
In this paper, first we propose a new 

slicing method to decompose a Java program 

into packages, classes, methods and statements 

that are affected due to the modification in the 

program. The decomposition is based on the 

hierarchical characteristic of Java. Then, by 

mapping these decompositions with the existing 

test suite, we derive a new test suite and add 

some new test cases, if necessary, to retest the 

modified program. We have proposed an 

intermediate representation of the Java program 

by considering all the possible dependencies 

among the program parts. This intermediate 

representation is used to identify the program 

constructs that are possibly affected by the 

change in the program. The packages, classes, 

methods, and statements thus affected are 

identified by traversing the intermediate graph, 

first in the forward direction and then in the 

backward direction. The test cases covering these 

affected parts of the program are then selected to 

retest the program. 

 

INTRODUCTION 

In the software life cycle, regression 

testing is considered to be an important part. 

This is because it is essential to validate the 

modification and to ensure that no other parts of 

the program have been affected by the change. 

Regression testing is thus defined as the selective 

retesting of a system or component to verify that 

modifications have not caused unintended 

effects and that the system or component still 

complies with its specified requirements [1]. A 

system is said to regress if 1) a new component is 

added, or 2) a modification done to the existing 

component affects other parts of the program. 

Therefore, it is essential to retest not only the 

changed code but also to retest the possible 

affected code due to the change. Regression 

testing is an expensive activity and typically 

accounts for half of the total cost of software 

maintenance [2]. It is essential to cut-down on the 

cost of retesting of the software by following a 

selective approach to identify and retest only 

those parts of the program that are affected by 

the change. In [3] Gupta et al. have identified two 

important problems in selective regression 

testing: (1) identifying those existing tests that 

must be rerun since they may exhibit different 

behavior in the changed program and (2) 

identifying those program components that must 

be retested to satisfy some coverage criterion. 

The above mentioned problems cover the 

following important sub-problems associated 
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with regression testing: regression test selection 

problem, coverage identification problem, test 

suit execution problem, test suit maintenance 

problem. Our focus in this paper is to minimize 

the existing tests so that we can achieve the same 

coverage thereby reducing the cost and time of 

retesting of the modified as well as affected parts 

of the program. So we basically focus on the 

regression test selection problem in our paper.  

In traditional procedure-oriented 

programs, the approach for regression testing 

was based on the data flows and control flows 

within a procedure or among a group of 

procedures, which was computed by graph 

reachability algorithms [4, 5] or two-phase graph 

reachability algorithms [6]. This was mainly 

achieved by slicing the program dependence 

graphs (PDG) by using the above algorithms to 

obtain the sliced program. However, while 

applying the same techniques to object-oriented 

programs, we fail because of the presence of 

many other dependencies originating from the 

object-oriented features. All though object-

oriented features have improved program 

understandability and readability but have 

complicated the maintenance activities. The 

dependencies that arise due to the class and 

object concept are inheritance dependency, 

message dependency, data dependency, type 

dependency, reference dependency, concurrency 

dependency, etc. These dependencies are 

represented as edges in our intermediate graph. 

These dependencies (edges) are formally defined 

in Section 2.4. 

The existing slicing techniques based on 

system dependence graphs in [7, 8, 9, 10] have 

considered C++ programs which are partially 

object-oriented in nature. That's why we are 

motivated to consider Java programs for our 

work as it is considered to be a true object- 

oriented programming language. But the existing 

techniques cannot be applied to Java programs 

because of the presence of many new features 

that increases the dependencies among the 

program components. The presence of the 

features like packages, super, dynamic method 

dispatch, interface, exception handling, multi- 

threading, etc, in Java adds to the list of 

dependencies and thus makes the maintenance 

even more difficult. Their effects on the 

maintenance of the programs need to be 

considered separately. In Java, all the classes and 

their methods are grouped into packages. 

Suppose a method M1 of class C1 belonging to a 

package P1 wants to invoke a method M2 of class 

C2 that belongs to another package P2. This can 

be achieved by importing the package P2 in 

package P1 and by instantiating the class C2 in 

C1. This will create a dependency among the 

packages P1 and P2, classes C1 and C2, methods 

M1 and M2 and among the statements in both 

the methods. Apart from this, there are many 

methods which are dependent on the type of 

data they are operating upon. For each type of 

data, there is a different function. Therefore, 

using the existing techniques of slicing to slice 

the SDG of Java programs does not seem to be 

feasible for regression testing. Incremental 

regression testing [11] is a probable solution 

which is based on the following simple 

observations: (1) if a statement is not executed 

under a test case, it cannot affect the program 

output for that test case. (2) Not all statements in 

the program are executed under all test cases. (3) 

Even if a statement is executed under a test case, 

it does not necessarily affect the program output 

for that test case. (4) Every statement does not 

necessarily affect every part of the program 

output. We can apply the above assumptions to 

Java programs at different levels of packages, 

classes, methods and statements. 

The main objective of this paper is to 

construct a SDG for Java programs by 

considering the different dependencies and 

apply hierarchical slicing [12] to select test cases. 

We have named our SDG as Extended Object-



Oriented System Dependency Graph for Java 

(EOSDGJ). From the point of modification, which 

is the point of interest for slicing, we compute a 

forward slice and then a backward slice to 

determine a set of program components that are 

affected by the change and all those components 

which had any impact upon the change. Then 

taking a hierarchical slice of packages, classes, 

methods and statements, we identified the 

impact of change at different programming 

levels. From the test case coverage analysis, we 

then selected those test cases that affected at 

package level, class level, method level and 

statement level. The outcome of our approach is 

a set of hierarchically selected test cases that is 

based upon the proposed EOSDGJ.  

The rest of the paper is organized as 

follows: Section 2 gives a background of program 

slicing and other related aspects. In Section 3, we 

discuss our proposed work that is based on the 

Extended Object-Oriented System Dependency 

Graph along with a working example. In Section 

4, we discuss the implementation of our work. In 

Section 5, the contribution of many other 

researchers related to our work is discussed and 

we have compared our work with some other 

related work. Section 6 concludes the paper and 

specifies some work to be carried out in future. 

 

BASIC CONCEPTS  

In this section, we discuss the basic 

concepts and terminologies that are associated 

with our work and required for understanding 

our proposed approach.  

Program Slicing 

Program slicing is a method of separating 

out the relevant parts of a program with respect 

to a particular computation. Thus, program slice 

is a set of statements which affect the value of a 

variable at a particular point of interest. Program 

slicing was originally introduced by Mark Weiser 

[13] as “a method for automatically decomposing 

programs by analyzing their data flow and 

control flow starting from a subset of a program's 

behavior, slicing reduces that program to a 

minimal form that still produces that behavior”. 

The input that the slicing algorithm takes is 

usually an intermediate representation of the 

Figure 1  An example Java program   



program under consideration [14]. The first step 

in slicing a program involves in specifying a 

point of interest which is called the slicing 

criterion and is expressed as (s, v), where s is the 

statement number and v is the variable that is 

being used or defined at s. 

Types of Program Slicing 

a. Forward Slicing: It comprises of all those 

parts that might be affected by the 

slicing criterion because of their 

dependency on the slicing criterion. 

b. Backward Slicing: It comprises of all 

those parts that might affect the slicing 

criterion because of the dependencies of 

the slicing criterion on those parts. 

c. Static Slicing: It comprises of those 

statements that we get by statically 

analyzing the code that is by examining 

some representation of the code without 

actually executing the program under 

consideration. 

d. Dynamic Slicing: It comprises of all those 

parts of the program that we obtain by 

actually executing the program with a 

specific input (included in the slicing 

criterion). Thus, a dynamic slice is only 

correct for a specific input whereas a 

static slice is correct for all inputs. 

Over time many researchers have come 

up with many other types of slicing techniques 

that can be found in [15, 16, 17]. 

There are various aspects to be considered 

in slicing a program. They are listed as follows: 

a. Slicing variable: Slicing variable may be 

based on the variables specified in the 

criteria (slicing point of interest) or it 

may be on all the variables. 

b. Slicing point: Considering the slicing 

point, a programmer's interest may be 

in observing the impact before or after a 

particular statement [15]. 

c. Slicing direction: The expected slice of 

the program may be either in forward 

direction or backward direction. 

d. Abstraction level: Abstraction level is 

either in statement or in procedure 

level. But considering the typical 

features of the object-oriented 

programs, it needs to be extended to 

class or package level, taking into 

account the dependencies induced by 

them. 

Hierarchical Slicing 

Instead of analyzing the data flow and 

control flow for the program as a whole, it is 

preferable to employ the hierarchical structure of 

the object-oriented programs especially Java 

programs to detect the impact of the change. A 

Java program P, is composed of a set of 

packages, classes, methods and statements. 

Therefore, in hierarchical slicing, we first try to 

slice out the packages that might have been 

affected by the change. From the set of affected 

packages, we then slice out the affected classes. 

Then the affected methods and the statements 

inside those methods are sliced out for retesting. 

The above concept of hierarchical slicing can be 

explained by considering a slicing criterion (i.e. 

point of modification) < s, v >, where s is the 

statement containing variable v. Let S (P) be the 

set of identified packages, classes, methods and 

statements that are affected by the modification 

to the program. The steps of hierarchical slicing 

are as follows: 

i. We detect the package p containing s 

and v and all other packages, based on 

their direct or indirect dependencies on 

p caused due to import statements. All 

those packages which are not related to 

the package p are deleted. Finally, we 

obtain the package level slice marked as 

Sl(P). 

ii. Then, we analyze S(P), to find out all 

those classes that are related to the class 



containing s and v. All other classes are 

removed from the slice. The class level 

slice obtained is marked as S2(P). 

iii. We analyze S(P) and delete all the 

member methods and variables that are 

not related to the method containing s 

and v. The method level slice is marked 

as S3(P). 

iv. Finally to find out the statement level 

slice, we analyze S(P) and delete all the 

statements and predicates that are not 

related to the statement S containing 

variable v. The slice obtained is marked 

as S4(P). 

This stepwise extraction of the slices is known as 

hierarchical slicing. The test cases obtained at 

each level can be related as T(S4(P)) ⊆ T(S3(P)), 

T(S3(P)) ⊆ T(S2(P)), T(S2(P)) ⊆ T(Sl(P)). At each 

level, we obtain more accuracy in minimizing the 

required number of test cases from a higher level 

to a lower level by discarding the test cases that 

are not relevant.  

Regression Testing  

Testing is an important phase in the 

software life cycle. It is carried out with the 

intension of detecting errors in order to improve 

the quality of the software and to win the 

confidence of the customer. This phase incurs 

60% of the total cost of the software. Therefore, it 

becomes highly essential to devise proper testing 

techniques in order to design the test cases so 

that the software can be tested properly. Testing 

strategies are based on verification and 

validation. The static techniques available for 

testing maps to the verification process without 

executing the code, whereas the dynamic testing 

techniques maps to the validation process by 

executing the code. Regression testing 

considered as the part of the validation activity 

possesses a big problem in testing the software. It 

becomes a big challenge to manage the retesting 

process with respect to the time and cost, 

especially when the test suite becomes too large. 

Therefore, selective retest technique attempts to 

identify those test cases that can exercise the 

modified parts of the program and the parts that 

are affected by the modification to reduce the 

cost of testing. The features of the selective retest 

technique are as follows: 

a. The resources required to retest a 

modified version of the program are 

minimized. 

b. This is achieved by minimizing the 

number of test cases to be exercised. 

c.  The test suite grows uncontrollably due 

to the continuous modifications done to 

the programs for which selective 

retesting is required. 

d. The relationship between the test cases 

and the program parts that are covered 

by the test cases can be analyzed better. 

Dependency Analysis of the Intermediate 

Graph 

We propose an intermediate 

representation for Java programs called 

Extended Object-Oriented System Dependence 

Graph for Java (EOSDGJ). While constructing 

EOSDGJ, we have considered some additional 

dependencies in Java, in addition to the 

dependencies defined by Krishnaswamy [7] for 

object-oriented programs. The proposed graph is 

a set of nodes and edges, where nodes represent 

the numbered statements and edges represent 

the different types of dependencies that can exist 

between the nodes. Some of these dependencies 

(edges) are identified and defined in [7]. Below, 

we represent these dependencies (edges) for 

more clarity and understanding. 

i. Inheritance edge: The inheritance 

hierarchy is an important feature of the 

object-oriented paradigm. It establishes 

the association between the base class 

and derived class, in the direction of 

hierarchy. 

ii. Class membership edge: Every method in 

the object-oriented paradigm is a 



member of a class and is addressable by 

the object of that class only. Thus, a 

class membership edge connects the 

method header and the class header of 

the class in which the method is 

defined. 

iii. Inherited membership edge: Every method 

and the data members are said to be 

inherited (irrespective of the access 

specifier) if they are accessible by the 

instance of the derived class. Thus, an 

inherited method or a data member can 

be considered as an implied member of 

the derived class. The edge connects the 

header of the method or data member 

with the header of the derived class. 

iv. Instantiation edge: Instantiation means 

creating the instance of a class by 

invoking the constructor of the class 

which initializes the object. The 

instantiation edge connects the 

instantiation statement with the class 

header. 

v. Polymorphic call edge: A polymorphic 

edge connects the call statement with 

the method that is called by resolving 

the binding dynamically. 

Figure 2  EOSDGJ of the example program   



vi. Parameter passing edge: The parameter 

passing edge represents the data 

exchange taking place between the 

actual parameter and formal parameter 

vertices. 

vii. Data dependency edge: When data 

computed at one statement is used at 

another statement, an edge is marked to 

represent the flow of data from the site 

of computation to the site of usage. 

viii. Control dependency edge: When the 

execution of one statement is dependent 

on the execution of another statement 

then the former is said to be control 

dependent on the later. The edge from 

one vertex to another depicts the control 

dependence between the vertices in the 

representation. 

Besides these, we have identified the following 

dependencies (edges) for Java programs. 

ix. Package membership edge: In Java, all the 

library classes and user defined classes 

belong to some package. We have 

considered the packages as separate 

nodes in our proposed intermediate 

representation EOSDGJ. The package 

dependency arises when one package 

imports some other packages into it so 

that some or all the classes in the 

imported package can be made 

accessible by instantiating those classes. 

This creates a dependency between the 

packages. Thus, an edge from the 

header of the importing package to the 

header of the imported package depicts 

this dependency. 

x. Type dependency edge: In Java, there are 

several methods that depend upon the 

type of data. If the type of data is 

changed then the method also changes 

accordingly. Therefore, an edge from 

the data declaration statement to the 

statement containing a call to such a 

method is essential to depict the type 

dependency. 

 
PROPOSED WORK 

In this section, we propose an algorithm, 

which we named Hierarchical Regression Test 

Selection (HRTS) algorithm for generating 

selective regression test cases. We maintain all 

the test cases along with the information of their 

coverage of packages, classes, methods and 

statements in Table 1. In our proposed work, we 

also maintain the following sets of information: 

P = {p1, p2 . . . pn} is the set of all the 

packages that are used in the given program. 

C = {cl, c2 . . . cn} is the set of all the classes 

defined in the program. 

M = {m1, m2 . . . mn} is the set of all the 

methods defined in the program. 

S = {sl, s2 . . . sn} is the set of all the 

statements in the program. 

Notations Used: 

i. Q – Queue that contains all the nodes 

reached in the forward traversal of the 

EOSDGJ graph. 

ii. U - The set containing all the packages, 

classes, methods and statements that are 

affected by the modification and that 

are executed by the test cases of the 

program. 

iii. Pk - The set of packages extracted from 

EOSDGJ that are affected by the 

modification. 

iv. Cl - The set of classes extracted from 

EOSDGJ that are affected by the 

modification. 

v. Mt - The set of methods extracted from 

EOSDGJ that are affected by the 

modification. 

vi. St - The set of statements extracted from 

EOSDGJ that are affected by the 

modification. 

Now, we describe our proposed HRTS 

Algorithm: 



Algorithm HRTS 

Step 1: Construct the EOSDGJ for the program. 

Step 2: Do the following: 

i. Initialize Q, U, Pk, Cl, Mt, St to NULL. 

ii.  Traverse the proposed EOSDGJ using 

the Depth First Search (DFS) algorithm. 

First traverse in the forward direction, 

starting from the point of modification 

(slicing criterion). Then, detect all those 

program parts (nodes) that are 

dependent on the modified statement 

and hence might be affected by the 

modification. 

Step 3: Add each node of the graph that is 

reached by the traversal algorithm to a queue, Q. 

Step 4: For each node v ϵ Q, do the followings: 

i. Remove v from Q and add it to set U. 

ii. Taking v as the starting point, we 

traverse backward using DFS algorithm 

to extract all those nodes on which node 

v is dependent on and add them to set 

U. 

iii. Repeat Step 3, till Q is empty. 

Finally, the set U will contain all program parts 

affected by the modification. 

Step 5: Do the following computations to obtain 

the hierarchical slice: 

i. Pk = P ∩ U, if the set Pk is non-empty 

then we get the set of packages that are 

affected by the modification. 

ii. U = U - Pk, now set U consists of only 

classes, methods and statements. 

iii. Cl = C ∩ U, if the set Cl is non-empty 

then we get the set of classes that are 

affected by the modification. 

iv. U = U - Cl, now set U consists of only 

methods and statements. 

v. Mt = M ∩ U, if the set Mt is non-empty 

then we get the set of affected methods. 

vi. U = U - Mt, now set U consists of only 

affected statements. 

vii. St = U 

Here Pk, Cl, Mt, St are the sliced sets of 

packages, classes, methods and statements 

respectively, extracted from the EOSDGJ, which 

might have been affected by the modification 

done to the program. 

Step 6: Select the test cases step by step from the 

Table 1  Test case distribution for the example program in Figure 1   



package level to the statement level. 

i. Let there be n number of test cases in the 

test suite T, where T = {t1, t2 . . . tn}. The set of 

packages covered by each test case ti, i = 1, 2 

. . . n is represented by Pti. Determine the set 

of test cases selected at the package level for 

retesting the program. 

T′= {} \\ T is initialized. 

∀ ti ϵ T, P′t = Pk ∩ Pti 

If P′t is non-empty, then 

T′ = T′ ∪ ti, where T′ is the set of 

selected test cases at package level. 

ii. Determine the set of test cases selected at 

the class level 

T′′ = {} \\ T′′ is initialized. 

∀ ti ϵ T′, C′t = Cl ∩ Cti  

where Cti is the set of methods covered 

by the test case ti. 

If C′t is non-empty, then 

T′′ = T′′ ∪ ti, where T′′ ⊆ T′ is the set of 

selected test cases at class level. 

iii. Determine the set of test cases selected at 

the method level 

T′′′ = {} \\ T′′′ is initialized. 

∀ ti ϵ T′′, M′t = Mt ∩ Mti  

where Mti is the set of methods covered 

by the test case ti. 

If M′t is non-empty, then 

T′′′ = T′′′ ∪ ti, where T′′′ ⊆ T′′ is the set 

of selected test cases at method level. 

iv. Finally, determine the statement level 

slice 

Tf = {} \\ Tf is initialized. 

∀ ti ϵ T′′′, S′t = St ∩ Sti  

where Sti is the set of statements 

covered by the test case ti. 

If S′t is non-empty, then 

Tf = Tf ∪ ti, where Tf ⊆ T′′′ is the set of 

selected test cases at statement level.  

Complexity Analysis of HRTS Algorithm 

The Complexity analysis of our algorithm 

is as follows: 

Let the program under consideration have 

N statements. Each node in the proposed 

EOSDGJ represents a single statement of the 

program. However, some extra nodes are 

required to represent the actual and formal 

arguments of method invocation and method 

definition. For such statements in the program, 

the number of extra nodes required is equal to 

the number of actual and formal arguments 

present in the program. Let us assume that too 

many parameters in a method definition are not 

allowed. Let the number of parameters present in 

the program be k, where k is some bounded 

small positive number. If each statement of the 

program is represented in the EOSDGJ by some k 

number of extra nodes (assuming each statement 

has actual and formal arguments), then it can be 

stated that the space requirement of the EOSDGJ 

is 0(kN2). 

Since k is a small bounded positive 

integer, we can conclude that the space 

requirement of the EOSDGJ is 0(N2). Apart from 

this, some additional space is required by the 

algorithm in maintaining the packages, classes, 

methods, statements and the coverage 

information for each test case. The additional 

space requirement is as follows: 

i. We have assumed that the total number 

of lines of code in our program is N. 

Therefore, the number of packages, 

classes, methods and statements present 

in the program will be less than N. So, 

we can say that the space required to 

maintain this additional information 

about packages, classes, methods and 

statements present in the program will 

be 0(N).  

ii. Let the number of test cases used to test 

the original program be m, where m is a 

bounded positive integer. Each test case 

will maintain the coverage information 

of packages, classes, methods and 

statements. Assuming that each test 



case covers all the packages, classes, 

methods and statements in the 

program, the total space requirement 

would be 0(mN). As m is a bounded 

positive integer, so the space 

requirement is 0(N). 

Let N be the set of vertices and E be set of 

edges in EOSDGJ. Since, each node in the graph 

is visited (using DFS Algorithm) only once, so 

the time complexity is (N + E). If the time spent 

in each recursive call is ignored, then each vertex 

u can be processed in O (1 + d+G (u)) time. So the 

total time required for our algorithm is given by 

Total Time = N + ΣuϵN (1 + d+G(u)) 

= N +ΣuϵN d+G (u) + N 

= 2N + E 

≈ Θ (N + E) 

The operations involved in the algorithm for 

hierarchical slicing and selection of test cases are 

intersection and union which require two sets as 

operands. Assuming that each set contains N 

elements, the worst-case run time of each of the 

above operations will be 0 (N2). Therefore, the 

worst-case run time of our algorithm is 0 (N2). 

We have used DFS algorithm to traverse 

the proposed graph instead of BFS algorithm 

because of the following disadvantages of BFS 

algorithm: 

i. Let us assume that each node in the 

graph EOSDGJ has a branching factor of 

b. That means, each node in the graph 

has b number of child nodes. Since, BFS 

algorithm requires all the nodes to be 

stored in a queue for further traversal, 

at level one, b numbers of nodes are 

generated. At level 2, b2 numbers of 

nodes will be generated and so on. The 

number will increase in an exponential 

manner requiring a huge amount of 

space in the order of 0 (bn), to store all 

the generated nodes for further 

exploration. Assuming the depth of the 

graph to be n, the total space required 

will be b+ b2 +... + bn. 

ii. Also the time complexity of processing 

each of these nodes will increase 

exponentially. 

Working of the HRTS Algorithm 

Figure 1 contains an example Java 

program. The corresponding EOSDGJ of the 

program is shown in Figure 2. Suppose, the 

object s2 in line 23 of the example program is 

changed to s1. Therefore, the method of class 

Rectangle in line 44 will be invoked instead of the 

method of class Triangle in line 33. As a result, 

the output will be erroneous. We first traverse in 

the forward direction from the point of 

modification to determine all those 

nodes/program parts that may be affected by the 

change. The nodes detected to be dependent on 

line 23 are 23, 33, 34, A3_out, f3_out. Then, from 

each of the selected nodes detected in the 

forward traversal, we traverse in the backward 

direction to determine all those nodes that might 

have affected the selected nodes. The nodes that 

are finally selected by the backward traversal are 

shown as shaded nodes in Figure 2. The two 

package nodes that are present in the slice are 

node 1 and node 2. So from Table 1, all the test 

cases T1 - T20 covering the two package nodes 

are selected. The class nodes that are sliced are 

node3, node46 and node24.  

In the second level, the classes that are 

selected are Triangle, Shape, TestShape. Therefore, 

test cases T1 - T10 are selected out of the 20 test 

cases selected at the first level. Similarly, in the 

third level i.e. the method level the selected test 

cases are T6 - T10. Since, all these 5 test cases 

cover the statement level slice for the example 

program, so at the fourth level all these are 

selected. Finally, we have the five test cases that 

can be used to retest the program as shown in 

Table 2.  



IMPLEMENTATION 
In this section, we describe briefly the 

implementation of our work. We have 

considered five programs for our experiment, out 

of which three are simple programs and the 

other two are little complex programs developed 

by us. The modifications that were made to the 

above mentioned programs include modification 

to the data types of member variables, 

modification of expressions in a method, 

modification of the object relation, addition of a 

new member variable and deletion of a new 

member variable, etc. The results of our 

experiment are given in Table 3. In Figure 3, we 

show the implementation result of hierarchical 

test case selection for the input node 23. 

COMPARISION WITH RELATED WORK 
In this section, we discuss the work 

related to our work and then compare some of 

the approaches with our approach. First, we 

discuss the available related work on program 

slicing. Then, we discuss the existing related 

work on regression testing. 

 

Table 3 Result obtained for Regression 

testing of different programs   

 
Program Slicing 

Many researchers have proposed several 

methods for program slicing [4, 6, 10, 13, 18, 19]. 

Some of the recent applications of program 

slicing are described in [31, 32]. In [7], 

Krishnaswamy augmented the SDG with some 

more dependencies relevant to object-oriented 

programs. But, these dependencies do not 

completely cover a true object-oriented program 

such as a Java program. In our proposed 

EOSDGJ, we have added some new 

dependencies applicable to Java programs, such 

as package and type dependencies. This covers a 

true object-oriented program. Harrold et al. [20] 

proposed an algorithm to identify the dangerous 

edges for safe regression test selection. This 

Table 2  Summary of test case selection for the example program in Figure 1   

Figure 3  Summary of hierarchical test case selection for Node 23   



method compared two nodes in the proposed 

Java Interclass Graph (JIG) of P and P′ to identify 

the execution path of a test case in P and P′, so 

that it can be known whether any edge is 

dangerous or not. To make the comparison 

between the nodes they have used the 

lexicography equivalence of the text labeled on 

each node. For example, if a class Y in package 

pkg extends a class X in the same package, and X 

implements interface I in package abc, then the 

text associated with the node for class Y will be 

Java.lang.Object:abc.I:pkg.X:pkg.Y. As the level 

of inheritance will be deeper, the text will 

become lengthier and comparison will incur 

more runtime overhead. In our approach, we do 

not require to do any such comparisons. So, we 

save time by avoiding this computational 

overhead. 

Many researchers have proposed different 

approaches to compute slices for Java programs. 

Some of the slicing mechanisms are based on the 

dependency graphs like PDG and SDG [21, 22], 

while other approaches are based on the Java 

bytecode analysis [23, 24].  

In [21 - 24], the mechanism to slice a Java 

program is based on specific feature or type of 

dependency present in the program under 

consideration. Whereas, the overall impact of the 

features on the dependency such as the 

dependency due to the presence of packages and 

other specific Java features is not considered. Our 

approach has made a decent effort in analyzing 

all the possible dependencies and computing a 

more accurate slice. To be able to employ slicing 

in regression testing, it is necessary to identify all 

those statements that affect the modified 

statement and those statements that may get 

affected by the modification. But, most of the 

existing approaches [21, 22] are based upon 

forward traversing or backward traversing. This 

will only result in the partial identification of the 

affected statements due to the modification. But, 

our approach gives a better result for regression 

testing. Both forward and backward traversal of 

our approach correctly finds all the program 

parts that get affected and that may affect other 

program parts due to the change. 

Regression Testing  

Software maintenance being the most 

important and expensive activity in the process 

of Software Development Life Cycle (SDLC), 

many researchers have proposed several 

approaches for ordering the test cases of 

procedural programs. Rothermel [25, 26] and 

Elbaum [27] have considered different types of 

program coverage criteria such as total statement 

coverage, additional statement coverage, total 

function coverage etc. Jeffrey and Gupta [28], 

proposed a method for prioritizing the test cases 

for regression testing based on the coverage of 

relevant slice of the output of a test case. They 

assigned test case weights to the test cases to 

determine their priority. They determined the 

test case weight by summing up the number of 

statements present in the relevant slice and 

number of statements exercised by the test case. 

Korel et al. [29] prioritized the regression test 

suite by considering the state model of the 

system. Whenever, the source code was 

modified, the corresponding change in its state 

model was identified. These modified transitions 

along with the runtime information were used to 

prioritize the test cases. However, the available 

techniques were of little help when they were 

applied to regression testing of object-oriented 

programs. 

Harrold et al. [20] have proposed 

traversal algorithms to identify the dangerous 

edges for safe regression test selection. The 

dangerous edge is defined to be an edge e such 

that for each input i causing P to cover e, P(i) and 

P′(i) may behave differently due to differences 

between P and P′, where P and P′ are the 

programs under consideration and the modified 

program respectively. The dangerous edge is 

identified by traversing the proposed Java 



Interclass Graph (JIG). This method compared 

two nodes of P and P′ in the JIG to identify the 

execution path of a test case in P and P′, so that it 

can be known whether any edge is dangerous or 

not. This technique ensures that any test case that 

does not cover the dangerous entity will behave 

in the same way in both P and P′. Thus, it cannot 

expose new faults in P′. So, it is safe to select only 

those test cases for which the dangerous entity is 

covered. 

Li et al. [30] used hierarchical slicing for 

regression test case selection. Their proposed 

model consisted of three levels: syntax analysis, 

generation of dependence graphs, and 

computation of slices. They proposed different 

dependence graphs such as package level 

dependence graph (PLDG), class level 

dependence graph (CLDG), method level 

dependence graph (MLDG) and statement level 

dependence graph (SLDG) were based on the 

slicing criteria. When any modification is done to 

a statement, the dependency of that statement 

with its method, class and package can be easily 

detected because of the different levels of graphs 

maintained. Identification of other packages, 

classes, methods and statements related to the 

modified statement can also be easily done. The 

overall performance had improved as the 

irrelevant packages, classes, methods and 

statements were discarded from the generated 

graph. But, the proposed method required all the 

different graphs (PLDG, CLDG, MLDG, SLDG) 

to be generated for each change done to the 

program and was not very advantageous in case 

of frequent changes. Thus, to avoid the above 

mentioned problem, the slicing criterion was 

fixed. We have implemented the hierarchical 

slicing technique on the EOSDGJ which does not 

depend on any fixed change. It rather works for 

any number of changes done to any statement, 

without requiring us to maintain additional 

graphs. If the change made to the example 

program triggers some new change to be made, 

then our approach is capable to handle it.  

Tao et al. [12] applied hierarchical slicing 

for regression testing of object-oriented 

programs. In their approach, they have also 

proposed to maintain separate graphs for 

packages, classes, methods and statements even 

if they were not affected by the change. This 

again needs more space requirement. This is 

because with the increase in the program 

complexity, there will be an increase in the 

number of packages, classes, methods and 

statements which are required to be represented 

as separate graphs. But, in our approach, we only 

maintain the EOSDGJ graph. This does not 

impose any additional space requirement. In 

some papers [25, 27, 28] only control dependency 

and data dependency are considered. We have 

identified some more dependencies such as 

package membership dependency and type 

dependency and have represented various object 

relations so as to consider more features of Java 

programs and computed the slices more 

accurately. So, the appropriate test cases for 

regression testing will be selected more 

accurately. 

CONCLUSION AND FUTURE WORK 
We have proposed an application of 

slicing to regression test selection based on the 

Extended Object-Oriented System dependency 

Graph for Java programs (EOSDGJ). We have 

considered some new dependencies in addition 

to control and data dependencies that play a 

crucial role in regression test selection. The 

selected test cases were found to be very efficient 

in detecting the regression errors. In our future 

work, we will focus on reducing the space 

requirement of our algorithm. We will also 

explore the application of other variants of 

slicing in regression test selection for more 

complex Java programs. We will also try to use 

slicing techniques for prioritizing the test cases 



both for object-oriented as well as aspect-

oriented programs.  
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