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Interdependence of structure and viscosity of blast furnace slag is discussed based on the available literature. Emphasis 

is given to both, bridging tendency and network breaking/modifying tendency of the constituents. It is clearly pointed 

out that slag viscosity cannot be explained only by depolymerization through an increase in basicity, despite the fact 

that an increase in basicity of the slag, in general, lowers the viscosity of the slag by a process of generation of discrete 

anions containing simple chains and/or rings by causing depolymerization of the 3D silicate network.

1.	 Introduction
In a blast furnace, the flow phenomenon of the slag, as dictated by 
its viscosity, greatly influences the heat transfer, mass transfer and 
chemical reactions between the slag and the metal. The blast furnace 
slag should be a free-flowing one at the operating temperatures to 
ensure efficient slag–metal separation. It must have appreciable 
affinity for the gangue constituents to facilitate the production of 
metal of choice. Yet from the available heat (in the hearth) point of 
view,1 the blast furnace slag should be neither very viscous nor very 
fluid. In addition, a viscous slag is less damaging to the refractory 
in the furnace. Thus, it is rightly said ‘History of slag making is the 
history of iron making.’ This saying emphasizes on the fact that 
the quality of metal produced cannot be better than the quality of 
the slag produced; one of the most important factors influencing 
the quality of the slag being its viscosity. The viscosity of the blast 
furnace slag governs the reaction rates in the furnace by its effect 
on the diffusion of ions through the liquid slag to and from the 
slag–metal interface. It also affects the operational efficiency of the 
blast furnace by its influence on the aerodynamics of the furnace 
since the flow pattern of the molten slag significantly influences the 
gas permeability and heat transfer in the furnace.

Highly viscous molten covalent oxides, such as silica, and 
relatively low viscous ionic melts in an oxide slag influence the 
viscosity of the molten oxide slag. The viscosity of the silicate 
melts is affected by the nature of network-breaking cations (e.g. 
Ca2+, Mg2+), the fitting of certain cations (e.g. Al3+, Ti4+) into the 

silicate network and the degree of polymerization of the silicate 
network. Alumina, an amphoteric oxide, plays a peculiar role in 
influencing the viscosity of blast furnace slag. In a basic slag, both 
alumina and silica behave similarly; both Al and Si occupy similar 
sites in the lattice; the total network forming ions being Al + Si. 
On the other hand, in acid slag, that is, when the Al

2
O

3
/CaO ratio 

is high and SiO
2
 content is also high, Al

2
O

3
 would act as a network 

breaker and would decrease the viscosity of the slag. Thus, it is 
rightly concluded that the viscosity of the blast furnace slag is 
structure oriented and that it strongly depends on its composition 
at the operating temperatures.

A process of depolymerization lowers the viscosity of the slag. 
An increase in basicity decreases the viscosity of the blast furnace 
slag, breaking the 3D silicate network into discrete anionic groups 
thereby causing depolymerization. However, the blast furnace 
slag viscosity cannot be described only by the enhanced degree of 
depolymerization. Beyond certain levels of basicity, the viscosity 
actually increases, despite the enhanced degree of depolymerization, 
as such an increase in the basicity may also result in an increase in 
the chemical potential of some primary solid phases.

It is in this context that the present article makes an attempt at 
analyzing the diversities pertaining to the structure and related 
viscosity of oxide melts under the blast furnace conditions. An 
attempt is made to analyze the findings of several workers on 
the basis of their conclusive remarks and to make it available 
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in one place. This will help to analyze data generated by future 
experimenters.

2.	 Structure and viscosity of molten silica
Pure solid silica has a 3D continuous network of SiO

4
 tetrahedron. 

Each silicon ion is coordinated with four oxygen ions, while 
each oxygen is linked to two Si4+ ions. Though there may be a 
change from long- to short-range ordering during melting, the 
structure of pure liquid silica is very similar to that of pure solid 
silica. The very high viscosity of pure fused silica attributed to the 
associated high activation energy of viscous flow, indicate that the 
movement of flow units involves breaking of Si-O bonds (heat of 
dissociation = 104 Kcal/mole).2

The flow unit is that which requires the least energy of transfer 
from the initial to the transition state. It is suggested that this is a 
SiO

2
 molecule since any larger unit would involve a greater number 

of Si-O bonds during the formation of the activated complex.3

The high value of viscosity and activation energy of viscous flow of 
pure molten silica indicate that, at any instant only, a small fraction 
of the melt may exist in the form of SiO

2
 molecules and that these 

molecules that take part in the flow process must be formed from 
the three dimensionally bonded lattice.

3.	 Structure and viscosity of binary  
silicate melts

On addition of a basic metal oxide to molten silica, the added 
oxygen ion enters the network and separates the corners of 
two tetrahedra, while the added cation remains adjacent to the 
negative charges breaking the oxygen bridges between groups 
(Equations 1 and 2).
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(Addition of divalent and monovalent basic metal oxide to the 
silicate network)

The type of metal oxide added governs the degree of breakdown; 
while divalent metal cations tend to link the network by bridging 
two oxygen, monovalent ones do not.4 Furthermore, a gradual 
addition of cations (e.g. Na+, Ca++) brings in progressive breaking 

of the oxygen bonds with the formation of nonbridging oxygen 
(NBO), denoted by O− and eventually the formation of free oxygen, 
O2− ions.

The breaking down of the silicate network results in smaller and 
smaller silicate groups known as anionic units or flow units. Since 
smaller and smaller flow units require relatively higher oxygen, the 
progressive addition of metal oxides is less and less effective in 
reducing the flow unit size. This explains the decrease in viscosity 
at a slower rate with the increase in metal oxide percentage.

E
µ
, the activation energy of viscous flow, is related to the energy 

required to move one silicate group or a major part thereof, with 
respect to the other, enabling the group to move. The effects of 
monovalent and divalent metal oxides on E

µ
 are different. Unlike 

the Group I metal oxide systems, where E
µ
 is independent of the 

cationic species at all compositions up to about 35 mole %, in case 
of Group II metal oxides, the independence is retained till about 
55  mole percentage of metal oxide, indicating that the effect of 
monovalent metal oxide on E

µ
 is more pronounced than the divalent 

ones. This is because, at equimolar compositions, there are twice 
as many monovalent cations as divalent ones and as pointed out 
earlier, the divalent cations maintain the continuous bonding of 
the lattice by bridging the oxygen atoms. Hence, by addition of 
Group  II metal oxides, the decrease in E

µ
 will be more gradual. 

This leads to the fact that in case of the Group  II metal oxides, 
collapse of the SiO

2
 network will occur only when comparatively 

more metal oxides have been added.

Metal oxides with smaller cations are less efficient in reducing 
the viscosity by bringing down the E

µ
. In the case of the smaller 

cations, due to spatial arrangement of atoms in the molecule, the 
columbic interactions between metal cations and singly bonded 
oxygen will be relatively smaller. The tendency to form more 
extreme depolymerized (e.g. SiO4

4
− ) and polymerized (e.g. SiO

2
) 

anionic units can be ranked in terms of the parameter, Z/r2, where 
‘r’ is the radii and ‘Z’ is the valency; the higher the ratio, the higher 
is the tendency. This tendency of the metal oxides can thus, given in 
the order Mg2+ > Ce2+ > Sr2+ > Pb2+ > Ba2+ > Li+ > Na+ > K+.

Again, the addition of x moles of Na
2
O to a given amount of a 

given silicate slag should result in greater lowering in viscosity in 
comparison with the lowering observed due to the addition of x 
moles of CaO to the same amount of the same silicate slag. This 
is because the alkaline earth cations having a bridging tendency 
would not permit the O−–O− interactions to be as effective as the 
case when only alkali metal cations are involved.

The cations, randomly distributed throughout the lattice of the 
silicate network introduce weak points into the network and also 
weaken the Si-O bonds near the metal ion due to a polarization 
effect. This causes a general loosening effect in the lattice. This is 
represented in Figure 1 in a simplified, 2D figure.
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The discrete anion and the chain formation concept, proposed 
by3–5 is probably the most accepted structural model of silicate 
melts that explain the change in various physical properties such 
as expansivity and miscibility gaps in silicate melts. They propose 
that the structure, consistent with the behavior of the energy of 
activation–composition relationship, contains discrete silicate 
ions. As an example, the formulae for these ions at Si/O ratio of 
0·25–0·33, that is, at molar percentage of metal oxides from 66% 
to 50% are presented3 in Table 1. The composition dependence 
of the structure is clearly explained by analyzing the data in the 
table. It is evident that discrete silicate chain ions of higher order 
are formed by the addition of SiO

2
 to the ortho silicate (66 mole % 

MO) composition. This increases the size of the flow unit until the 
meta silicate composition (50 mole % MO) is approached with the 
consequent increase in the heat of activation.

These authors proposed that the different structures existing 
between 33 and 50  mole % CaO are Si O3 9

6−  planar rings and 
Si O4 10

4−  tetrahedra. Further increase in SiO
2
 causes polymerization 

of the rings, and bigger anions of the general formula Si On n2 3
6

+
−

or Si On n2 4
8

+
−  may result. On further addition of SiO

2
, the size of 

the discrete anions further increases. The formation of these 
larger anions, on addition of SiO

2
, can be presented, as below, in 

Equations 3 and 4:

3.	 Si O SiO Si O63 9
6

2 15
63− −+ →

4.	 Si O 3SiO Si O6 915
6

2 21
6− −+ →

This continues and the idealized silicate ion, at 33  mole% MO, 
is Si O6 15

6− , which is essentially formed by the linking two Si O3 9
6−  

rings. Behera et  al.6 have discussed the discrete anion theory in 
detail.

The limitation of the discrete anionic theory is that the theory 
completely ignores the formation of the free oxygen ions (O2−), 
which increase with the increase in the metal oxide content. 
However, the shortcomings of the discrete anionic theory are 
more than explained by a model suggested7–9 by Toop and Semis. 
They propose the following reactions to explain the association or 
polymerization of two silicate anions (Equations 5 and 6):

5.
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On the basis of the above, it is clearly shown that when the two 
silicate anions polymerize, the resultant reaction reduces to the 
following reaction (Equation 7):

7.	 2O O O0 2− −= +

The equilibrium constant ‘k’ is as follows:

8.	 k (O )(O ) (O )0 2 2= − −

They proposed that by simple mass-balance and charge-balance 
considerations, it is possible to express (O0) and (O2-) in terms 
of (O-) and NSiO2

, where NSiO2, is the number of moles of SiO
2
. 

Figure 1. Mechanism of collapse of silicate lattice.

Si

Cation

Direction of crack

Si/O CaO/SiO2

Percentage 
of molar 

oxide

Length of 
chain (Å)

Empirical 
formula

0·250 2CaO.SiO2 66 1 SiO4
4−

0·286 3CaO.2SiO2 60 2 Si O2 7
6−

0·300 4CaO.3SiO2 57 3 Si O3 10
8−

0·307 5CaO.4SiO2 55 4 Si O4 13
10−

0·312 6CaO.6SiO2 54 6 Si O5 16
12−

0·322 11CaO.10SiO2 52 10 Si O10 31
22−

0·333 CaO.SiO2 50 ∞ Si O3
2

n n
n–

Table 1. Empirical formulae of anions in the range Si/O = 0·25–

0·33 (66–50% MO).
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Thus, a quadratic equation would be generated that can be solved 
for various values of NSiO2

 and k. However, ‘k’ cannot be easily 
found out for a given melt at a given temperature. The value of ‘k’ 
has to be estimated, and it has to be seen if the calculated (O2−) 
values coincide with the observed activity values for metal oxide 
over the entire composition range using Temkin model.10 This is 
given below in Equation 9:

9.	 a NMO O2= −

Thus, once (O−) and (O0) are known, it is possible to calculate the 
most probable number of silicate anions in the melt.

Different structure-based thermodynamic models of binary silicate 
melts have been proposed,8,9,11–14 and these models have been 
exhaustively reviewed by Gaskel.15

These models provide a direct link between the properties and 
the structure of binary silicate melts. Different thermodynamic 
properties measured by various groups agree considerably with 
the theoretically calculated values using the different models as 
aforementioned.

Structure of silicate melts are affected by the nature of network-
breaking cation (e.g. Ca2+, Mg2+), the fitting of certain cations 
(e.g.  Al3+, Ti4+) into the silicate network and the degree of 
polymerization of the silicate melt, as proposed by Mysen.16

Investigations are conducted on the structure of molten binary 
CaO-SiO

2
 and MgO-SiO

2
 melts by means of high-temperature 

X-ray diffraction technique.17 The results show that these molten 
silicate melts consist mainly of SiO

4
 tetrahedra units up to 57 mole 

% alkaline earth metal oxides. Furthermore, the number of oxygen 
that surrounds Ca++ and Mg++ ions at the monosilicate composition 
is seven and five, respectively. The investigations further show that 
the structure of molten silicate is insensitive to temperature within 
the experimental temperature range.

4.	 Structure and viscosity of poly 
component and complex silicate melts

A ternary melt-containing cations of different groups may be 
viewed as an ideal mixture of two binary melts, provided that the 
total molar concentration of metal oxides remains the same.18 On 
this basis, E

µ
 can be determined from the relationship as presented 

in Equation 10.

10.	 E E EA A B Bµ = +n nx x( ) ( )

where, n
A
 and n

B
 are the mole fractions of the two oxides, and (E

A
)

x
 

and (E
B
)

x
 are the activation energies for the two groups at the total 

metal oxide concentrations.

E
µ
, calculated using Equation 10, agrees with the E

µ
 value 

experimentally evaluated for poly component systems. Therefore, 
it can be concluded that the discrete ion theory, based on binary 
systems, is also applicable to poly component melts. Thus, it 
can be further concluded that the mechanism of flow in binary 
and poly component silicate melts is identical at the same molar 
concentration of SiO

2
.

In line with Equation  10, Mackenzie18 proposed Equation  11, to 
calculate the viscosity of poly component systems. The calculated 
and experimentally evaluated viscosity values are seen to be in 
good agreement.

11.	 µ µ µ= +n nA A C B B C( ) ( )

(µ
A
)

C
 and (µ

B
)

C
 are calculated using the empirical relationship as 

given in Equation 12.

12.	 log ( c c
2 303

µ α β γ δ= + + +
⋅

)
RT

α, β, γ and δ are constants and ‘c’ is the total molar concentration 
of metal oxides.

Values of these constants for Group I and Group II metal oxides are 
determined directly from measured viscosity values of all available 
binary systems. These values of the constants as determined by 
Mackenzie18 are listed in Table 2.

The industrial slags, involved in actual extraction process, are 
complex in nature. They contain oxides such as Al

2
O

3
, CaO, MgO 

and many other minor oxides. It is worthwhile to review the effect 
of these oxides on the viscosity of the slag.

Al
2
O

3
 in silicate melts acts both as network former and 

network modifier adopting a fourfold (AlO
4
) or sixfold (AlO

6
) 

coordinations.19 This depends on the presence of other cations in the 
melt that determines whether four or six oxygen ions are required 
for screening the Al3+ ion. For instance, the presence of ions such 
as K+, Na+, having weaker potential fields, allow the polarization of 
O2− ions and thus encourage the formation of AlO

4
 groups where as 

lithium, with a stronger potential field, tightens the O− ions to such 
an extent that more than four O− ions are required to screen the 
potential field of Al3+ ions, and AlO

6
 group formation is favored.

Group α β γ δ
I −4·02 0·0210 60·52 × 103 −0·752 × 103

II −4·99 0·0195 71·04 × 103 −0·675 × 103

Table 2. Constants for the calculation of viscosity.
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Machin and Hanna20 suggested that when sufficient basic oxide is 
present in the melt (molar ratio of Al

2
O

3
/CaO is less than one), 

Al  adopts a fourfold coordination, and the melt contains SiO4
4−  

and AlO4
5−  ions. However, when sufficient oxygen is not available 

for the formation of the Al and Si tetrahedra as aforementioned, 
Al  adopts a sixfold coordination with oxygen and enters the 
interstices in the structure.21 Thus, when basic oxides present are 
less than enough to provide for the required oxygen, polymeric ions 
as in Equations 13 and 14 will be formed.

13.
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Increase in percentages of CaO and/or MgO increases the 
percentage of these polymeric ions in the melt, while increase in 
Al

2
O

3
 or SiO

2
 decreases the same.

The degree of polymerization is represented in Equation 15.

15.	 R N N= − −( ) ( )4 2 2

‘R’ is the degree of polymerization, ‘N’ is the O/Si ratio (the number 
of oxygen atoms/the number of Al or Si atoms present in the unit).

In neutral and basic slags (Al
2
O

3
/CaO is less than or equal to unity), 

both Al
2
O

3
 and SiO

2
 behave similarly. This means, in such slags, both 

Al and Si will occupy similar sites in the lattice, and the total network 
forming ions will be (Al + Si). However, at high Al

2
O

3
/CaO ratios 

and high silica contents, Al
2
O

3
 would decrease the viscosity acting as 

network breaker. This is consistent with the generally accepted view 
that alumina is amphoteric in nature.

Al-nuclear resonance studies on CaO-SiO
2
-Al

2
O

3
 glasses22 indicate 

that the oxygen coordination sphere of Al is more or less distorted. 
This supports the prediction of a variable coordination number 
of Al3+ ions in the melt. It can thus be appreciated that, in melts 
containing Al-Si, Al3+-O−-type interactions are also present, besides 
Ca2+-O− and O−–O−-type interactions. This Al3+-O- interactions in 
the melt may be high or low depending on the Al

2
O

3
/SiO

2
 ratio, that 

is, the Al/(Al + Si) ratio and would increase the activation energy of 
viscous flow, increasing the viscosity of silicate melt.

Therefore, flow unit size alone cannot be considered as a measure 
of viscosity; for constant average flow, unit mass viscosity would 

rise with increase in Al/(Al + Si) ratio; for the same, Al/(Al + Si) 
ratio, viscosity would rise with the increase in average flow unit 
mass.

Turkdogan and Bills23 suggest that, at a given temperature and 
viscosity, the silica equivalence of alumina (N

a
) is given by 

Equation 16:

16.	 N Na SiO SiO2 4
binary Ternary= −( ) ( )N

NSiO2  and NSiO4  are the silica concentrations in the binary (CaO-
SiO

2
) and ternary (CaO-SiO

2
-Al

2
O

3
) melts. This equation is valid 

when Al
2
O

3
/CaO ratio and SiO

2
 concentrations are high. The 

calculated values of mole fractions of alumina is plotted against N
a
 

for several Al
2
O

3
/CaO ratios in silicate melts from the respective 

viscosity data in Figure 2.

Poe and MacMillan24 suggest that an oxygen-exchange mechanism 
involving the formation of five coordinated Al-intermediate species 
may play an important role in oxygen diffusion and viscosity in 
the calcium-aluminate liquids. They suggest that the average 
aluminium coordination increases as a function of increasing 
Al

2
O

3
 content in the CaO-Al

2
O

3
 liquids and that both five and 

six coordinated aluminium species become more abundant with 
increased Al

2
O

3
 content in the CaO-Al

2
O

3
 melts.

Data pertaining to viscosity measurement of Fe-O-SiO
2
, Fe-O-

CaO-SiO
2
 and Fe-O-MgO-SiO

2
 show that25 the addition of MgO 

or CaO results in a small decrease in the viscosity where as 
replacing MgO or CaO by FeO, the viscosity can be decreased 
substantially (Figure 3). The experimenters explained that CaO, in 
these slags, acts primarily as a diluent for silicate anions and less 

Figure 2. Silica equivalence of alumina related to molar alumina 

concentrations and molar Al2O3/CaO ratio in CaO-SiO2-Al2O.
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as a -Si-O-Si- bridge breaker. Furthermore, they suggested that, 
even when CaO breaks the -Si-O-Si- bridge, the Ca2+ cations raise 
the potential barriers of the silicate anions and thus increase their 
contributions to the viscosity. The net result is a small decrease in 
viscosity with CaO addition. As is clear from the diagram (Figure 3), 
MgO additions lower the viscosity, but as the addition raises the 
liquidus temperature of the slag, the viscosity measurements are 
limited to N NMgO SiO2

/  ratio of 0·2 only.

Waseda et al.26 opine that, at a constant Fe/Si ratio and temperature, 
the slag system Fe-O-SiO

2
, show a slight rise in viscosity in the 

region close to the faylite composition. This rise in viscosity 
is attributed to the bridging of Fe2+ cation to SiO4− tetrahedra as 
presented in Equation 17:

17.

	 
 


 


 


Si O Fe O Si− + −2

However, at higher temperatures, this structure is easily broken and 
viscosity is lowered as the ions acquire more energy. This finding 
leads to the conclusion that, within the range of compositions 
examined, MgO and CaO act primarily as diluents and less as slag 
modifiers, whereas FeO acts as a stronger modifier compared with 
both CaO and MgO.

Dietzel27 suggests that the cation–oxygen attraction is in the order 
Si4+ > Mg2+ > Fe2+ > Ca2+, on the basis that the effect of a particular 
cation on silicate anions depends on its attraction for oxygen. This 
is not in line with the suggestions made by Kucharski et al.25 They 
suggested the order to be Si4+ > Mg2+ > Ca2+ > Fe2+. This difference 
in opinion is probably due to the fact that these experimenters 

did not consider the fact that the cation–oxygen interactions also 
depend on their surrounding neighbors.

Ferric ion, Fe3+, can adopt both fourfold and sixfold coordination.16,28 
For slags containing 10% Fe

2
O

3
, Fe3+ adopts a fourfold coordination 

and works as a network former when the Fe3+/(Fe3+ + Fe2+) ratio is 
greater than 0·5; the reverse happens when the ratio is less than 0·3.

According to the reactions given in Equations 18 and 19, iron oxide 
added to silicate melts can break the silicate anions by providing 
free oxygen ions.29

18.	 FeO Fe O2 2= ++ −

19.	 Fe O 2FeO O2 3
2 2= ++ −

The iron oxide decreases the viscosity of acid slags to a greater 
extent compared with that in basic slags. This is because, in basic 
slags, the trivalent ion exists in the form of ferrite anions to a greater 
extent, and these ions are not able to provide free oxygen ions. 
Moreover, in basic slags, though the iron oxide content is low, the 
silicate anion is of smaller size, and hence the viscosity is already 
low. Consequently, in basic slags, addition of iron oxide has little 
effect in lowering the viscosity.

5.	 Parameters used to represent structure
Viscosity of the slag is one of its most sought-after characteristic 
structure-dependent properties. The factors ‘NBO/T’, ‘Λ’ and 
‘Q’, as discussed below, provide a measure of depolymerization/
polymerization of the slag that have a direct influence on the 
structure of the slag. Thus, a measure of these factors help one to 
analyze the viscosity of the slag on the basis of its structure and the 
structure of the slag on the basis of its viscosity.

The overall structure of the slag can be represented by a measure 
of its depolymerization and polymerization. Optical basicity of the 
slag is also a measure of the structure.30

(NBO/T)
corr.

 is a measure of the depolymerization of the slag. 
NBO/T is the number of NBO per tetragonally bonded oxygen. 
(NBO/T)

corr.
 can be calculated as follows:

(i)

	

Y 2 X X X X X 2X

X X 3fX
NB CaO MgO FeO MnO CaO TiO

Na O K O Fe O

2

2 2 2 3

= + + + + +

+ + +

∑ [

−− − −2X 2 1 f XAl O Fe O2 3 2 3
( ) ],  

where, X stands for the mole fraction of respective oxides 
and f is the fraction of Fe3+ ions that act as a network 
breaker.

(ii)	 X X 2X 2fXT SiO Al O Fe O2 2 3 2 3
= + + +∑ 

(iii)
	

NBO T Y X
corr NB T/

.( ) =
Figure 3. Viscosity results as a function of various oxide additions to 

Fe-O-SiO2 melts.
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‘Q’ is a measure of the polymerization of the slag.

Q 4 NBO T= − /( ) , that is, when NBO T  Q 4/ ,( ) = 0 =  and 
when (NBO/T) assumes the value 1,2,3,4, then Q becomes 3,2,1,0, 
respectively.

Optical basicity (Λ) is often used as a measure of structure of the 
slag since both (NBO/T) and ‘Q’ does not differentiate between the 
effects of different cations on the silicate structure. Optical basicity 
can be measured as follows:

Λ Λ Λ Λ= ∑ + + + ∑ + + +( . . .) / ( . . .)X  X  X   X X X   1 1 1 2 2 2 3 3 3 1 1 2 2 3 3n n n n n n

where X
1
, X

2
, X

3
 ... = represent the respective mole fractions.

n
1
, n

2
, n

3
 ... = number of oxygen in respective oxides, for example 

n = 2 for SiO
2
, n = 3 for Al

2
O

3
.

Λ
1
, Λ

2
, Λ

3
 ... = the recommended optical basicity values of the 

respective oxides.

(Some recommended optical basicity values are as follows: 
Al

2
O

3
 = 0·60, CaO = 1·0, FeO = 1·0, MgO = 0·78, SiO

2
 = 0·48, 

TiO
2
 = 0·60).

6.	 Viscosity of slags
The ionic structure of liquid slags affects their viscosity and thus 
a measurement of their viscosity helps to predict the structure of 
the slag.

Viscosity of silicate and oxide melts is governed by the Arrhenius 
equation (Equation 20).

20.	 µ µ= Aexp(E ) RT

However, a change in the structure may break the straight line 
relationship. If rise in temperature causes a general weakening of 
the cation and discrete anion bond, then E

µ
 remains constant within 

the temperature range. On the other hand, if the rise in temperature 
causes a decrease in the viscosity due to gradual breakdown of the 
discrete anions into small flow units, the E

µ
 value changes with the 

change in temperature.

According to transition state theory, viscosity can be expressed by 
Equation 21:

21.	 µ = −( )exp( )exp( )* *Nh V S R H∆ ∆ RT

where, N = Avogadro’s number; h = Plank’s constant; V = molar 
volume of flow units, ∆S*  = entropy of activation = S* – S

i
, where 

S*  = entropy of flow unit in the activated state, Si = entropy of flow 
units in the normal state; ∆H *  = activation energy of viscous flow 
(heat of activation) =  ( )*H Hi− , where H *  = heat of activation of 
the flow unit in the activated state, Hi  = heat of activation of the 
flow unit in the normal state

It must be recorded that ∆H * depends on two factors:

(i)	 The average flow unit size (increases with the size of the 
flow unit).

(ii)	The strength and number of various columbic interactions 
between the flow units and the surrounding species.

In binary silicate melts, the columbic interactions may be attractive 
in nature, such as M++–O− interactions (singly bonded oxygens of 
the flow units and the metallic ions) or repulsive, such as O−–O− 
interactions (between two singly bonded oxygen of two different 
flow units). Greater the number of M++−O− interactions, higher is 
∆H *  and greater the O−−O−, lesser is the ∆H * value. This clearly 
illustrates that the greater the former is, the lesser is the entropy Si 
and hence higher will be the ∆H * , and that, for similar reasons, 
repulsive interactions would tend to decrease the ∆H * value.

From Equation 20, it is clear that effect of variation of ∆S* and V is 
opposite to that of ∆H * . However, since viscosity decreases with 
increasing additions of metal oxide, it is obvious that the effect of 
variation of ∆H * value is more dominant.

The slags of more practical interest are CaO-MgO-Al
2
O

3
-SiO

2
-type 

quaternary slags. Machin et  al.31–33 systematically measured the 
viscosity of these systems over a wide range of compositions. Their 
findings, on the basis of composition variations, are listed below:

(i)	 When silica is below 40% or over 60%, Al
2
O

3
 appears to be 

less effective in increasing the viscosity.
(ii)	 In the range of 40–60% SiO

2
, the effect of Al

2
O

3
 on the 

viscosity of the melt is as great as that of silica.
(iii)	 At constant CaO content, decrease in MgO increases the 

viscosity of the melt, if SiO
2
 is constant.

(iv)	 When SiO
2
 and Al

2
O

3
 are constant, increase in MgO 

decreases the viscosity up to 10 wt.% additions.
(v)	 When MgO is increased to 20 wt.%, the decrease 

in viscosity for same SiO
2
 and Al

2
O

3
 value is more 

pronounced.

Similar findings have been reported by Yakushev et  al.,34 
investigating with a synthetic slag containing of 40–48% CaO, 
17·5–40% Al

2
O

3
, 15–30% SiO

2
 and 4–12% MgO.

It is reported4,18 that alkaline earth oxides are interchangeable in 
their effect on the viscosity of binary melts and that similar behavior 
is also expected to hold for quaternary melts. This is also illustrated 
graphically by Turkdogan and Bills23 as in Figure 4. The figure 
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indicates that the viscosity data of binary, ternary and quaternary 
melts could be represented by a single curve with a small scatter. 
It can also be observed that lime and magnesia are replaceable on 
the molar basis.

Kawahara et al.35 suggest that MgO is amphoteric in nature. They 
report that, in the CaO-MgO-SiO

2
 system, MgO behaves like CaO, 

but in the Na
2
O-CaO-MgO system, it acts as an acidic oxide, that 

is, like all amphoteric oxides, the strength of MgO as a basic oxide 
increases with decreasing basicity of the melt.

7.	 Viscosity of blast furnace slags
The variation of viscosity of actual blast furnace slags as obtained 
from industry, with composition, is reported to be complicated by 
various workers.36–39 However, there is a general agreement as follows:

(i)	 The higher the MgO content of the slag, the lower is the 
desired CaO/SiO

2
 ratio for optimum viscosity.

(ii)	 A high MgO combined with a high CaO/SiO
2
 ratio results 

in a short slag (difference between flow temperature and 
liquidus temperature is low).

(iii)	 High-alumina blast furnace slags (20–34% Al
2
0

3
) show 

erratic viscosity variations. This is because, when Al
2
0

3
 

content is constant, higher CaO/SiO
2
 ratio results in an 

increase in the Al/Si ratio; while high CaO/SiO
2
 ratio tends 

to decrease the viscosity of the slag, an increased Al/Si 
ratio tends to increase the viscosity.

Titaniferrous ores smelted in the blast furnace are found to cause 
problems, such as accretions, scaffolds, hearth clogging and high 
fuel consumption.40 Experimenters41–45 have reported the effect of 
different titanium oxides (TiO, TiO

2
, Ti

2
O

3
) on the viscosity and 

liquidus temperature of resulting slags. The findings, in general, 
agree that, all oxides of titanium, up to a total amount of 10 wt.%, 
are effective in reducing the viscosity when the slag is slightly 
acidic so long as titanium carbide is not formed. Handfield and 
Charette44 further suggested that Ti

2
0

3
 is a much more effective 

network modifier than TiO
2
. These workers also report that, in 

titania bearing slags, when Al
2
O

3
 exceeds 23% and MgO exceeds 

10 wt.% with (CaO + MgO)/(SiO
2
 + Al

2
O

3
) exceeding 0·95, the 

slag tends to achieve shortness.

Athappan46 measured and reported viscosity data of blast furnace 
slag at 20% Al

2
O

3
 for varying MgO content. He concludes that, 

at 1450°C, the viscosity decreases with increase in MgO content. 
However, after MgO additions exceed 10%, further addition has no 
impact on viscosity. Gupta and Chatterjee1 reported viscosity data 
of blast furnace slag with high FeO content (bosh slag when burden 
contains iron ore). They concluded that blast furnace–burden 
composition should be such that initial slag formation should start 
at a temperature higher than 1300°C.

Lee et  al.47 reported the viscous behavior of CaO-SiO
2
-Al

2
O

3
-

MgO-FeO slag. Under the compositions studied, they observed that 
the viscosity of blast furnace–type slag decreased with increased 
FeO content48 at a fixed CaO/SiO

2
 ratio (basicity) of slags. Slag 

viscosity showed a minimum value with increasing MgO content 
of slag when FeO is low (<7·5%). From the data obtained, it is 
concluded that the addition of MgO does not affect the viscosity at 
FeO ≥7·5%. A minimum value is obtained at about 7% MgO with 
5% FeO.

In line with Bockris and Lowe3 and Toop and Semis,9 they reported 
that slag viscosity decreases continuously with basicity up to about 
1·3  CaO/SiO

2
 ratio, and the viscosity actually increases as the 

basicity increases from 1·3 to 1·5. In line with the findings of Zhang 
and Jahansahi,49 they proposed that the driving force for decrease 
in viscosity with increase in basicity is an increase in the degree of 
depolymerization of the silicate network as a consequence of which 
the silicate structure changes from the 3D network to discrete 
anionic groups containing simple chains and/or rings. They also 
proposed that the driving force for increase in viscosity beyond 
CaO/SiO

2
 ratio >1·3, is an increase in the chemical potential of the 

primary solid phase 2CaO.SiO
2
 (dicalcium silicate) derived from 

the fact that the viscosity isotherms with composition are similar to 
phase diagrams of the alloy and slag systems.50

Lee et al.51 furthered their investigations to explain the disagreement 
of the viscosity data with the degree of depolymerization using 
infrared spectra and measuring the liquidus temperature using 
differential thermal analysis for the samples. On the basis of their 
studies, they proposed the following:

(i)	 A depolymerization and the liquidus temperature of the slag 
affect its viscosity.

Figure 4. Variation of viscosity with composition of CaO-MgO-Al2O3-

SiO2 melts at 1500°C.
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(ii)	 Degree of depolymerization affects the viscosity more 
when the difference between the prevailing temperature 
and the liquidus temperature is high.

(iii)	 Liquidus temperature affects the viscosity more when the 
difference between the two temperature is low, that is, 
when the prevailing experimental temperature approaches 
the liquidus temperature.

The effect of MgO content on the viscosity of blast furnace slag 
is reported by Jia and Shih- Hsien.52 For the semisynthetic slag 
containing SiO

2
-MgO-CaO-Al

2
O

3
, they predicted a better stability 

in viscosity data when MgO = 5·4 mass %, Al
2
O

3
 = 10–15 mass 

% and CaO/SiO
2
  =  1·2. They found out that the slag viscosity, 

within the range of compositions studied, is independent of MgO 
content when MgO = 5–9 mass %, Al

2
O

3
 = 15 mass % and CaO/

SiO
2
 = 1·0–1·2.

In a novel attempt Togobitskaya et  al.53 conducted an exclusive 
study of the blast furnace operations in transient conditions. Under 
the experimental conditions, they proposed the following for 
smooth operation of the blast furnace:

(i)	 The early slag at 1350°C, during blowing in, should have a 
viscosity varying from 0·4 to 2·0 Pa.s.

(ii)	 In the working mode, viscosity of the slag is optimum at 
1450–1500°C and should be less than 0·25–0·2 Pa.s.

(iii)	 During blowing out, the slag must have good flowability, and 
its viscosity should not exceed 0·2–0·3 Pa.s at 1450–1550°C.

Muller and Erwee54 developed models for predicting viscosities 
and liquidus temperatures of blast furnace slags. The viscosity data 
generated by several workers55,56 are used to validate the models. 
It is observed that the typical blast furnace slag containing SiO

2
, 

Al
2
O

3
, MgO and CaO as major constituents and FeO, MnO, TiO

2
, 

Na
2
O, K

2
O and S as minor constituents exhibit a general lowering 

of viscosity due to broken silicate bonds when the basicity is 
increased. However, this increase in basicity causes an increase 
in the viscosity of the slag due to solid precipitation. It is further 
observed that SiO

2
 and Al

2
O

3
 contribute to the increase in the 

viscosity with their highly covalent bonds and that monoxides such 
as Cao and MgO exhibiting an ionic behavior, lower the viscosity 
destructing the silicate network. This is in line with the work of Lee 
et al.51 However, an increase in the addition of monoxides leads to 
higher activities of solid phases resulting in the precipitation of the 
solid phase increasing the overall viscosity.

The slag atlas57 is used to estimate the stable solid phases forming 
in the blast furnace slag under equilibrium conditions. The Fact 
Stage software is used to calculate the phase equilibrium from 
the thermodynamic data. The corrected (effective) viscosity is 
estimated; after recording, the predicted fraction of stable solid 
phases present using Roscoe equation58 given below:

22.	 η η φeff liq= − ⋅ − ⋅( )1 1 35 2 5

where, ηliq  is the liquid viscosity (Pa.s), ηeff is the corrected 
viscosity (Pa.s) and φ is the volume fraction of the solids predicted 
in the liquid slag.

The correlation between the effective viscosities predicted by the 
model and the viscosities measured51,59 are presented in Figure 5. It 
is observed that the predicted and the measured values agree well 
at lower viscosity values relating to higher temperatures but the 
agreement deteriorates at higher viscosities.

8.	 Conclusions
The review of literature, thus, establishes a scope for optimizing 
the slag composition such that the target, tappable viscosity, 
can be obtained, which would enable the operation to run with 
decreased energy requirements. Such an operation would ensure 
an appropriate relationship between viscosity of the blast furnace 
slag and the temperature coupled with the optimum composition 
resulting in the most effective separation of the metal from the slag 
enhancing the recovery of the metal of desired composition.
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