Dielectric and Raman spectroscopic studies of phase transitions in the (1-x)(Na_{0.5}Bi_{0.5}TiO₃)x(BaSnO₃) Lead-free ferroelectric system

<u>Dillip K Pradhan</u>, Satya Narayan Tripathy^a, Karuna Kara Mishra^b ^aDepartment of Physics, National Institute of Technology, Rourkela-769008, India ^bCondensed Matter Physics Division, IGCAR, Kalpakkam-603102, India

Plan of presentation

□*Introduction*.

 $\Box Why Na_{0.5}Bi_{0.5}TiO_3 (NBT)?$

Problems to be addressed.

Objectives.

Results and Discussion

Summary and conclusions

Introduction

- □ Ferroelectric materials have permanent dipoles and so there molecular structure lack center of symmetry.
- All ferroelectric crystals must be piezoelectric though the converse is not true.
- All ferroelectric materials have one or more phase transition temperatures.
- Structural change take place at the curie temperature.
- Immediately above the curie temperature, the dielectric constant of a ferroelectric material obeys Curie - Wiess law.
- A ferroeletric is generally defined as one of which exhibits hysterisis loop.

1)spontaneous Polarization (Ps)
 2)Remnant Polarization (Pr)
 3)Coercive Field (Ec)

Most studied material

 $\Box BT (BaTiO_3)$

 $\square PZT (Pb(Zr_xTi_{1-x})O_3)$

 $\square PLZT (Pb_{1-x}La_x(Zr_yT_{1-y})_{1-x/4}O_3)$

 $\square PMN (Pb(Mg_{1/3}Nb_{2/3}O_3) - PT(PbTiO_3))$

Why Lead free

 Lead (Pb) release into the environment at time of processing and remain for a long time in the environment and accumulates in living tissues which damages the brain and nervous system.

□ It could introduce to the ecosystem and cause "acid rain".

Restoring and recycling of lead-based materials is an extensive environmental issues.

Why $(Na_{0.5}Bi_{0.5})TiO_3$?

- **Lead free compound.**
- **Ferroelectric at room temperature.**
- Complex phase transitions sequence & anomalies dielectric behaviors.
- $\Box High Curie temperature (T_c > 320 \ ^{o}C).$
- **Large Remnant** polarization.
- Bi⁺³ ions are isoelectronic configuration with Pb⁺², both showing a lone pair effect.

Sequence of Phase transitions NBT

Rhombohedral (**R3c**)

T_d (200-280 °C) Modulated Orthorhombic (R3c+Pnma)

T_{A-0} Orthorhombic (Pnma)

T_C **Second order Phase transition (~320 °C)**

Tetragonal (P4/mbm+P4₂/mnm)

First order phase transition

Cubic (520-540 °C) (Pm-3m)

•G. Trolliard and V. Dorcet, Chem. Mater. 20, 5074 (2008).
•V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).

Problems Addressed

- □ High coercive field 73 KV/cm.
- High conductivity cause problem during polling.
- High Dielectric loss.
- Low piezoelectric and electromechanical properties i.e. d₃₃
 of 92 pC/N and K_p coupling coefficients 18.6.

To overcome the above mentioned problems, we have synthesized (1-x)Na_{0.5}Bi_{0.5}TiO₃-xBaSnO₃ ($0 \le x \le 0.15$)

Objective

- Our main objective is to
- (i) reduce the high dielectric loss and conductivity
- (ii) improve the dielectric and ferroelectric properties.
- (iii) study the fundamental physics related to phase transition of NBT-BaSnO₃ System.

1.Ferroelectric to relaxor crossover(1-x)BaTiO₃-xBaSnO₃
 2.Relaxor ferroelectric behavior of BaSnO₃-PbTiO₃ solid solution with MPB

1. C. Lei, A. A. Bokov, and Z. G. Ye, J. Appl. Phys. 101, 084105 (2007).

2. X. Han, X. Li, X. Long, H. He, and Y. Cao, J. Mater Chem. 19, 6132 (2009).

Materials Characterization

Structural Studies

For, $0.1 \le x \le 0.08$, Knomboneara For, $0.1 \le x \le 0.15$; Orthorhombic

Dielectric Studies

a) Appearance and enhancement of modulated orthorhombic phase *b)* Decrease in ferroelectric transition temperature

2nd Order Phase transition

The derivative ξ (*T*) $\xi = \frac{\partial}{\partial T} \left(\frac{1}{\varepsilon(T)} \right)$ *plays a qualitative role in determining the order of phase transition.*

For,
$$x=0.00 \xi_{320}^{o} c / \xi_{350}^{o} c \approx 2.6$$

Raman Spectroscopy

A. Compositional Dependence

Mode (~278 - ~585 cm⁻¹) are associated with the TiO₆ octahedral vibration.
 Disappearance of A₁-mode at ~134 cm⁻¹ as the sample undergoes a structural phase transition from rhombohedral to orthorhombic at x = 0.1 composition.

Conclusion

- \Box To conclude, lead free solid solutions of (1-x)NBT-xBSN ($0 \le x$ ≤ 0.15) were synthesized by solid-state reaction method. **Phase transition temperatures** T_d , T_{A-O} and T_C were obtained from the detailed dielectric data analysis. **A** decrease in ferroelectric phase transition temperature as a function of x is obtained and finally T_C merges with $T_{A=0}$ at *composition* x = 0.15. **In-situ temperature dependent Raman spectroscopy shows** disappearance and discontinuous changes in the phonon mode
- frequencies across the orthorhombic-tetragonal phase transition.

Acknowledgement

We acknowledge Prof. R. N. PChoudhary & Prof. A. K. Arora forfruitful discussions.