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Abstract 

The present study delves into the effect of nonlinearity on the dynamic behavior of liquid filled rectangular 
tanks. A velocity potential based 2D Galerkin FEM model has been developed for the simulation. Mixed 
Eulerian-Lagrangian-material –node time-marching scheme is used for numerical solution at every time 
step. Fourth-order Runge-Kutta scheme is used for the time-stepping integration of free surface 
boundary conditions in a Lagrangian manner in order to track the free surface. It is observed that 
although nonlinearity has no significant effect in the pressure distribution on the tank wall. However 
nonlinearity has significant bearing on base shear, base moment and sloshing amplitude.   

1.  Introduction 

A substantial chunk of the components of important life line structures and industrial installations comprise of 
rectangular liquid storage tanks. Such tanks are in extensive use for storage of water, oil, liquefied natural gas, 
and a variety of other liquids such as chemical fluids and liquid wastes of industries. Since long time, it is amply 
evident that the dynamic behaviour of partially-filled liquid tank is significantly different from that of a tank of 
similar geometry and dimension containing solid material. This is due to the complex phenomenon of sloshing. 
During seismic mishap, damage to such tanks not only amounts to immediate loss of the contained liquid, which 
results in huge economic loss, but also has far reaching consequences in terms of environmental hazard and 
human health.  

Ever since the pioneer work of Housner [1], a lot of research has been carried out to understand the seismic 
behaviour of partially-filled liquid containers, yet the multidimensional complexities associated with liquid-tank 
system unfolded renewed challenges for the researchers. Housner [1] resolved the hydrodynamic response into 
impulsive and convective components approximated by lumped added-masses and proposed an idealized two-
degree of freedom system, with concentrating masses of liquid at two points, to represent their respective modes 
of vibration. Haroun and Housner [2] developed a linear three-mass model of ground-supported anchored tanks 
by incorporating wall flexibility into the model and found that impulsive mode of pressure was considerably 
influenced by wall flexibility. Haroun [3] studied the hydrodynamic response of rigid rectangular tanks considering 
linear wave theory. Veletsos [4] used Flüggle's shell theory to analyze anchored circular tanks and found that for 
tanks with realistic flexibility, the impulsive forces are considerably higher than those in rigid walls. The dynamic 
responses of cylindrical steel tanks in various conditions were investigated by Niwa and Clough [5], Hamdan [6], 
Hernández-Barrios [7], Bayraktar et al. [8], Estekanchi and Alembagheri [9] and Chen et al. [10].  Hamdan [6] 
examined the accuracy of design guidelines various codes for the seismic response of cylindrical steel liquid 
storage tanks and commented on the inadequacy of provisions of design guide lines against many of the 
commonly occurred failure modes reported during past earthquakes. Kim et al. [11] presented a 3D analytical 
solution based on Rayleigh-Ritz method and found that impulsive pressure of rectangular tank can be greatly 
amplified due to wall flexibility. Chen et al. [12] proposed a 2D finite difference model to simulate non-linear 
seismic finite-amplitude liquid sloshing in rectangular tank. Choun and Yun [13] presented a novel 2D linear 
analytical solution and studied the seismic response of rectangular tank with a submerged structure. Virella et al. 
[14] used finite element package ABAQUS and made an observation that nonlinearity of surface wave does not 
have any major effect on the pressure distribution on the walls of rectangular tanks. Kianoush and 
Ghaemmaghami [15] developed linear finite element model and studied the effects of earthquake frequency 
content on the seismic behaviour of concrete rectangular tanks. They used shallow and tall tank configurations 
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                                                    φμ-φ.φ
2
1-gη-

 ∂
φ ∂ ∇∇=
t

on sΓ                                                            (3)  

where g is the gravitational acceleration.  

2.2 Body surface boundary condition  

On the walls of the tank the velocity of liquid is equal to the wall velocity in normal direction 

            nVn
=

 ∂
φ ∂

      on  wΓ                                                                            (4)  

where nV  is the instantaneous velocity of the vertical wall subjected to horizontal ground acceleration and n is 
the normal to the wall surface pointing out of the liquid domain. 
 
On the rigid bottom supported on rigid foundation, no flux condition needs to satisfied for impermeable body 
surface 

                          0=
∂
∂
n
φ

      on  bΓ                                                                              (5)  

Thus Eqs. (1) - (5) defines the initial and boundary value problem with nonlinear free surface boundary 
conditions. The nonlinearity in free surface boundary condition is attributed to: (1) a priori unknown free surface 
elevation at any given instant and (2) kinematic and dynamic boundary conditions in equation (2) and (3) as they 
contain second order differential terms.  
 
The set of equations (1)-(5) are elliptic in space and parabolic in time. Mixed-Eulerian-Lagrangian method due to 
Longuet-Higgins and Cokelet [17] is used for numerical solution of the system of equations. In mixed-Lagrangian-
Eulerian the surface nodes called ‘markers’ are allowed to move with the same velocity as the liquid. In this 
procedure the spatial equations are solved in Eulerian (fixed grid) frame and the integration of the free surface 
boundary conditions is executed in Lagrangian manner. This requires the free surface boundary conditions in Eq. 
(2) and (3) to be written in Lagrangian form as follows. 

     φ-φ.φ
2
1-gφ μ∇∇+η=

td
d

 
on  sΓ                                                 (6) 

     
xt

x
∂

φ ∂
d
d =  ;        

zt
z

∂

φ ∂
d
d =                                                                         (7)  

After obtaining the time derivative of velocity potential, the nonlinear hydrodynamic pressure can be calculated by 
using the following equation: 

 





 +∇+

∂
∂−= μφφ

2
1φ ρ 2

t
p                                                               (8) 

The base shear bS  and overturning base moment bM  can be calculated by the following expression 

 

                                                              wb

w

pS Γ
Γ

d =                                                                                        (9)              

                                                            ( ) ( )  + =
bw

xxpzzpM b
ΓΓ

d d                                                             (10) 

Impulsive pressure may be determined by assuming the whole liquid as a rigid solid block without convective 
mass. This assumption ignores the sloshing of the liquid and hence the convective response. As a consequence 
of this, the pressure at the quiescent liquid free surface vanishes at every instant during the motion.  

                                                                   ( ) 00φ =
∂
∂ t,,x
t

                                                                                  (11) 
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3. Finite element formulation 

The entire liquid domainΩ , bounded by body surface wΓ tank bottom bΓ  and free surface sΓ , is discretized by 
four-noded quadrilateral elements for finite element formulation and solution of Laplace equation to solve for 
Dirichlet boundary condition ( )φ  on the free surface and Neumann boundary condition ( )φ∇  on the body 
surface. The velocity potential may be approximated as  

                                                  ( ) ( )z,xNt,z,x
n

j
jj

=

=≈
1

φφφ                                                                         (12) 

where  jφ  are time dependent nodal velocity potentials, jN are shape functions and n is the number of nodes. 

Application of Galerkin’s weighted-residual method to Laplace equation gives rise to 

                                                             0Ωd φ
Ω

2 =∇ iN                                                                                   (13) 

Equation (13) may be written as               ( )[ ] 0d φφ =∇∇−∇∇ Ω
Ω

ii NN                                                        (14) 

Application of Gauss theorem produces      ∇∇−
∂
∂

Ω
i

Γ
i ΩNΓ
n

N d φd φ                                                          (15) 

 where sbw ΓΓΓΓ = , is the boundary of the liquid domain Ω. Substitution of the approximation function for 
the potential and the boundary conditions into the above equation yields 

                 sj

n

i
jj

Ω
in

wΓ
isΓjj

n

i
j

Ω
i ΩNNdVNΩNN ∈

=
∉

=
 ∇∇−=∇∇ dφΓdφ

11

                                           (16)  

where sΓ and bΓ are the free surface and body (vertical wall) surface respectively on which the potential and its 
normal derivatives are prescribed. The potential on the free surface is known from the free surface boundary 
condition and the terms corresponding to the surface nodes have therefore been taken to the right hand side. 
This scheme suggested by Wu and Eatock Taylor [18] was found to be effective in dealing with the singularity at 
the intersection point between the body surface and free surface on account of the confluence of boundary 
conditions. 

Eq. (16) may be expressed in matrix form as 

              [ ]{ } [ ]FK =φ                                                                                   (17) 

where                                         ΩNNK jiij d ∇∇=            (18)

    
s

w

Γj

n

i
jj

Ω
in

Γ
ii ΩNNdVNF

∈
=
 ∇∇−Τ= dφ

1
                               (19) 

where ijK  is the global fluid matrix and iF  is the global right hand side vector. It must be mentioned that the 

matrix ijK in Eq. (19) varies with time for fully nonlinear problem. 

Numerical evaluation of the dynamic and kinematic boundary conditions, Eqs. (6)-(7) require an approximation of 
velocity at the free surface. Although, direct differentiation of potential approximation via shape functions is a 
convenient option to obtain the velocity, shape functions however do not guarantee the continuity of its 
derivatives at the boundary of the elements and may result in lower order, discontinuous velocity with 
compromised accuracy. The velocity continuity can be ensured by use of higher order FE for potential 
approximation. In the present study, however C0 isoparametric rectangular element is used. In order to avoid 
excessive accumulation of error in the time stepping procedure, the following method is used for velocity 
recovery.  
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