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Abstract  -The growing popularity of adopting virtual 

instrumentation (modular, customizable, software-defined 

instrumentation) has only became possible due to the use 

of LabVIEW with a highly interactive process known as 

graphical system design. The CompactRIO programmable 

automation controller is an advanced embedded control 

and data acquisition system designed for applications that 

require high performance and reliability. This paper 

explains the real-time implementation of 256-point FFT, 

one of the most important transforms used in signal and 

image processing and finding the power spectrum using 

LabVIEW and CompactRIO. The proposed 

implementation uses only 3077 slices(21%), 2489 slice 

registers(8.7%), 4651 slice LUTs(16.2%) on a 400 MHz 

real time embedded processor. 
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I. INTRODUCTION 

irtual instruments are the combination of user-

defined software and modular hardware that 
implements custom systems with components for data 

acquisition, processing or analysis and presentation. 

Virtual instrumentation software is focused on the needs 

of the application and user defined. Applied 

mathematics is combined with real-time measurements, 

which reduce the time for innovation and, most 

importantly the time to market and/or time to 

commercialization of final products and services that 

result from research and development (R&D) using 

virtual instrumentation approach. The key element 

behind the success of the virtual instrumentation 
approach is LabVIEW which is a software development 

tool initially developed to support the requirements of 

virtual instrumentation. These activities can be 

implemented with a highly interactive process known as 

graphical system design, an approach that influences 

virtual instrumentation. This type of work can be 

complemented and enhanced by taking the graphical 

system design approach and using tightly integrated 

software and hardware tools that help to combine data 

analysis, visualization with measurements (data 

acquisition) and mining. 

 
Designed for applications that require high 

performance and reliability, the National Instruments 

CompactRIO programmable automation controller is an 

advanced embedded control and data acquisition 

system. With the system's open, embedded architecture 

with small size, extreme ruggedness, and high 

flexibility, one can use COTS hardware to quickly build 

custom embedded systems. NI CompactRIO is powered 
by LabVIEW FPGA and LabVIEW Real-Time software 

tools, giving engineers the ability to design, program, 

test, and customize the CompactRIO embedded system 

with easy-to-use graphical programming tools [1]. 

 

The Fast Fourier Transform (FFT) has become 

almost ubiquitous and most important in high speed 

signal and image processing. Using this transform, 

signals can be moved to the frequency domain where 

filtering and correlation can be performed with fewer 

operations. When considering the alternate FPGA 
implementations, the FFT algorithm [2] - [4] should be 

chosen to consider hardware complexity, the execution 

speed, flexibility and precision. This paper presents the 

implementation of FFT of a real-time signal and finding 

out its power spectrum using the LabVIEW FPGA 

programming and the real time embedded processor of 

CompactRIO. 

 

The paper is structured as follows. In section II 

FFT and power spectrum has been described. The RIO 

architecture is illustrated in Section III. In Section IV, 

the implementation of FFT by the proposed method will 
be debated. The synthesis results are shown in Section 

V. At last, the topic concludes with section VI. 

 

II. FFT AND POWER SPECTRUM 
 

Fast Fourier Transforms (FFT) is an algorithm for 

speedy calculation of Discrete Fourier Transform (DFT) 

of a input data vector. The FFT is nothing but a DFT 

algorithm which reduces the number of computations 
needed for N points from O(N²) to O(N log N) where 

log is the base-2 logarithm using periodicity and 

property. Several algorithms are there which can 

calculate FFT efficiently. Radix-2 algorithms are very 

useful when N is a power of 2. There are two different 

Radix 2 algorithms named as Decimation in Time (DIT) 

and Decimation in Frequency (DIF) algorithms. Both of 

these are based on the successive decomposition of an N 

point transform into 2 (N/2) point transforms. Split-

radix, radix-2ⁿ are the other ways to calculate FFT. 

Many algorithms have been proposed as described in 
[1], [2], and [3] for efficient implementation of FFT 
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processors. The power spectrum [1] of a signal is the 

power of that signal at each frequency that it contains. If 

we take an N-point sample of the function c(t) at equal 

intervals and use the FFT to compute its Discrete 

Fourier Transform (DFT) 

 
Ck =      

       
         k=0, 1, ..., N-1         (1) 

 

The power spectral components can be calculated 

from parseval’s theorem for power calculation as 

follows: 
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Where fc is the nyquist frequency and fk is defined 

only for the zero and positive frequencies and is given 

by 
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III. THE RIO ARCHITECTURE 
 

CompactRIO combines a real-time embedded 

processor, a high-performance FPGA, and hot- 

swappable I/O modules mounted on the chassis. Each 

I/O module present on the chassis is connected directly 

to the FPGA. The above provides low-level 

customization of timing and I/O signal processing. The 

FPGA is connected to the real-time embedded processor 

via a high-speed duplex PCI bus. This provides open 

access to low-level hardware resources. This also 
represents a low-cost architecture. LabVIEW contains 

built-in data transfer mechanisms to pass data to the 

FPGA from the I/O modules and also to the embedded 

processor from the FPGA for real-time analysis, post 

data processing, data logging, or communication to a 

linked host computer. CompactRIO combines with 

LabVIEW, Real-time module, C-series I/O modules, 

chassis, CompactRIO device driver and FPGA module 

to function as a complete development suite for 

implementing any customized design. 

 
The CompactRIO embedded system [5] - [7] 

features an industrial 400 MHz Freescale MPC5200 

processor. It deterministically executes LabVIEW Real-

Time applications on the reliable Wind River VxWorks 

real-time operating system. Built-in functions of 

LabVIEW transfer data between the FPGA and the real-

time embedded processor within the CompactRIO 

embedded system. Existing C/C++ code can also be 

integrated with LabVIEW Real-Time code to save on 

development time. 

 

A variety of swappable I/O types are available 
including voltage, RTD, current, thermocouple, 

accelerometer, and strain gauge inputs. There are analog 

I/O modules, digital I/O modules, counter/timers, high 

voltage/current relays, and pulse generation units with a 

wide range current and voltage rating. Sensors and 

actuators can be wired directly with C series modules as 

the modules contain built-in signal conditioning for 

extended voltage ranges for industrial signal types. 
 

 
 

Fig. 1. The Rio architecture 

 

The embedded FPGA is a high-performance, ultra 

rugged reconfigurable chip that can be programmed 

with LabVIEW FPGA tools. Historically, FPGA 

designers were forced to learn and use complex design 

languages such as Verilog or VHDL to program the 

FPGAs. Now, the problem can be solved by using 

LabVIEW tools to program for self-customized FPGAs. 

One can implement custom timing, synchronization, 

triggering, control, and signal processing for your 

analog and digital I/O using the FPGA hardware 
embedded in CompactRIO. 

 

IV. IMPLEMENTATION OF FFT AND FINDING 

POWER SPECTRUM USING LabVIEW AND 
CompactRIO 

 

The proposed implementation is divided into two 

parts: writing the code in FPGA mode and controlling it 

through HOST [7]. Here NI-9104 has been taken which 

is an intelligent real-time embedded controller for 

CompactRIO. It is a 400 MHz processor with 128 MB 

of DRAM and 2 GB of memory in which data transfer 

can take place at a rate of 10 Mbps. An 8-slot chassis 
has been taken on which NI-9201 and NI-9263 are 

mounted. The NI-9201 is an 8-channel, 12-bit analog 

input module which uses successive approximation 

register (SAR) of analog to digital converter (ADC). 

The NI-9263 is a 4-channel, ±10V, 16-bit analog output 

module that works as a digital to analog converter 

(DAC). 

 

Figure 2 shows the FPGA VI for finding the FFT 

of a real-time signal and storing its value in memory 

and using DMA-FIFO [5] and [7] for the stored data to 

be transferred to the HOST. Signal generation VIs are 
placed outside the case structure in order to avoid 



duplicating logic by having the same functions in 

multiple cases. The signal is given to NI-9201 (MOD-3 

AI).  The digital output of NI-9201(ADC) is given to 

the FFT express VI which calculates the 256-point FFT 

and gives real and imaginary values. Those values are 

stored in memory separately and delivered coherently to 
the host in 256-element frames by checking the DMA 

FIFOs status before writing to them, so that the FPGA 

DMA buffer never overflows. The advantage of DMA 

is that the host computer processor can perform 

calculations while the FPGA target transfers data to the 

host computer memory through bus mastering. A 

DMA-FIFO allocates memory on both the host 

computer and the FPGA target, but yet acts as a single 

FIFO. The FPGA VI writes to the DMA- FIFO one 

element at a particular instant of time with the Write 

method of the FIFO Method Node or reads from the 
FIFO one element at a particular instant of time with the 

Read method. While invoking, the host VI reads from 

or writes to the FIFO one or more elements at a time. A 

DMA Engine is used by LabVIEW to transfer DMA-

FIFO data between the FPGA and the host computer.  

 

 

Fig. 2.  FPGA VI for the proposed implementation in LabVIEW 

 

Finally a HOST VI has been written which 

uses the FPGA code. The values stored in memory 

are now transferred to the HOST through DMA-

FIFO. The open FPGA reference opens a reference 

to the FPGA VI without running it, in order to 

avoid generating data before DMA is configured. 

Reset the VI to guarantee that FIFOs are in a 

known state on the target. Here the use of small 

host buffers is to minimize latency for signal 

changes to show up in the display of HOST VI. 

The sample rate can be given manually or it can be 

determined by the loop by using different scaling 

VIs present in LabVIEW. The frequencies can also 

be seen or can be given manually. Since the FPGA 

VI prevents buffer overflows, the output should 

always be exactly one frame, starting with the DC 

bin. There are two memories created to store real 

and imaginary values of the FFT and are named as 

real FFT and imaginary FFT respectively. Likewise 

two DMA-FIFOs named as real DMA and 

imaginary DMA are being used to transport the 

values stored in the real and imaginary memory to 

the host respectively. Prior to the main loop in the 

HOST VI, real and imaginary DMA has been 

configured so that the main loop will run after the 

FIFOs get 500 values from FPGA VI, out of which 

lvfpga.chm::/FIFO_Write.html
lvfpga.chm::/fpga_fifo_Method.html
lvfpga.chm::/FIFO_Read.html


256 will be used at a time. This ensures that there 

will be continuous execution of the main loop in 

HOST VI without any data insufficiency. The 

values are converted to DBL (double precision 

float) from FXP (fixed point). The time delay 

module ensures clear vision of change of outputs 

from one frame to another. Finally the Close FPGA 

VI reference closes the reference to the FPGA. 

 

 

Fig. 3. HOST VI for the proposed implementation in LabVIEW 

V. RESULTS AND CONSUMED RESOURCES 

The FFT and power spectrum has been 

calculated for a 1 kHz, 10 kHz square wave and 1 

kHz, 10 kHz sine wave with amplitude of 1V and 

the results are shown through figure 5 - 8 

respectively. It is known in that the power spectrum 

of a square wave at a particular frequency (fm) 

contains only odd harmonics. The amplitude of the 

odd harmonics is given by         where 

ԉ=3.142 and n is the odd harmonic number. The 

first harmonic presents at that frequency with the 

power nearly equal to the input signal’s amplitude 

value. The third harmonic presents at 3×fm with a 

power nearly equal to 0.21V, the fifth harmonic has 

a value around 0.12V present at a 5×fm for a 1V 

input signal and so on. 

The results shown through figure 4, and 5 are 

quiet similar with the theoretical values as 

discussed above. The power spectrum of a sine 

wave only contains a harmonic at the input signal’s 

frequency having power nearly equal to the 

amplitude of the input signal. This has been 

depicted in figure 6, and 7. 

 

 

Fig. 4. Observed power spectrum for 1 kHz square 

wave

 

Fig. 5. Observed power spectrum for 10 kHz square 

wave 



 

Fig. 6. Observed power spectrum for 1 kHz sine wave 

 

Fig. 7. Observed power spectrum for 10 kHz sine wave 

The proposed implementation of 256-point 

FFT and its power spectrum using CompactRIO 

has been allocated only 3077 slices(21%), 2489 

slice registers(8.7%), 4651 slice LUTs(16.2%) 

operated with a maximum frequency of 52.42 MHz 

for on-board clock and 209.69 MHz for non-

diagram components  as shown in figure 8. 

 

Fig. 8. Final synthesis report of the proposed 

implementation 

VI. CONCLUSIONS 

 The implementation of 256-point FFT and 

finding the power spectrum has been successfully 

verified by using LabVIEW and CompactRIO and 

the results has been listed with the final synthesis 

report. Algorithm implemented in hardware, we 

can get an extremely high loop rate. Once the code 

is downloaded to the chassis and the power is on, 

the system will respond within milliseconds. There 

is no need to know VHDL language to program 

FPGA; no need to be deeply familiar with real-time 

operating system. The above structure also uses 

pipelining method to calculate 256-point FFT 

continuously.  The use of DMA-FIFO ensures 

reduction in latency in display on the host and no 

data is lost with increased throughput. 
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