 

Name of the 
event 

Target value of the ith nodes (Ni) 
N1 N2 N3 N4 N5 N6 N7 N8 N9 

Normal  1 0 0 0 0 0 0 0 0 
Inrush  0 1 0 0 0 0 0 0 0 
L-G fault (I) 0 0 1 0 0 0 0 0 0 
L-L-G fault (I) 0 0 0 1 0 0 0 0 0 
L-L-L-G fault (I) 0 0 0 0 1 0 0 0 0 
L-L fault (I)  0 0 0 0 0 1 0 0 0 
L-L-L fault (I)  0 0 0 0 0 0 1 0 0 
L-L-L-G fault (E) 0 0 0 0 0 0 0 1 0 
Over excitation  0 0 0 0 0 0 0 0 1 

TABLE IV.  COMPARISON OF TEST RESULTS OF ANN FOR DIFFERENT 
WAVELET DECOMPOSITION LEVEL 

Name of the 
event 

% of correct discrimination using different 
wavelet decomposition level data  

d1 d2 d3 d4 d5 
Normal  75 100 100 100 50 
Inrush  100 50 100 75 50 
L-G fault (I) 100 100 100 100 100 
L-L-G fault (I) 100 100 100 100 100 
L-L-L-G fault (I)  100 100 100 50 100 
L-L fault (I) 100 100 100 50 75 
L-L-L fault (I)  75 50 75 75 75 
L-L-L-G fault (E) 75 75 100 100 75 
Over excitation  100 100 100 100 100 
 

The detail analysis of all the cases are carried out for 
different mother wavelets and statistical data obtained after the 
analysis are used to train and test the ANN. The performance 
of ANN for different mother wavelets is given in Table V. 
From Table V it is clear that Daubichies mother wavelet when 
used for analysis of the transient signals give high efficiency in 
discrimination of simulated cases. The Haar wavelet gives the 
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least efficiency whereas Symlet and Coiflet wavelets 
performance are better than Haar but not as good as 
Daubichies.  

TABLE V.  COMPARISON OF TEST RESULTS OF ANN FOR DIFFERENT 
MOTHER WAVELETS  

Name of the 
event 

% of correct discrimination using 
different mother wavelets 

Haar Coiflet Symlet Daubichies 
Normal 69.44 86.11 90.27 100 
Inrush 72.22 84.72 91.66 100 
L-G fault (I) 73.61 87.5 90.27 100 
L-L-G fault (I) 69.44 84.72 93.05 100 
L-L-L-G fault (I) 69.44 86.11 88.88 100 
L-L fault (I) 72.22 83.33 87.5 100 
L-L-L fault (I) 69.44 87.5 88.88 75 
L-L-L-G fault (E) 70.83 86.11 86.11 100 
Over excitation 72.22 84.72 88.88 100 

V.  CONCLUSIONS 
        It is possible to distinguish between inrush currents 

and fault currents by analyzing the ripple patterns obtained 
from wavelet transforms. ANN with sigmoid activation 
function is found to classify better with Detail-3 data. To show 
the real time application of this method a virtual instrument in 
LabVIEW is developed. The performance of trained ANN is 
tested successfully for the classification of various cases. The 
classification ability of the ANN in combination with advanced 
signal processing technique opens the door for smart relays 
power transformer protection with very less operating time and 
with desirable accuracy. 

 

 

 

 
Fig. 9. Front panel of virtual instrument 
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