
Real-Time Implementation of Fast Fourier

Transform (FFT) and Finding the Power

Spectrum Using LabVIEW and CompactRIO
 Ansuman DiptiSankar Das and K. K. Mahapatra

Dept. of Electronics and Communication Engineering
National Institute of Technology, Rourkela, India – 769008

Abstract -The growing popularity of adopting virtual

instrumentation (modular, customizable, software-defined

instrumentation) has only became possible due to the use

of LabVIEW with a highly interactive process known as

graphical system design. The CompactRIO programmable

automation controller is an advanced embedded control

and data acquisition system designed for applications that

require high performance and reliability. This paper

explains the real-time implementation of 256-point FFT,

one of the most important transforms used in signal and

image processing and finding the power spectrum using

LabVIEW and CompactRIO. The proposed

implementation uses only 3077 slices(21%), 2489 slice

registers(8.7%), 4651 slice LUTs(16.2%) on a 400 MHz

real time embedded processor.

Keywords - LabVIEW, CompactRIO, FFT, ADC Module,

FPGA, Real-Time Processor, DMA- FIFO.

I. INTRODUCTION

irtual instruments are the combination of user-

defined software and modular hardware that
implements custom systems with components for data

acquisition, processing or analysis and presentation.

Virtual instrumentation software is focused on the needs

of the application and user defined. Applied

mathematics is combined with real-time measurements,

which reduce the time for innovation and, most

importantly the time to market and/or time to

commercialization of final products and services that

result from research and development (R&D) using

virtual instrumentation approach. The key element

behind the success of the virtual instrumentation
approach is LabVIEW which is a software development

tool initially developed to support the requirements of

virtual instrumentation. These activities can be

implemented with a highly interactive process known as

graphical system design, an approach that influences

virtual instrumentation. This type of work can be

complemented and enhanced by taking the graphical

system design approach and using tightly integrated

software and hardware tools that help to combine data

analysis, visualization with measurements (data

acquisition) and mining.

Designed for applications that require high

performance and reliability, the National Instruments

CompactRIO programmable automation controller is an

advanced embedded control and data acquisition

system. With the system's open, embedded architecture

with small size, extreme ruggedness, and high

flexibility, one can use COTS hardware to quickly build

custom embedded systems. NI CompactRIO is powered
by LabVIEW FPGA and LabVIEW Real-Time software

tools, giving engineers the ability to design, program,

test, and customize the CompactRIO embedded system

with easy-to-use graphical programming tools [1].

The Fast Fourier Transform (FFT) has become

almost ubiquitous and most important in high speed

signal and image processing. Using this transform,

signals can be moved to the frequency domain where

filtering and correlation can be performed with fewer

operations. When considering the alternate FPGA
implementations, the FFT algorithm [2] - [4] should be

chosen to consider hardware complexity, the execution

speed, flexibility and precision. This paper presents the

implementation of FFT of a real-time signal and finding

out its power spectrum using the LabVIEW FPGA

programming and the real time embedded processor of

CompactRIO.

The paper is structured as follows. In section II

FFT and power spectrum has been described. The RIO

architecture is illustrated in Section III. In Section IV,

the implementation of FFT by the proposed method will
be debated. The synthesis results are shown in Section

V. At last, the topic concludes with section VI.

II. FFT AND POWER SPECTRUM

Fast Fourier Transforms (FFT) is an algorithm for

speedy calculation of Discrete Fourier Transform (DFT)

of a input data vector. The FFT is nothing but a DFT

algorithm which reduces the number of computations
needed for N points from O(N²) to O(N log N) where

log is the base-2 logarithm using periodicity and

property. Several algorithms are there which can

calculate FFT efficiently. Radix-2 algorithms are very

useful when N is a power of 2. There are two different

Radix 2 algorithms named as Decimation in Time (DIT)

and Decimation in Frequency (DIF) algorithms. Both of

these are based on the successive decomposition of an N

point transform into 2 (N/2) point transforms. Split-

radix, radix-2ⁿ are the other ways to calculate FFT.

Many algorithms have been proposed as described in
[1], [2], and [3] for efficient implementation of FFT

V

processors. The power spectrum [1] of a signal is the

power of that signal at each frequency that it contains. If

we take an N-point sample of the function c(t) at equal

intervals and use the FFT to compute its Discrete

Fourier Transform (DFT)

Ck =

 k=0, 1, ..., N-1 (1)

The power spectral components can be calculated

from parseval’s theorem for power calculation as

follows:

P(0)= P(f0)=

2

P(fk)=

[

2+
2]

 P(fc)= P(fN/2)=

2 (2)

Where fc is the nyquist frequency and fk is defined

only for the zero and positive frequencies and is given

by

fk

=2fc

 k=0, 1, ...,

 (3)

III. THE RIO ARCHITECTURE

CompactRIO combines a real-time embedded

processor, a high-performance FPGA, and hot-

swappable I/O modules mounted on the chassis. Each

I/O module present on the chassis is connected directly

to the FPGA. The above provides low-level

customization of timing and I/O signal processing. The

FPGA is connected to the real-time embedded processor

via a high-speed duplex PCI bus. This provides open

access to low-level hardware resources. This also
represents a low-cost architecture. LabVIEW contains

built-in data transfer mechanisms to pass data to the

FPGA from the I/O modules and also to the embedded

processor from the FPGA for real-time analysis, post

data processing, data logging, or communication to a

linked host computer. CompactRIO combines with

LabVIEW, Real-time module, C-series I/O modules,

chassis, CompactRIO device driver and FPGA module

to function as a complete development suite for

implementing any customized design.

The CompactRIO embedded system [5] - [7]

features an industrial 400 MHz Freescale MPC5200

processor. It deterministically executes LabVIEW Real-

Time applications on the reliable Wind River VxWorks

real-time operating system. Built-in functions of

LabVIEW transfer data between the FPGA and the real-

time embedded processor within the CompactRIO

embedded system. Existing C/C++ code can also be

integrated with LabVIEW Real-Time code to save on

development time.

A variety of swappable I/O types are available
including voltage, RTD, current, thermocouple,

accelerometer, and strain gauge inputs. There are analog

I/O modules, digital I/O modules, counter/timers, high

voltage/current relays, and pulse generation units with a

wide range current and voltage rating. Sensors and

actuators can be wired directly with C series modules as

the modules contain built-in signal conditioning for

extended voltage ranges for industrial signal types.

Fig. 1. The Rio architecture

The embedded FPGA is a high-performance, ultra

rugged reconfigurable chip that can be programmed

with LabVIEW FPGA tools. Historically, FPGA

designers were forced to learn and use complex design

languages such as Verilog or VHDL to program the

FPGAs. Now, the problem can be solved by using

LabVIEW tools to program for self-customized FPGAs.

One can implement custom timing, synchronization,

triggering, control, and signal processing for your

analog and digital I/O using the FPGA hardware
embedded in CompactRIO.

IV. IMPLEMENTATION OF FFT AND FINDING

POWER SPECTRUM USING LabVIEW AND
CompactRIO

The proposed implementation is divided into two

parts: writing the code in FPGA mode and controlling it

through HOST [7]. Here NI-9104 has been taken which

is an intelligent real-time embedded controller for

CompactRIO. It is a 400 MHz processor with 128 MB

of DRAM and 2 GB of memory in which data transfer

can take place at a rate of 10 Mbps. An 8-slot chassis
has been taken on which NI-9201 and NI-9263 are

mounted. The NI-9201 is an 8-channel, 12-bit analog

input module which uses successive approximation

register (SAR) of analog to digital converter (ADC).

The NI-9263 is a 4-channel, ±10V, 16-bit analog output

module that works as a digital to analog converter

(DAC).

Figure 2 shows the FPGA VI for finding the FFT

of a real-time signal and storing its value in memory

and using DMA-FIFO [5] and [7] for the stored data to

be transferred to the HOST. Signal generation VIs are
placed outside the case structure in order to avoid

duplicating logic by having the same functions in

multiple cases. The signal is given to NI-9201 (MOD-3

AI). The digital output of NI-9201(ADC) is given to

the FFT express VI which calculates the 256-point FFT

and gives real and imaginary values. Those values are

stored in memory separately and delivered coherently to
the host in 256-element frames by checking the DMA

FIFOs status before writing to them, so that the FPGA

DMA buffer never overflows. The advantage of DMA

is that the host computer processor can perform

calculations while the FPGA target transfers data to the

host computer memory through bus mastering. A

DMA-FIFO allocates memory on both the host

computer and the FPGA target, but yet acts as a single

FIFO. The FPGA VI writes to the DMA- FIFO one

element at a particular instant of time with the Write

method of the FIFO Method Node or reads from the
FIFO one element at a particular instant of time with the

Read method. While invoking, the host VI reads from

or writes to the FIFO one or more elements at a time. A

DMA Engine is used by LabVIEW to transfer DMA-

FIFO data between the FPGA and the host computer.

Fig. 2. FPGA VI for the proposed implementation in LabVIEW

Finally a HOST VI has been written which

uses the FPGA code. The values stored in memory

are now transferred to the HOST through DMA-

FIFO. The open FPGA reference opens a reference

to the FPGA VI without running it, in order to

avoid generating data before DMA is configured.

Reset the VI to guarantee that FIFOs are in a

known state on the target. Here the use of small

host buffers is to minimize latency for signal

changes to show up in the display of HOST VI.

The sample rate can be given manually or it can be

determined by the loop by using different scaling

VIs present in LabVIEW. The frequencies can also

be seen or can be given manually. Since the FPGA

VI prevents buffer overflows, the output should

always be exactly one frame, starting with the DC

bin. There are two memories created to store real

and imaginary values of the FFT and are named as

real FFT and imaginary FFT respectively. Likewise

two DMA-FIFOs named as real DMA and

imaginary DMA are being used to transport the

values stored in the real and imaginary memory to

the host respectively. Prior to the main loop in the

HOST VI, real and imaginary DMA has been

configured so that the main loop will run after the

FIFOs get 500 values from FPGA VI, out of which

lvfpga.chm::/FIFO_Write.html
lvfpga.chm::/fpga_fifo_Method.html
lvfpga.chm::/FIFO_Read.html

256 will be used at a time. This ensures that there

will be continuous execution of the main loop in

HOST VI without any data insufficiency. The

values are converted to DBL (double precision

float) from FXP (fixed point). The time delay

module ensures clear vision of change of outputs

from one frame to another. Finally the Close FPGA

VI reference closes the reference to the FPGA.

Fig. 3. HOST VI for the proposed implementation in LabVIEW

V. RESULTS AND CONSUMED RESOURCES

The FFT and power spectrum has been

calculated for a 1 kHz, 10 kHz square wave and 1

kHz, 10 kHz sine wave with amplitude of 1V and

the results are shown through figure 5 - 8

respectively. It is known in that the power spectrum

of a square wave at a particular frequency (fm)

contains only odd harmonics. The amplitude of the

odd harmonics is given by where

ԉ=3.142 and n is the odd harmonic number. The

first harmonic presents at that frequency with the

power nearly equal to the input signal’s amplitude

value. The third harmonic presents at 3×fm with a

power nearly equal to 0.21V, the fifth harmonic has

a value around 0.12V present at a 5×fm for a 1V

input signal and so on.

The results shown through figure 4, and 5 are

quiet similar with the theoretical values as

discussed above. The power spectrum of a sine

wave only contains a harmonic at the input signal’s

frequency having power nearly equal to the

amplitude of the input signal. This has been

depicted in figure 6, and 7.

Fig. 4. Observed power spectrum for 1 kHz square

wave

Fig. 5. Observed power spectrum for 10 kHz square

wave

Fig. 6. Observed power spectrum for 1 kHz sine wave

Fig. 7. Observed power spectrum for 10 kHz sine wave

The proposed implementation of 256-point

FFT and its power spectrum using CompactRIO

has been allocated only 3077 slices(21%), 2489

slice registers(8.7%), 4651 slice LUTs(16.2%)

operated with a maximum frequency of 52.42 MHz

for on-board clock and 209.69 MHz for non-

diagram components as shown in figure 8.

Fig. 8. Final synthesis report of the proposed

implementation

VI. CONCLUSIONS

 The implementation of 256-point FFT and

finding the power spectrum has been successfully

verified by using LabVIEW and CompactRIO and

the results has been listed with the final synthesis

report. Algorithm implemented in hardware, we

can get an extremely high loop rate. Once the code

is downloaded to the chassis and the power is on,

the system will respond within milliseconds. There

is no need to know VHDL language to program

FPGA; no need to be deeply familiar with real-time

operating system. The above structure also uses

pipelining method to calculate 256-point FFT

continuously. The use of DMA-FIFO ensures

reduction in latency in display on the host and no

data is lost with increased throughput.

REFERENCES

[1] Marek Horinek, Petr Bilik, Power Analyzer for
 Converter Testing Based on Crio Hardware
 Platform, Applied Electronics International
 Conference, pp. 1-4, 2010.
 [2] I.S. Uzun, A. Amira and A. Bouridane, FPGA
 implementations of fast Fourier transforms for real-
 time signal and image processing, IEE Proc.-Vis.

 Image Signal Process., Vol. 152, No. 3, June 2005.
 [3] Ren-Xi Gong, Jiong-Quan Wei and Dan Sun, Ling-
 Ling Xie, Peng-Fei Shu and Xiao-Bi Meng, FPGA
 Implementation of a CORDIC-based Radix-4 FFT
 Processor for Real-Time Harmonic Analyzer,
 International Conference on Natural Computation
 ,Vol. 4, pp. 1832-1835, July 2011.
[4] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I.

 Eladawy: Efficient FPGA implementation of

 FFT/IFFT Processor, INTERNATIONAL

 JOURNAL OF CIRCUITS, SYSTEMS AND

 SIGNAL PROCESSING, Vol. 3, Issue 3, pp. 103-

 110, 2009.

[5] Tao Lin, Yongxing Xie, Jing Tang, Design of

 CompactRIO-based Acquisition System, Conference

 on Environmental Science and Information

 Application Technology, Vol. 1, pp. 678-681, 2010.

[6] Carroll Dase, Jeannie Sullivan falcon, Brain
 Maccleery, “Motorcycle Control Prototyping Using

 an FPGA-Based Embedded Control System,” IEEE
 Control Systems Magazine, pp.17-21, Oct. 2006.
[7] Maciej Rosol, Adam Pilat, Andrzej Turnau, Real-
 time controller design based on NI Compact-RIO,
 Proceedings of the International Multiconference on
 Computer Science and Information Technology, pp.
 825–830, Oct. 2010.

