
In this paper, first we propose a new

slicing method to decompose a Java program

into packages, classes, methods and statements

that are affected due to the modification in the

program. The decomposition is based on the

hierarchical characteristic of Java. Then, by

mapping these decompositions with the existing

test suite, we derive a new test suite and add

some new test cases, if necessary, to retest the

modified program. We have proposed an

intermediate representation of the Java program

by considering all the possible dependencies

among the program parts. This intermediate

representation is used to identify the program

constructs that are possibly affected by the

change in the program. The packages, classes,

methods, and statements thus affected are

identified by traversing the intermediate graph,

first in the forward direction and then in the

backward direction. The test cases covering these

affected parts of the program are then selected to

retest the program.

INTRODUCTION

In the software life cycle, regression

testing is considered to be an important part.

This is because it is essential to validate the

modification and to ensure that no other parts of

the program have been affected by the change.

Regression testing is thus defined as the selective

retesting of a system or component to verify that

modifications have not caused unintended

effects and that the system or component still

complies with its specified requirements [1]. A

system is said to regress if 1) a new component is

added, or 2) a modification done to the existing

component affects other parts of the program.

Therefore, it is essential to retest not only the

changed code but also to retest the possible

affected code due to the change. Regression

testing is an expensive activity and typically

accounts for half of the total cost of software

maintenance [2]. It is essential to cut-down on the

cost of retesting of the software by following a

selective approach to identify and retest only

those parts of the program that are affected by

the change. In [3] Gupta et al. have identified two

important problems in selective regression

testing: (1) identifying those existing tests that

must be rerun since they may exhibit different

behavior in the changed program and (2)

identifying those program components that must

be retested to satisfy some coverage criterion.

The above mentioned problems cover the

following important sub-problems associated

Application of Hierarchical
Slicing to Regression Test

Selection of Java
Programs

Subhrakanta Panda, Durga Prasad Mohapatra, Ph.D

 Selection of regression test

case for object-oriented programs

is a challenging task.

Hierarchical slicing of object-

oriented programs helps better in

selecting regression test case.

with regression testing: regression test selection

problem, coverage identification problem, test

suit execution problem, test suit maintenance

problem. Our focus in this paper is to minimize

the existing tests so that we can achieve the same

coverage thereby reducing the cost and time of

retesting of the modified as well as affected parts

of the program. So we basically focus on the

regression test selection problem in our paper.

In traditional procedure-oriented

programs, the approach for regression testing

was based on the data flows and control flows

within a procedure or among a group of

procedures, which was computed by graph

reachability algorithms [4, 5] or two-phase graph

reachability algorithms [6]. This was mainly

achieved by slicing the program dependence

graphs (PDG) by using the above algorithms to

obtain the sliced program. However, while

applying the same techniques to object-oriented

programs, we fail because of the presence of

many other dependencies originating from the

object-oriented features. All though object-

oriented features have improved program

understandability and readability but have

complicated the maintenance activities. The

dependencies that arise due to the class and

object concept are inheritance dependency,

message dependency, data dependency, type

dependency, reference dependency, concurrency

dependency, etc. These dependencies are

represented as edges in our intermediate graph.

These dependencies (edges) are formally defined

in Section 2.4.

The existing slicing techniques based on

system dependence graphs in [7, 8, 9, 10] have

considered C++ programs which are partially

object-oriented in nature. That's why we are

motivated to consider Java programs for our

work as it is considered to be a true object-

oriented programming language. But the existing

techniques cannot be applied to Java programs

because of the presence of many new features

that increases the dependencies among the

program components. The presence of the

features like packages, super, dynamic method

dispatch, interface, exception handling, multi-

threading, etc, in Java adds to the list of

dependencies and thus makes the maintenance

even more difficult. Their effects on the

maintenance of the programs need to be

considered separately. In Java, all the classes and

their methods are grouped into packages.

Suppose a method M1 of class C1 belonging to a

package P1 wants to invoke a method M2 of class

C2 that belongs to another package P2. This can

be achieved by importing the package P2 in

package P1 and by instantiating the class C2 in

C1. This will create a dependency among the

packages P1 and P2, classes C1 and C2, methods

M1 and M2 and among the statements in both

the methods. Apart from this, there are many

methods which are dependent on the type of

data they are operating upon. For each type of

data, there is a different function. Therefore,

using the existing techniques of slicing to slice

the SDG of Java programs does not seem to be

feasible for regression testing. Incremental

regression testing [11] is a probable solution

which is based on the following simple

observations: (1) if a statement is not executed

under a test case, it cannot affect the program

output for that test case. (2) Not all statements in

the program are executed under all test cases. (3)

Even if a statement is executed under a test case,

it does not necessarily affect the program output

for that test case. (4) Every statement does not

necessarily affect every part of the program

output. We can apply the above assumptions to

Java programs at different levels of packages,

classes, methods and statements.

The main objective of this paper is to

construct a SDG for Java programs by

considering the different dependencies and

apply hierarchical slicing [12] to select test cases.

We have named our SDG as Extended Object-

Oriented System Dependency Graph for Java

(EOSDGJ). From the point of modification, which

is the point of interest for slicing, we compute a

forward slice and then a backward slice to

determine a set of program components that are

affected by the change and all those components

which had any impact upon the change. Then

taking a hierarchical slice of packages, classes,

methods and statements, we identified the

impact of change at different programming

levels. From the test case coverage analysis, we

then selected those test cases that affected at

package level, class level, method level and

statement level. The outcome of our approach is

a set of hierarchically selected test cases that is

based upon the proposed EOSDGJ.

The rest of the paper is organized as

follows: Section 2 gives a background of program

slicing and other related aspects. In Section 3, we

discuss our proposed work that is based on the

Extended Object-Oriented System Dependency

Graph along with a working example. In Section

4, we discuss the implementation of our work. In

Section 5, the contribution of many other

researchers related to our work is discussed and

we have compared our work with some other

related work. Section 6 concludes the paper and

specifies some work to be carried out in future.

BASIC CONCEPTS

In this section, we discuss the basic

concepts and terminologies that are associated

with our work and required for understanding

our proposed approach.

Program Slicing

Program slicing is a method of separating

out the relevant parts of a program with respect

to a particular computation. Thus, program slice

is a set of statements which affect the value of a

variable at a particular point of interest. Program

slicing was originally introduced by Mark Weiser

[13] as “a method for automatically decomposing

programs by analyzing their data flow and

control flow starting from a subset of a program's

behavior, slicing reduces that program to a

minimal form that still produces that behavior”.

The input that the slicing algorithm takes is

usually an intermediate representation of the

Figure 1 An example Java program

program under consideration [14]. The first step

in slicing a program involves in specifying a

point of interest which is called the slicing

criterion and is expressed as (s, v), where s is the

statement number and v is the variable that is

being used or defined at s.

Types of Program Slicing

a. Forward Slicing: It comprises of all those

parts that might be affected by the

slicing criterion because of their

dependency on the slicing criterion.

b. Backward Slicing: It comprises of all

those parts that might affect the slicing

criterion because of the dependencies of

the slicing criterion on those parts.

c. Static Slicing: It comprises of those

statements that we get by statically

analyzing the code that is by examining

some representation of the code without

actually executing the program under

consideration.

d. Dynamic Slicing: It comprises of all those

parts of the program that we obtain by

actually executing the program with a

specific input (included in the slicing

criterion). Thus, a dynamic slice is only

correct for a specific input whereas a

static slice is correct for all inputs.

Over time many researchers have come

up with many other types of slicing techniques

that can be found in [15, 16, 17].

There are various aspects to be considered

in slicing a program. They are listed as follows:

a. Slicing variable: Slicing variable may be

based on the variables specified in the

criteria (slicing point of interest) or it

may be on all the variables.

b. Slicing point: Considering the slicing

point, a programmer's interest may be

in observing the impact before or after a

particular statement [15].

c. Slicing direction: The expected slice of

the program may be either in forward

direction or backward direction.

d. Abstraction level: Abstraction level is

either in statement or in procedure

level. But considering the typical

features of the object-oriented

programs, it needs to be extended to

class or package level, taking into

account the dependencies induced by

them.

Hierarchical Slicing

Instead of analyzing the data flow and

control flow for the program as a whole, it is

preferable to employ the hierarchical structure of

the object-oriented programs especially Java

programs to detect the impact of the change. A

Java program P, is composed of a set of

packages, classes, methods and statements.

Therefore, in hierarchical slicing, we first try to

slice out the packages that might have been

affected by the change. From the set of affected

packages, we then slice out the affected classes.

Then the affected methods and the statements

inside those methods are sliced out for retesting.

The above concept of hierarchical slicing can be

explained by considering a slicing criterion (i.e.

point of modification) < s, v >, where s is the

statement containing variable v. Let S (P) be the

set of identified packages, classes, methods and

statements that are affected by the modification

to the program. The steps of hierarchical slicing

are as follows:

i. We detect the package p containing s

and v and all other packages, based on

their direct or indirect dependencies on

p caused due to import statements. All

those packages which are not related to

the package p are deleted. Finally, we

obtain the package level slice marked as

Sl(P).

ii. Then, we analyze S(P), to find out all

those classes that are related to the class

containing s and v. All other classes are

removed from the slice. The class level

slice obtained is marked as S2(P).

iii. We analyze S(P) and delete all the

member methods and variables that are

not related to the method containing s

and v. The method level slice is marked

as S3(P).

iv. Finally to find out the statement level

slice, we analyze S(P) and delete all the

statements and predicates that are not

related to the statement S containing

variable v. The slice obtained is marked

as S4(P).

This stepwise extraction of the slices is known as

hierarchical slicing. The test cases obtained at

each level can be related as T(S4(P)) ⊆ T(S3(P)),

T(S3(P)) ⊆ T(S2(P)), T(S2(P)) ⊆ T(Sl(P)). At each

level, we obtain more accuracy in minimizing the

required number of test cases from a higher level

to a lower level by discarding the test cases that

are not relevant.

Regression Testing

Testing is an important phase in the

software life cycle. It is carried out with the

intension of detecting errors in order to improve

the quality of the software and to win the

confidence of the customer. This phase incurs

60% of the total cost of the software. Therefore, it

becomes highly essential to devise proper testing

techniques in order to design the test cases so

that the software can be tested properly. Testing

strategies are based on verification and

validation. The static techniques available for

testing maps to the verification process without

executing the code, whereas the dynamic testing

techniques maps to the validation process by

executing the code. Regression testing

considered as the part of the validation activity

possesses a big problem in testing the software. It

becomes a big challenge to manage the retesting

process with respect to the time and cost,

especially when the test suite becomes too large.

Therefore, selective retest technique attempts to

identify those test cases that can exercise the

modified parts of the program and the parts that

are affected by the modification to reduce the

cost of testing. The features of the selective retest

technique are as follows:

a. The resources required to retest a

modified version of the program are

minimized.

b. This is achieved by minimizing the

number of test cases to be exercised.

c. The test suite grows uncontrollably due

to the continuous modifications done to

the programs for which selective

retesting is required.

d. The relationship between the test cases

and the program parts that are covered

by the test cases can be analyzed better.

Dependency Analysis of the Intermediate

Graph

We propose an intermediate

representation for Java programs called

Extended Object-Oriented System Dependence

Graph for Java (EOSDGJ). While constructing

EOSDGJ, we have considered some additional

dependencies in Java, in addition to the

dependencies defined by Krishnaswamy [7] for

object-oriented programs. The proposed graph is

a set of nodes and edges, where nodes represent

the numbered statements and edges represent

the different types of dependencies that can exist

between the nodes. Some of these dependencies

(edges) are identified and defined in [7]. Below,

we represent these dependencies (edges) for

more clarity and understanding.

i. Inheritance edge: The inheritance

hierarchy is an important feature of the

object-oriented paradigm. It establishes

the association between the base class

and derived class, in the direction of

hierarchy.

ii. Class membership edge: Every method in

the object-oriented paradigm is a

member of a class and is addressable by

the object of that class only. Thus, a

class membership edge connects the

method header and the class header of

the class in which the method is

defined.

iii. Inherited membership edge: Every method

and the data members are said to be

inherited (irrespective of the access

specifier) if they are accessible by the

instance of the derived class. Thus, an

inherited method or a data member can

be considered as an implied member of

the derived class. The edge connects the

header of the method or data member

with the header of the derived class.

iv. Instantiation edge: Instantiation means

creating the instance of a class by

invoking the constructor of the class

which initializes the object. The

instantiation edge connects the

instantiation statement with the class

header.

v. Polymorphic call edge: A polymorphic

edge connects the call statement with

the method that is called by resolving

the binding dynamically.

Figure 2 EOSDGJ of the example program

vi. Parameter passing edge: The parameter

passing edge represents the data

exchange taking place between the

actual parameter and formal parameter

vertices.

vii. Data dependency edge: When data

computed at one statement is used at

another statement, an edge is marked to

represent the flow of data from the site

of computation to the site of usage.

viii. Control dependency edge: When the

execution of one statement is dependent

on the execution of another statement

then the former is said to be control

dependent on the later. The edge from

one vertex to another depicts the control

dependence between the vertices in the

representation.

Besides these, we have identified the following

dependencies (edges) for Java programs.

ix. Package membership edge: In Java, all the

library classes and user defined classes

belong to some package. We have

considered the packages as separate

nodes in our proposed intermediate

representation EOSDGJ. The package

dependency arises when one package

imports some other packages into it so

that some or all the classes in the

imported package can be made

accessible by instantiating those classes.

This creates a dependency between the

packages. Thus, an edge from the

header of the importing package to the

header of the imported package depicts

this dependency.

x. Type dependency edge: In Java, there are

several methods that depend upon the

type of data. If the type of data is

changed then the method also changes

accordingly. Therefore, an edge from

the data declaration statement to the

statement containing a call to such a

method is essential to depict the type

dependency.

PROPOSED WORK

In this section, we propose an algorithm,

which we named Hierarchical Regression Test

Selection (HRTS) algorithm for generating

selective regression test cases. We maintain all

the test cases along with the information of their

coverage of packages, classes, methods and

statements in Table 1. In our proposed work, we

also maintain the following sets of information:

P = {p1, p2 . . . pn} is the set of all the

packages that are used in the given program.

C = {cl, c2 . . . cn} is the set of all the classes

defined in the program.

M = {m1, m2 . . . mn} is the set of all the

methods defined in the program.

S = {sl, s2 . . . sn} is the set of all the

statements in the program.

Notations Used:

i. Q – Queue that contains all the nodes

reached in the forward traversal of the

EOSDGJ graph.

ii. U - The set containing all the packages,

classes, methods and statements that are

affected by the modification and that

are executed by the test cases of the

program.

iii. Pk - The set of packages extracted from

EOSDGJ that are affected by the

modification.

iv. Cl - The set of classes extracted from

EOSDGJ that are affected by the

modification.

v. Mt - The set of methods extracted from

EOSDGJ that are affected by the

modification.

vi. St - The set of statements extracted from

EOSDGJ that are affected by the

modification.

Now, we describe our proposed HRTS

Algorithm:

Algorithm HRTS

Step 1: Construct the EOSDGJ for the program.

Step 2: Do the following:

i. Initialize Q, U, Pk, Cl, Mt, St to NULL.

ii. Traverse the proposed EOSDGJ using

the Depth First Search (DFS) algorithm.

First traverse in the forward direction,

starting from the point of modification

(slicing criterion). Then, detect all those

program parts (nodes) that are

dependent on the modified statement

and hence might be affected by the

modification.

Step 3: Add each node of the graph that is

reached by the traversal algorithm to a queue, Q.

Step 4: For each node v ϵ Q, do the followings:

i. Remove v from Q and add it to set U.

ii. Taking v as the starting point, we

traverse backward using DFS algorithm

to extract all those nodes on which node

v is dependent on and add them to set

U.

iii. Repeat Step 3, till Q is empty.

Finally, the set U will contain all program parts

affected by the modification.

Step 5: Do the following computations to obtain

the hierarchical slice:

i. Pk = P ∩ U, if the set Pk is non-empty

then we get the set of packages that are

affected by the modification.

ii. U = U - Pk, now set U consists of only

classes, methods and statements.

iii. Cl = C ∩ U, if the set Cl is non-empty

then we get the set of classes that are

affected by the modification.

iv. U = U - Cl, now set U consists of only

methods and statements.

v. Mt = M ∩ U, if the set Mt is non-empty

then we get the set of affected methods.

vi. U = U - Mt, now set U consists of only

affected statements.

vii. St = U

Here Pk, Cl, Mt, St are the sliced sets of

packages, classes, methods and statements

respectively, extracted from the EOSDGJ, which

might have been affected by the modification

done to the program.

Step 6: Select the test cases step by step from the

Table 1 Test case distribution for the example program in Figure 1

package level to the statement level.

i. Let there be n number of test cases in the

test suite T, where T = {t1, t2 . . . tn}. The set of

packages covered by each test case ti, i = 1, 2

. . . n is represented by Pti. Determine the set

of test cases selected at the package level for

retesting the program.

T′= {} \\ T is initialized.

∀ ti ϵ T, P′t = Pk ∩ Pti

If P′t is non-empty, then

T′ = T′ ∪ ti, where T′ is the set of

selected test cases at package level.

ii. Determine the set of test cases selected at

the class level

T′′ = {} \\ T′′ is initialized.

∀ ti ϵ T′, C′t = Cl ∩ Cti

where Cti is the set of methods covered

by the test case ti.

If C′t is non-empty, then

T′′ = T′′ ∪ ti, where T′′ ⊆ T′ is the set of

selected test cases at class level.

iii. Determine the set of test cases selected at

the method level

T′′′ = {} \\ T′′′ is initialized.

∀ ti ϵ T′′, M′t = Mt ∩ Mti

where Mti is the set of methods covered

by the test case ti.

If M′t is non-empty, then

T′′′ = T′′′ ∪ ti, where T′′′ ⊆ T′′ is the set

of selected test cases at method level.

iv. Finally, determine the statement level

slice

Tf = {} \\ Tf is initialized.

∀ ti ϵ T′′′, S′t = St ∩ Sti

where Sti is the set of statements

covered by the test case ti.

If S′t is non-empty, then

Tf = Tf ∪ ti, where Tf ⊆ T′′′ is the set of

selected test cases at statement level.

Complexity Analysis of HRTS Algorithm

The Complexity analysis of our algorithm

is as follows:

Let the program under consideration have

N statements. Each node in the proposed

EOSDGJ represents a single statement of the

program. However, some extra nodes are

required to represent the actual and formal

arguments of method invocation and method

definition. For such statements in the program,

the number of extra nodes required is equal to

the number of actual and formal arguments

present in the program. Let us assume that too

many parameters in a method definition are not

allowed. Let the number of parameters present in

the program be k, where k is some bounded

small positive number. If each statement of the

program is represented in the EOSDGJ by some k

number of extra nodes (assuming each statement

has actual and formal arguments), then it can be

stated that the space requirement of the EOSDGJ

is 0(kN2).

Since k is a small bounded positive

integer, we can conclude that the space

requirement of the EOSDGJ is 0(N2). Apart from

this, some additional space is required by the

algorithm in maintaining the packages, classes,

methods, statements and the coverage

information for each test case. The additional

space requirement is as follows:

i. We have assumed that the total number

of lines of code in our program is N.

Therefore, the number of packages,

classes, methods and statements present

in the program will be less than N. So,

we can say that the space required to

maintain this additional information

about packages, classes, methods and

statements present in the program will

be 0(N).

ii. Let the number of test cases used to test

the original program be m, where m is a

bounded positive integer. Each test case

will maintain the coverage information

of packages, classes, methods and

statements. Assuming that each test

case covers all the packages, classes,

methods and statements in the

program, the total space requirement

would be 0(mN). As m is a bounded

positive integer, so the space

requirement is 0(N).

Let N be the set of vertices and E be set of

edges in EOSDGJ. Since, each node in the graph

is visited (using DFS Algorithm) only once, so

the time complexity is (N + E). If the time spent

in each recursive call is ignored, then each vertex

u can be processed in O (1 + d+G (u)) time. So the

total time required for our algorithm is given by

Total Time = N + ΣuϵN (1 + d+G(u))

= N +ΣuϵN d+G (u) + N

= 2N + E

≈ Θ (N + E)

The operations involved in the algorithm for

hierarchical slicing and selection of test cases are

intersection and union which require two sets as

operands. Assuming that each set contains N

elements, the worst-case run time of each of the

above operations will be 0 (N2). Therefore, the

worst-case run time of our algorithm is 0 (N2).

We have used DFS algorithm to traverse

the proposed graph instead of BFS algorithm

because of the following disadvantages of BFS

algorithm:

i. Let us assume that each node in the

graph EOSDGJ has a branching factor of

b. That means, each node in the graph

has b number of child nodes. Since, BFS

algorithm requires all the nodes to be

stored in a queue for further traversal,

at level one, b numbers of nodes are

generated. At level 2, b2 numbers of

nodes will be generated and so on. The

number will increase in an exponential

manner requiring a huge amount of

space in the order of 0 (bn), to store all

the generated nodes for further

exploration. Assuming the depth of the

graph to be n, the total space required

will be b+ b2 +... + bn.

ii. Also the time complexity of processing

each of these nodes will increase

exponentially.

Working of the HRTS Algorithm

Figure 1 contains an example Java

program. The corresponding EOSDGJ of the

program is shown in Figure 2. Suppose, the

object s2 in line 23 of the example program is

changed to s1. Therefore, the method of class

Rectangle in line 44 will be invoked instead of the

method of class Triangle in line 33. As a result,

the output will be erroneous. We first traverse in

the forward direction from the point of

modification to determine all those

nodes/program parts that may be affected by the

change. The nodes detected to be dependent on

line 23 are 23, 33, 34, A3_out, f3_out. Then, from

each of the selected nodes detected in the

forward traversal, we traverse in the backward

direction to determine all those nodes that might

have affected the selected nodes. The nodes that

are finally selected by the backward traversal are

shown as shaded nodes in Figure 2. The two

package nodes that are present in the slice are

node 1 and node 2. So from Table 1, all the test

cases T1 - T20 covering the two package nodes

are selected. The class nodes that are sliced are

node3, node46 and node24.

In the second level, the classes that are

selected are Triangle, Shape, TestShape. Therefore,

test cases T1 - T10 are selected out of the 20 test

cases selected at the first level. Similarly, in the

third level i.e. the method level the selected test

cases are T6 - T10. Since, all these 5 test cases

cover the statement level slice for the example

program, so at the fourth level all these are

selected. Finally, we have the five test cases that

can be used to retest the program as shown in

Table 2.

IMPLEMENTATION
In this section, we describe briefly the

implementation of our work. We have

considered five programs for our experiment, out

of which three are simple programs and the

other two are little complex programs developed

by us. The modifications that were made to the

above mentioned programs include modification

to the data types of member variables,

modification of expressions in a method,

modification of the object relation, addition of a

new member variable and deletion of a new

member variable, etc. The results of our

experiment are given in Table 3. In Figure 3, we

show the implementation result of hierarchical

test case selection for the input node 23.

COMPARISION WITH RELATED WORK
In this section, we discuss the work

related to our work and then compare some of

the approaches with our approach. First, we

discuss the available related work on program

slicing. Then, we discuss the existing related

work on regression testing.

Table 3 Result obtained for Regression

testing of different programs

Program Slicing

Many researchers have proposed several

methods for program slicing [4, 6, 10, 13, 18, 19].

Some of the recent applications of program

slicing are described in [31, 32]. In [7],

Krishnaswamy augmented the SDG with some

more dependencies relevant to object-oriented

programs. But, these dependencies do not

completely cover a true object-oriented program

such as a Java program. In our proposed

EOSDGJ, we have added some new

dependencies applicable to Java programs, such

as package and type dependencies. This covers a

true object-oriented program. Harrold et al. [20]

proposed an algorithm to identify the dangerous

edges for safe regression test selection. This

Table 2 Summary of test case selection for the example program in Figure 1

Figure 3 Summary of hierarchical test case selection for Node 23

method compared two nodes in the proposed

Java Interclass Graph (JIG) of P and P′ to identify

the execution path of a test case in P and P′, so

that it can be known whether any edge is

dangerous or not. To make the comparison

between the nodes they have used the

lexicography equivalence of the text labeled on

each node. For example, if a class Y in package

pkg extends a class X in the same package, and X

implements interface I in package abc, then the

text associated with the node for class Y will be

Java.lang.Object:abc.I:pkg.X:pkg.Y. As the level

of inheritance will be deeper, the text will

become lengthier and comparison will incur

more runtime overhead. In our approach, we do

not require to do any such comparisons. So, we

save time by avoiding this computational

overhead.

Many researchers have proposed different

approaches to compute slices for Java programs.

Some of the slicing mechanisms are based on the

dependency graphs like PDG and SDG [21, 22],

while other approaches are based on the Java

bytecode analysis [23, 24].

In [21 - 24], the mechanism to slice a Java

program is based on specific feature or type of

dependency present in the program under

consideration. Whereas, the overall impact of the

features on the dependency such as the

dependency due to the presence of packages and

other specific Java features is not considered. Our

approach has made a decent effort in analyzing

all the possible dependencies and computing a

more accurate slice. To be able to employ slicing

in regression testing, it is necessary to identify all

those statements that affect the modified

statement and those statements that may get

affected by the modification. But, most of the

existing approaches [21, 22] are based upon

forward traversing or backward traversing. This

will only result in the partial identification of the

affected statements due to the modification. But,

our approach gives a better result for regression

testing. Both forward and backward traversal of

our approach correctly finds all the program

parts that get affected and that may affect other

program parts due to the change.

Regression Testing

Software maintenance being the most

important and expensive activity in the process

of Software Development Life Cycle (SDLC),

many researchers have proposed several

approaches for ordering the test cases of

procedural programs. Rothermel [25, 26] and

Elbaum [27] have considered different types of

program coverage criteria such as total statement

coverage, additional statement coverage, total

function coverage etc. Jeffrey and Gupta [28],

proposed a method for prioritizing the test cases

for regression testing based on the coverage of

relevant slice of the output of a test case. They

assigned test case weights to the test cases to

determine their priority. They determined the

test case weight by summing up the number of

statements present in the relevant slice and

number of statements exercised by the test case.

Korel et al. [29] prioritized the regression test

suite by considering the state model of the

system. Whenever, the source code was

modified, the corresponding change in its state

model was identified. These modified transitions

along with the runtime information were used to

prioritize the test cases. However, the available

techniques were of little help when they were

applied to regression testing of object-oriented

programs.

Harrold et al. [20] have proposed

traversal algorithms to identify the dangerous

edges for safe regression test selection. The

dangerous edge is defined to be an edge e such

that for each input i causing P to cover e, P(i) and

P′(i) may behave differently due to differences

between P and P′, where P and P′ are the

programs under consideration and the modified

program respectively. The dangerous edge is

identified by traversing the proposed Java

Interclass Graph (JIG). This method compared

two nodes of P and P′ in the JIG to identify the

execution path of a test case in P and P′, so that it

can be known whether any edge is dangerous or

not. This technique ensures that any test case that

does not cover the dangerous entity will behave

in the same way in both P and P′. Thus, it cannot

expose new faults in P′. So, it is safe to select only

those test cases for which the dangerous entity is

covered.

Li et al. [30] used hierarchical slicing for

regression test case selection. Their proposed

model consisted of three levels: syntax analysis,

generation of dependence graphs, and

computation of slices. They proposed different

dependence graphs such as package level

dependence graph (PLDG), class level

dependence graph (CLDG), method level

dependence graph (MLDG) and statement level

dependence graph (SLDG) were based on the

slicing criteria. When any modification is done to

a statement, the dependency of that statement

with its method, class and package can be easily

detected because of the different levels of graphs

maintained. Identification of other packages,

classes, methods and statements related to the

modified statement can also be easily done. The

overall performance had improved as the

irrelevant packages, classes, methods and

statements were discarded from the generated

graph. But, the proposed method required all the

different graphs (PLDG, CLDG, MLDG, SLDG)

to be generated for each change done to the

program and was not very advantageous in case

of frequent changes. Thus, to avoid the above

mentioned problem, the slicing criterion was

fixed. We have implemented the hierarchical

slicing technique on the EOSDGJ which does not

depend on any fixed change. It rather works for

any number of changes done to any statement,

without requiring us to maintain additional

graphs. If the change made to the example

program triggers some new change to be made,

then our approach is capable to handle it.

Tao et al. [12] applied hierarchical slicing

for regression testing of object-oriented

programs. In their approach, they have also

proposed to maintain separate graphs for

packages, classes, methods and statements even

if they were not affected by the change. This

again needs more space requirement. This is

because with the increase in the program

complexity, there will be an increase in the

number of packages, classes, methods and

statements which are required to be represented

as separate graphs. But, in our approach, we only

maintain the EOSDGJ graph. This does not

impose any additional space requirement. In

some papers [25, 27, 28] only control dependency

and data dependency are considered. We have

identified some more dependencies such as

package membership dependency and type

dependency and have represented various object

relations so as to consider more features of Java

programs and computed the slices more

accurately. So, the appropriate test cases for

regression testing will be selected more

accurately.

CONCLUSION AND FUTURE WORK
We have proposed an application of

slicing to regression test selection based on the

Extended Object-Oriented System dependency

Graph for Java programs (EOSDGJ). We have

considered some new dependencies in addition

to control and data dependencies that play a

crucial role in regression test selection. The

selected test cases were found to be very efficient

in detecting the regression errors. In our future

work, we will focus on reducing the space

requirement of our algorithm. We will also

explore the application of other variants of

slicing in regression test selection for more

complex Java programs. We will also try to use

slicing techniques for prioritizing the test cases

both for object-oriented as well as aspect-

oriented programs.

REFERENCES
1. N Chauhan. Software Testing Principles and

Practices, chapter 8. Oxford University

Press, New Delhi, India, pages: 255-273,

2010.

2. H Leung and L White. Insights into

Regression Testing Selection. In Proceedings

of the Conference on Software Maintenance,

pages: 60–69, 1989.

3. R Gupta, M J Harrold, and M L Soffa.

Program Slicing-Based Regression Testing

Techniques. Software Testing, Verification

and Reliability, Vol. 6, No. 2, pages: 83–111,

1996.

4. S Horowitz, T Reps, and D Binkley.

Interprocedural Slicing using Dependence

Graphs. ACM SIGPLAN Notices, Vol. 23,

No. 7, pages: 35–46, 1988.

5. S Horowitz and T Reps. The use of Program

Dependence Graphs in Software

Engineering. In Fourteenth International

Conference on Software Engineering,

Melbourne, pages: 392–411, 1992.

6. J K Ottenstein and M L Ottenstein. The

Program Dependence Graph in a Software

Development Environment. ACM SIGPLAN

Notices, Vol. 19, No. 5, pages: 177–184, 1984.

7. A Krishnaswamy. Program Slicing: An

Application of Object-Oriented Program

Dependence Graphs. Technical Report TR94-

108, Department of Computer Science,

Clemson University, 1994.

8. D P Mohapatra, R Mall, and R Kumar. An

Overview of Slicing Techniques for Object-

Oriented Programs. Informatica (Slovenia),

Vol. 30, No. 2, pages: 253–277, 2006.

9. J Zhao. Dynamic Slicing of Object-Oriented

Programs. Technical Report SE-98-119,

Information Processing Society of Japan,

1998.

10. L Larsen and M J Harrold. Slicing Object-

Oriented Software. In Proceedings of the

18th IEEE International Conference on

Software Engineering, pages: 495–505, 1996.

11. I Forgacs and A Bertolino. Feasible Test Path

Selection by Principal Slicing. In Proceeding

of 6th European Software Engineering

Conference, 1997.

12. C Tao, B Li, X Sun, and C Zhang. An

Approach to Regression Test Selection Based

on Hierarchical Slicing Technique. In 34th

Annual IEEE Computer Software and

Applications Conference Workshops, pages:

347–352, 2010.

13. M Weiser. Program Slicing. In Proceedings

of the 5th International Conference on

Software, San Diego, California, USA, pages:

439–449, 1981.

14. J Zhao, J Cheng, and K Ushijima. A

Dependence Based Representation for

Concurrent Object-Oriented Software

Maintenance. In Proceedings of 2nd

Euromicro Conference on Software

Maintenance and Reengineering, pages: 60–

66, 1998.

15. G A Venkatesh. The Semantic Approach to

Program Slicing. ACM SIGPLAN Notices,

Vol. 26, No. 6, pages: 107–119, 1991.

16. G Canfora, A Cimitile, and A D Lucia.

Conditioned Program Slicing. Information

and Software Technology, Vol. 40, pages:

595–607, 1998.

17. M Harman, D Binkley, and S Danicic.

Amorphous Program Slicing. The Journal of

Systems and Software, Vol. 68, pages: 45–64,

2003.

18. B Korel and J Laski. Dynamic Program

Slicing. Information Processing Letter, Vol.

29, No. 3, pages: 155–163, 1988.

19. H Agrawal and J Horogan. Dynamic

Program Slicing. In Proceeding of ACM

SIGPLAN'90 Conference on Programming

Language Design and Implementation,

SIGPLAN Notices, Analysis and

Verification, pages: 246–256, 1990.

20. M J Harrold and et al. Regression Test

Selection for Java Software. In Proceeding of

the ACM Conference on OO Programming,

Systems, Languages, and Applications

(OOPSLA'01), pages: 312–326, 2001.

21. Z Chen and B Xu. Slicing Object-Oriented

Java Programs. ACM SIGPLAN Notices,

Vol. 36, No. 4, pages: 33–40, April 2001.

22. M Allen and S Horwitz. Slicing Java

Programs that Throw and Catch Exceptions.

In ACM SIGPLAN Workshop on Partial

Evaluation and Semantics-Based Program

Manipulation (PEPM'03), ACM, pages: 44–

54, June 2003.

23. T Wang and A Roychoudhury. Using

Compressed Bytecode Traces for Slicing Java

Programs. In 26th International Conference

on Software Engineering (ICSE’04), ACM,

pages: 512-521, 2004.

24. C Hammer and G Snelting. An Improved

Slicer for Java. In Workshop on Program

Analysis for Software Tools and Engineering

(PASTE'04), 5th ACM SIGPLAN-SIGSOFT,

pages: 17–22. ACM, 2004.

25. G Rothermel, R Untch, C Chu, and M

Harrold. Prioritizing test cases for

Regression Testing. IEEE Transactions on

Software Engineering, Vol. 27, No. 10, pages:

924–948, 2001.

26. A Malishevsky, J Ruthruff, G Rothermel,

and S Elbaum. Cost-cognizant Test Case

Prioritization. Technical Report TRUNL-

CSE-2006-0004, 2006.

27. S Elbaum, A Malishevsky, and G Rothermel.

Test Case Prioritization: A family of

Emprical Studies. IEEE Transactions of

Software Engineering, Vol. 28, No. 2, pages:

159–182, 2002.

28. D Jeffrey and N Gupta. Test Case

Prioritization using Relevant Slices. In

Proceedings of 30th Annual International

Computer Software and Applications

Conference, pages: 411–420, 2006.

29. B Korel, G Koutsogiannakis, and L Tahat.

Application of System Models in Regression

Test Suite Prioritization. In Proceedings of

the IEEE International Conference on

Software Maintenance, pages: 247–256, 2008.

30. Bi Xin Li, Xiao Cong Fan, Jun Pang, and Jian

Jun Zhao. Model for Slicing Java Programs

Hierarchically. Journal of Computer Science

and Technology, Vol. 19, No. 6, pages: 848–

858, 2004.

31. W Wen. Software Fault Localization based

on Program Slicing Spectrum. In the

Proceedings of the 2012 International

Conference on Software Engineering, ACM,

pages: 1511-1514, 2012.

32. D Wang, M Dong and W Zhan. An Input

Data Related Behavior Extracting and

Measuring Model. International Journal of

Applied Mathematics & Information

Sciences, Vol. 7, No. 2, pages: 683-689, 2013.

Author Profile

Subhrakanta Panda is a Ph.D scholar in

the Department of Computer Science &

Engineering, National Institute of Technology

(NIT), Rourkela, India. He can be contacted at

511cs109@nitrkl.ac.in.

Durga Prasad Mohapatra, Ph.D is

currently working as an Associate Professor in

the Department of Computer Science and

Engineering, National Institute of Technology

(NIT), Rourkela, India. His research interests

include software engineering, real-time systems,

and discrete mathematics and distributed

computing. Dr. Mohapatra has co-authored the

book Elements of Discrete Mathematics: A

computer Oriented Approach published by Tata

Mc-Graw Hill. He can be contacted at

durga@nitrkl.ac.in.

mailto:511cs109@nitrkl.ac.in
mailto:durga@nitrkl.ac.in

