

Abstract— The Web Services have gained considerable attention

over the last few years. Video-on-Demand (VoD) systems have
resulted in speedy growth of the web traffic. Therefore the concept of
load balancer aimed to distribute the tasks to different Web Servers to
reduce response times was introduced. This paper attempts to analyze
the performance of FCFS, Randomized, Genetic algorithms and
Heuristics algorithms for selecting server to meet the VoD
requirement. Performances of these algorithms have been simulated
with parameters like makespan and average resource utilization for
different server models. This paper presents an efficient heuristic
called Ga-max-min for distributing the load among servers. Heuristics
like min-min and max-min are also applied to heterogeneous server
farms and the result is compared with the proposed heuristic for VOD
Servers. Ga-max-min was found to provide lower makespan and
higher resource utilization than the genetic algorithm.

Keywords— Makespan, Resource Utilization, FCFS, Random,
Genetic, Max-min, Min-min.

I. INTRODUCTION

ebserver is a program that provides content like web
pages over the World Wide Web. The simultaneous open

connections to the web server are generally limited. Thus the
waiting time becomes high when the number of requests to the
web server is large resulting in DOS (Denial of Service) attack.
An effective solution to this problem is the use of multiple
servers known as clustered Web Servers or a server farm.
Multimedia communications require continuous service, i.e.
read, process and transfer the information should be done with
minimum delay which is vastly improved if we use a server
farm.

The performance of a server farm depends on the type of
routing, server capacity and scheduling policies used. The
server capacity can be homogeneous or heterogeneous. In case
of homogeneous systems, each of the servers in the server farm
are of equal capacity and the request is processed by the server
having the least number of tasks in the queue, i.e. Join the
shortest queue policy[3].Heterogeneous systems scores over
homogeneous systems if tasks are of different sizes.

Bibhudatta Sahoo is with Department of Computer Science & Engineering,

National Institute of Technology, Rourkela, ODISHA, INDIA, PIN-769008.
(phone: 91-661-2462358; fax: 91-661-2462351; e-mail: bdsahu@nitrkl.ac.in)

Alok Kumar Prusty is with Department of Computer Science &
Engineering, National Institute of Technology, Rourkela, ODISHA, INDIA,
PIN-769008. (phone: 91-8050249700; e-mail:aloksworld1988@gmail.com)

Heterogeneous systems can also include task-specific systems,
i.e. for more computation oriented tasks we can use an array
processor.

Load Balancing Policy consists of load index policy,
information collection policy, task location and task transfer
policy. In our approach we assume that the nature of task
coming to the web server is known beforehand. Load index
policy keeps track of the number of tasks in the queue and
information collection policy has the knowledge about the type
of tasks coming to the server farm and the nature of web traffic
distribution. This can be done by checking the server log file
and obtain information like average page views, busy times,
visit duration and the most requested page by the customer.
Task transfer policy decides whether the task has to be serviced
in the local servers or sent to other servers located remotely.
Our main focus is on the task location policy which describes
scheduling algorithm for the various tasks. We also assume an
infinite capacity front end dispatcher which assigns the tasks to
various servers.

In this paper we examine the different scheduling algorithms,
first come first serve, random and genetic algorithm. The metric
for comparing different algorithms is makespan. Makespan is
defined as the maximum time taken to complete all the tasks
given to the dispatcher or load balancer. An advantage for using
genetic approach is that there is no need to set any threshold
values on the number of tasks or utilization of the server. The
server load can be represented by the following equation [21]

rFudgeFacto

eSizeAveragePageViewsAveragePag

lyVisitorsAverageDaiBandwidth

×
×××

=
31 (1)

 If people are allowed to download files from the site, the
bandwidth calculation becomes:

()
rFudgeFacto

eSizeAverageFilloadslyFileDownAverageDai

eSizeAveragePag

eViewsAveragePaglyVisitorsAverageDai

Bandwidth

××

×

+

 ××
=

31
 (2)

Average Daily Visitors - The number of people expected to
visit a site, on average, each day. It may vary significantly on
the basis of how a site is marketed.

Average Page Views It represents the average number of
web pages visited by a person.

Heuristics Load Balancing Algorithms for Video
on Demand Servers

Alok Kumar Prusty, Bibhudatta Sahoo

W

Average Page Size It shows the average size of the web
pages, expressed in kilo-bytes (KB).

Average Daily File Downloads - The number of downloads
expected to occur from a site. It depends on number of visitors
and average downloads per visitor.

Average File Size - Average size of files that are
downloadable from the site.

Fudge Factor - A number greater than 1. A fudge factor of 1.5
implies that the estimate is off by 50.Usually, bandwidth is
offered in terms of Gigabytes (GB) per month. Hence the entire
formula is multiplied by 31.

We then focus on a particular application of web servers:
Video on Demand. VOD servers are different from normal web
servers because they demand a consistent and higher data rate.
They find applications in Video Conference (VC), IP
telephony, Multimedia Mail and Digital Libraries [9]. The
demand for on demand video services have increased
significantly in the recent years and is expected to rise further
due to advancement in technology to meet the high Qos
required by VOD applications. In fact, commercial VoD
services with complete video cassette recorder (VCR) functions
have appeared. However, owing to ever increasing user
demands, when the user access rates increase, several issues
need to be tackled, e.g., long startup delay, jitters etc. The Qos
as desired by the users are generally subjective in nature. So
they must be mapped to an appropriate objective (quantitative)
parameter so that we get a tech-nically correct application.

VOD networks followed centralized architecture in the early
days. But with increase in number of requests the trend has
shifted to distributed architecture for VOD networks. As the
number of requests increases the number of servers required to
cater to those request increases which adds to additional cost. If
by some heuristics or means, we can efficiently allocate the
tasks to the different available servers such that it optimizes the
value of a metric like makespan and throughput, then the
customer requirements can be met in a better manner.

VOD is a relatively new concept. Many of the existing load
balancing algorithms has not been applied to VOD systems.
Further, the need of proper server selection is necessary for
maintaining high data rate (e.g. 1.5Mbps for MPEG video) and
minimizing the cost of service. The objective of this paper is
twofold. Firstly to analyze the existing algorithms and
heuristics in the context of VOD based systems, and secondly
to analyze the performance of the proposed heuristic for two
metrics namely Makespan and Average resource utilization.

II. RELATED WORK

Server Selection, Load balancing and scheduling issues have

been studied quite extensively in the past. Most notable of the
server selection algorithms [16] are the closest server algorithm
that selects server based on the proximity to the client,
optimized closest server algorithm that chooses the closest
server among the free channels, Register all algorithm where
the clients request is added to the queue of all the servers and
Maximum-MFQ-rank-first algorithm which computes the rank

at the various server queues and assigns the request to the server
having the best rank.

In light of the load balancing problems, Haight(1958),
Halfin(1985), and King-man(1961) are among the many people
that studied join the shortest queue policy using two parallel
servers with infinite buffer size. Gupta et al.[3] analyzed the
join the shortest queue policy on processor sharing server
farms. They used a single queue approximation and
investigated the sensitivity of the queuing model to variations.
Niyato et al. [4] studied load balancing for Internet video and
audio server. They studied and compared various algorithms
like Adaptive bidding, Diffusion and State change broadcast
along with traditional round-robin and random algorithms.
Wang et al. studied load balancing in heterogeneous systems,
first considering two servers with different service rates and
then extending their observations to multiple servers. This
involved multiple thresholds setting which was done by
heuristic methods. Ciardo et al. [6] devised a strategy for task
allocation in web servers based on size distributions of the
requested documents. Zhang et al. [2] analyzed the central load
balancing model, derived average response time and the
rejection rate and compared three different routing policies.
The retrieval schemes for VOD can be classified into two
categories, a) Disk level retrieval schemes[9] which focuses on
synchronizing and efficiently using the data between different
storage devices and b)server level retrieval schemes[9] which
delivers data to the client whenever the need arise. Our
approach is based on the server level. Similar requests can be
batched or the server can be replicated [16] to achieve low
latency and thus serve a higher number of requests.
 File Access Model is useful during the video caching where
the cache content is determined by the popularity or the hit ratio
of the multimedia file. As time progresses, the cache content
needs to be updated so that the cache contains the most popular
video files. Previous studies have followed the Zipf’s Law to
calculate the popularity of the video files [12-14]. In Zipf-like
distributions, the access frequency for a file of popularity rank i
is equal to C/ia, where C is a normalization constant and a(a>0)
is the distribution parameter[8].The file usage patterns like
which category of videos are accessed at which point of time
during a day can also be analyzed and the cache be maintained
accordingly.

III. VOD SYSTEM ARCHITECTURE

The adapted Figure 1[17] depicts the prevalent 3-tier

architecture for web servers. The main components are a set of
web servers, a set of database server nodes and a switch which
executes the logic for server selection. It can divide the tasks
into classes on basis of quality metric like burst time, etc. The
Front end servers are designed to de-liver the static pages
mostly and in case of any query from the client the appropriate
database server is connected. The routing and firewall switch
ensures authorization and authentication and forbids any
unintended user from accessing the files on the servers.

The system architecture of a Video on Demand system
basically consists of three major parts [11]: a client, a network,

and a server. Each part can be subdivided further into
components and interfaces.

Figure 3.1 Three tire architecture for web server

VOD system from the client’s point of view is a simple
operation. The user makes a selection from a list of available
videos and the video is delivered to the user within the accepted
QoS limits. Most networks use proxy servers or replicas to
minimize delay .This is done by a process called request routing
which directs the request to a particular web server on the basis
of certain metrics. According to [7, 8], there are 4 kinds of
architecture for VOD networks a) Centralized, all the requests
from the clients are handled at the original server, b) proxy
based servers that are located close to the user end to reduce the
load on the original server by caching, c) Content delivery
networks, the servers are deployed close to the edge of the
network to serve a fraction of clients request and d) hybrid, is
basically a peer to peer approach.

IV. SERVER MODEL AND PERFORMANCE METRICS

In our proposed solution we use a distributed architecture
where the request first comes to a front end server from the
client and after successfully passing through the authentication
phase the video list is displayed in the web page and if the
requested video is found in the page then the video is delivered
to the client through local caching else it goes to a VOD server
decided by the server selection strategy which then sends the
desired video to the client. The arrival rate follows a Poisson
distribution because that is the common mode of distribution
for most of the internet traffic. The tasks are also assumed to
have negligible inter dependency among them. We neglect the
different cost parameters and our sole focus is based on server

selection keeping other parameters fixed. The detail sequence
diagram for the centralized system is shown in the figure 2.

Figure 4.1 Sequence diagram for VoD retrieval

Many different metrics are used to evaluate the performance of
VOD server. They can be classified as Technology based and
user based [9]. We have used Makespan and Resource
utilization as two metrics for comparing algorithms. Makespan
indirectly refers to the Response time of the system as a certain
response time of say 0.5 sec implies that the requests should
complete execution within 0.5 sec which suggests the
makespan should not exceed 0.5 sec. Resource utilization
suggests what fraction of the total time a server is working.

A. Makespan

Makespan is defined as the largest completion time of all the
tasks in the system. In the VOD scenario, it is an indicator of
the response time .For example; if the makespan of a group of
tasks exceeds a certain threshold then the tasks are not allowed
as the response time QoS is not met.

B. Resource Utilization

Average Resource utilization for a system is defined as the
average of the resource utilization of various servers. For a
single server, utilization is given by

TotalTmeIdlemeServerisAmountOfTi

RizationsourceUtil u

/)(

)(Re = (3)

V. TYPICAL SERVER SELECTION ALGORITHMS

Let there be a task set T consisting of n(T1, T2... Tn) tasks and
let there be M servers. The basic problem is where to map a task
Ti among the M possible servers. This is done by the server
selection strategy. The tasks should be allocated in such a way
that after allocation of all the n tasks among the M servers, the
performance metrics should be optimized.

The need for server selection arises in case of distributed
system architecture. Choosing a good strategy is important
because of the following reasons

1. It can reduce the overall cost of maintenance of the system.
2. It can reduce the response time of the system, thereby

increasing customer satisfaction.

3. It can efficiently distribute the load among various servers
and thus reduces the chance of breakdown of a particular
system due to server overloading.

4. It can provide robustness and easy scalability to the system.

So selecting a good strategy is of paramount importance. But
each of the existing algorithms does not apply well to all the
scenarios. The existing algorithms can be further divided into
Traditional and Heuristic based algorithms. Traditional ones
include FCFS, Random and Genetic algorithms. There is
another class of algorithms called the Heuristic algorithms
which comprises of Min-min, Max-min and Weighted mean
time scheduling [18]. These heuristics are applicable for
heterogeneous task systems where we have servers of different
capacity.

A. First Come First Serve

This is a simple scheduling policy used in various load
balancing servers. Whichever request comes first is served first
irrespective of any other criteria. So these processes undergo
starvation.

B. Random

This is another scheduling policy where the tasks are
distributed randomly to the available processors. If the
distribution is truly random, then the random outweighs other
algorithms in the long run.

C. Genetic

The genetic algorithm is an optimization technique that has it
base on the basis of natural selection. A GA consists of
candidates or populations which evolve based on some
predefined rules such that each evolution produces a better
population (i.e. population which minimizes the cost function).
Some of the advantages of GA are

• It optimizes both continuous and discrete variables.
• It simultaneously searches from a wide sampling space.
• It is well suited for parallel computing.
• It optimizes complex cost functions quite well (there are

several local minima) and produces the global minima.
• It provides a list of optimal solutions not the single best

optimum solution.
• Encoding the variables is easy when they are represented in

terms of genes. GA essentially operates in five steps
initialization, evaluation of fitness function, selection,
crossover, mutation. [1]

D. Min-min

This consists of two phases [18, 19]. First we choose a fixed
arbitrary order and then for each task we choose the server with
the minimum burst time. In the second phase, the task with the
minimum burst time among the group chosen is phase 1 is
selected and assigned the corresponding server and the ETC
matrix is updated with new completion times for the remaining
tasks while the chosen task is deleted from the matrix.
Completion time is given by the equation.

)(),(),(jrjiETjiCT += (4)

Where r(j) is the ready time of machine j, i.e. the time taken by
the machine to complete all its pending tasks from the moment
the task i is assigned to machine j. The maximum time to
complete all the tasks is represented by the makespan.

E. Max-min

This algorithm is similar to min-min except in the second
phase the task with the maximum completion time is mapped
first. This algorithm is known to provide better resource
utilization than the Min-min algorithm.

F. WMTS

The algorithm is adopted as described in [18] where the
weighted sum of expected time is used. The weights are
proportional to the server capacity.

G. Composite GA-Max-min Server Selection Algorithm

This algorithm merges the genetic algorithm and the
Max-min algorithm. This results in the enhancement of the
performance of the genetic algorithm. So this kind of algorithm
can be used where the number of tasks is very large.

Algorithm GA-Max-min

1. For all tasks i in the task set
2. Divide the tasks into classes on basis of burst time or
previous history
3. Send the tasks to the appropriate queue
4. Apply different selection algorithms as applicable to the
different queues
5. Makespan=Calculate makespan (Task set)
6. Resource utilization =Calculate resource utilization (Task
set)
7. End

The task set is divided into classes based on burst time or
previous history. Then for each queue Resource utilization and
makespan is calculated by the calculate resource utilization()
and calculate makespan() functions. Both these functions take
task set as the input.

VI. EXPERIMENTAL RESULTS

Figure 6.1 Comparison between GA Random and FCFS

for maximum 50 nodes

Figure 6.2 Comparison between GA Random and FCFS

for maximum 75 nodes

Figure 6.3 Comparison between GA Random and FCFS

for maximum 100 nodes

Figure 6.3 Comparison between GA Random and FCFS

for maximum 125 nodes

Figure 6.4 Resource Utilization Vs No. of processor
(Max 50)

Figure 6.5 Resource Utilization Vs No. of processor

(Max 75)

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

No. Of Processors

M
ak

es
pa

n

GA
RANDOM
FCFS

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

No. Of Processors

M
ak

es
pa

n

GA
RANDOM
FCFS

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

No. Of Processors

M
ak

es
pa

n

GA
RANDOM
FCFS

20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

No. Of Processors

M
ak

es
pa

n

GA
RANDOM
FCFS

5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No. of processors

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of processors

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

Figure 6.6 Resource Utilization Vs No. of processor

(Max 100)

Figure 6.7 Resource Utilization Vs No. of processor

(Max 125)

Figure 6.7 Resource Utilization Vs No. tasks (Max

processor 50)

Figure 6.8 Resource Utilization Vs No. tasks (Max

processor 100)

Figure 6.9 Makespan Comparison between GA and
Composite GA (max processor=50)

Figure 6.11 Makespan Comparison between GA and

Composite GA (max processor=100)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of processors

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of processors

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

No. of tasks

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

100 150 200 250 300 350 400
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

No. of tasks

R
es

ou
rc

e
ut

iliz
at

io
n

GA
GA Max-min Composite

GA GA with Max-Min
0

20

40

60

80

100

120

M
ak

es
pa

n

GA GA with Max-Min
0

20

40

60

80

100

120

M
ak

es
pa

n

The GA-Max-Min algorithm gives less makespan and high
resource utilization if we vary number of processors.

VII. CONCLUSION

In this paper we compared the various server selection
algorithms like FCFS, Random, Min-min on the basis of
makespan and Average resource utilization and showed the
composite GA algorithm performs better. We combined two
heuristics Genetic algorithm and max min to get a new heuristic
GA-max-min. We chose Genetic algorithm as one component
of the combined heuristic as it was feasible to apply genetic
algorithms for large data sets and the max min algorithm as
another component as it provides the best resource utilization.
In future other parameters other than makespan and resource
utilization like scalability and throughput can be used to
analyze the performance of these algorithms. Further a
complete algorithm framework can be formed by combining
various algorithms as an extension of Ga-max-min which caters
to varying nature of the tasks and the switch can dynamically
change algorithms as the request rate varies.

REFERENCES
[1] A. Y. Zomaya and Y. H. Teh. on using Genetic algorithms for dynamic

load balancing. IEEE transactions on Parallel and Distributed Systems,
vol. 12,no. 9,September 2001.

[2] Z. Zhang and W.Fan. Web server load balancing: A queuing analysis.
European Journal of Operational Research, vol. 186, no. 2, pp. 681-693,
April 2008.

[3] V. Gupta, M.H. Balter, K. Sigman and W.Whitt. Analysis of
join-the-shortest-queue routing for web server farms. Performance
Evaluation, vol. 64, no. 9-12, pp. 1062-1081, October 2007.

[4] D. Niyato and C.Srinilta. Load balancing algorithms for Internet video
and audio server. Proceedings of 9th IEEE International Conference on
Networks, pp. 76, 2001.

[5] J.L. Wang, L.T.Lee and Y.J.Hunag. Load balancing policies in
heterogeneous distributed systems. Proceedings of 26th Southeastern
Symposium on System Theory,pp. 473-477, 1994.

[6] G.Ciardo, A.Riska and E.Smirni. EQUILOAD: A load balancing policy
for clustered web servers. Performance Evaluation,vol. 46, no.2-3, pp.
101-124, October 2001.

[7] F.T houin. VOD equipment allocation.Tech. report, Mcgill University
Montreal, Canada.

[8] F.Thouin and M.Coates. VOD networks: Design approaches and future
challenges, Proceedings of Network IEEE.pp. 42-48,
montreal,March-april 2007.

[9] N. Panigrahi and B. Sahoo. Qos based retrieval strategy for video on
demand.Available

[10] Online at
http://dspace.nitrkl.ac.in:8080/dspace/bitstream/2080/789/1/bdsahoo200
9.pdf. Last visited may 08 2011.

[11] N. Carlsson and D.L.Eager. Server Selection in large scale Video on
Demand. Proceedings of ACM transactions on multimedia, computing
and communications, February,2010.

[12] M. Ko and I. Koo. An Overview of Interactive Video On Demand
System. Technical Report, The University of British Columbia, Dec
13,1996.

[13] N. Jian et al. Hierarchical Content Routing in Large-Scale Multimedia
Content Delivery Network .Proc. IEEE Intl. Conf. Commun. (ICC),
Anchorage, AK, May 2003

[14] B. Wang et al. Optimal Proxy Cache Allocation for Efficient Streaming
Media Distribution .Proc. IEEE Infocom, New York, NY, June 2002.

[15] T.Wauters et al. Optical Network Design for Video on Demand Services.
Proc. Conf. Optical Network Design and Modeling, Milan, Italy, Feb.
2005.

[16] D. Ligang, V. Bharadwaj, and C. C. Ko. Efficient movie retrieval
strategies for movie-on- demand multimedia services on distributed
networks. Multimedia Tools Appl., vol. 20, no. 2, pp. 99133, June 2003.

[17] M. Guo et al. selecting among replicated batching video on demand
servers. Proceedings of the 12th international workshop on Network and
operating systems support for digital audio and video, May 2002.

[18] S. Shari_an, S.A. Motamedi and M.K. Akbari. A predictive and
probabilistic load balancing algorithm for cluster based web
servers.Proceedings of applied soft computing, pp. 970, Jan 2011.

[19] S. S Chauhan and R.C.Joshi. A weighted time min min max-min selective
scheduling strategy for independent tasks on grid. Proceedings of
Advance Computing Conference (IACC), Patiala, India, Feb 2010.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund.
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems. 8th IEEE Heterogeneous Computing Workshop
(HCW '99), pp. 30-44, San Juan, Puerto Rico, April 1999.

[21] A. Narasimhan, Distributed multimedia applications-opportunities,
issues, risk and challenges: a closer look .IASTED International
Conference on Intelligent Information Systems , pp.455-460, 1997

[22] http://www.findmyhosting.com/bandwidth-explained/,Last visited 16th
march 2011.

Alok Kumar Prusty is a graduate student from the
department of Computer Science and Engineering NIT
Rourkela. He is currently working as a software
engineer in Sapient, Bangalore, India. His areas of
research interest include distributed computing,
algorithms, performance evaluation methods, machine
learning and data mining.

Bibhudatta Sahoo is presently Assistant Professor in
the Department of Computer Science & Engineering,
NIT Rourkela, INDIA. His technical interests include
performance evaluation methods and modeling
techniques in distributed computing system, networking
algorithms, scheduling theory, cluster computing and
web engineering. He is a member of IEEE and ACM.

