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Abstract. Scheduling is an emergent area in Grid Environment. It is essential to 

utilize the processors efficiently and minimize the schedule length. In Grid 

Environment, tasks are dependent on each other. We use Directed Acyclic 

Graph (DAG) to solve task scheduling problems. In this paper, we have 

proposed a new scheduling algorithm called M-Level Sufferage-based 

Scheduling Algorithm (MSSA) for minimizing the schedule length. It has two-

phase process: m-level and sufferage value. M-level is used to calculate the 

earliest time. Sufferage is used to assign priority and select an optimal machine. 

MSSA always gives optimal or sub-optimal solution. Our result shows better 

results than other scheduling algorithms such as MET, MCT, Min-Min and 

Max-Min with respect to scheduling length and resource utilization. 
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1   Introduction 

Grid computing is a loosely coupled system and an innovative way to solve complex 

problems. In loosely coupled system, the inter-processor communication delay is 

large due to lack of coordination between systems. Each system in grid has different 

computation power, operating systems, peripherals and many more [4] [9]. It enables 

sharing in computational grid environment. Grid computing creates a structure to use 

the underutilized systems. A complex computation job can be divided into number of 

small partitions and it can be executed parallel in grid environment. So, we need a 

Grid Resource Broker (GRB) which divides the job into number of tasks [5]. GRB 

allocates task for a processor. 

Scheduling is the way for allocation of the tasks. It depends on the criteria or 

requirements of tasks. The aim of scheduling are reducing Makespan (or scheduling 

length) and efficient utilization of the processors [10]. Scheduling is a NP-complete 

problem [6] [7]. Tasks are two types: dependent and independent task. Independent 

task can be scheduled in any order. Some of the algorithms are Min-Min, Max-Min, 

Minimum Completion Time (MCT), and Minimum Execution Time (MET). But, 

dependent task cannot be scheduled in any order. The dependency among tasks must 



be preserved. In order to represent it, task graph or Directed Acyclic Graph (DAG) is 

used. Some of the algorithms are Priority-based Task Scheduling (P-TSA) [3], 

Highest Level First with Estimated Times (HLFET) [12]. 

Parallelism in our approach is of two types: computation and communication. If a 

task is assigned to parent task processor then communication time is zero. Two tasks 

can share communication parallelism but cannot share computation parallelism. Let 

us assume that a task has two parents. The task has to wait until both parents complete 

its execution and communication between the parents to the given task is over. It is 

called as Strong dependency. If the task starts its execution partially before the parent 

task has finished, then it is called as Weak dependency [11].  

Distributed system contains a huge number of workstations. They are connected 

through high speed buses. Nodes and interconnection are different from one 

environment to another environment [2]. For solving large scale complex problem, it 

is not possible to enhance the capability of a single computer. It is not only costly but 

also bulkier. But, in distributed system, the complex problem is divided to small 

chunks and it can be executed more efficiently. Idleness of CPU is reduced to greater 

extent. 

The remaining part of this paper is organized as follows: related work is devoted 

in section 2. Section 3 elaborates preliminaries such as notations, assumptions, 

traditional scheduling algorithms. Section 4 proposes the M-Level Sufferage-based 

Scheduling Algorithm (MSSA). Section 5 discusses performance analysis with a 

suitable illustration. We conclude by summarizing the work in Section 6. 

2   Related Works 

There are numerous algorithms in the area of grid scheduling. Algorithm gives sub-

optimal or optimal solution based on the criteria. We can say the algorithms are 

approximate solutions. If an algorithm gives optimum result for particular types of 

data set then it is a sub-optimum solution. Hemamalini compares different task 

scheduling algorithms in heterogeneous environment [5]. Bozdag et al. proposes a 

generic algorithm which preserves the Makespan by integrating processor schedules 

[8]. Sun et al. introduces a priority scheduling algorithm [3]. It calculates the task 

priority. Based on the priority, it groups the task into teams.  

Scheduling may be centralized or decentralized. Pop et al. proposes a 

decentralized task scheduling using genetic algorithm [9]. Also, Navimipour et al. 

introduces a linear genetic representation for computational grid tasks. It uses 

different crossover operations. Genetic algorithm may not provide optimal solution 

[6]. But, it provides approximate solution. Priority among tasks and allocation of 

machine are two important steps of list scheduling. Hagras et al. introduces an 

approach for machine allocation which can be applied to list scheduling [13]. It can be 

applied to both insertion and non-insertion approach. If the task is scheduled without 

looking the hole, it is termed as non-insertion approach. But in insertion approach, 



task is filled to the first available hole [14]. Of course, insertion is a good approach 

then non-insertion one because idle time is reduced in some extent.  

3   Preliminaries 

3.1   Notations 

MSSA: M-Level Sufferage-based Scheduling Algorithm 

DAG: Directed Acyclic Graph 

CT: Computation Time 

Ct: Communication Time 

RT: Ready Time 

Ct (Ti, Tj): Communication Time between task Ti and task Tj 

SV: Sufferage Value 

M-Level (Ti): M-Level of task Ti 

P-TSA: Priority-based Task Scheduling 

MET: Minimum Execution Time 

MCT: Minimum Completion Time 

FCFS: First Come First Served 

3.2 The DAG Model 

Task may be dependent or independent in real time environment. In banking system 

(or airline control system), each transaction has a sequential process. So, we cannot 

start in a random order. It is necessary to represent the task in a graph. Generally, 

DAG is used to represent the dependency among tasks. From DAG, we can schedule 

the task in an order.  

Let us consider a DAG D = (T, E), where T represents the number of tasks and E 

represents the number of edges. Each task requires some time to execute a set of 

instructions. The time is called Computational time. Two tasks are using a directed 

edge. This time is called Communicational time. In DAG, edges are unidirectional. 

So, it creates scheduling holes [14]. The task does not have parent task is known as 

Entry task. Similarly, the task does not have children task is known as Exit task. CTs 

of tasks are different in each processor because we are considering heterogeneous 

environment. It is very difficult to choose an optimal machine in grid environment. 

Finally, the problem statement is to find an optimal schedule in a heterogeneous 

environment.   

3.3 Assumptions 

Let us take a heterogeneous environment for results analysis. It contains systems with 

different architecture and different requirements. For our approach, CT and Ct are 



provided before scheduling takes place. But, task can be added in between scheduling. 

Ct is ignored if and only if the task is assigned to parent processors. It is assumed that 

communication may overlap with each other. 

3.4 Scheduling Algorithms 

To get a close to optimal schedule, many traditional algorithms are developed. The 

algorithms are listed below. 

 
3.4.1 P-TSA [3] 

It computes task priority. For task priority, it considers depth of the task, estimated 

complete time, up link cost and down link cost. If two nodes are in the same depth, 

then they are in the same group. We calculate the priority value of each group tasks. 

Then, we will get a scheduling order. 

 
3.4.2 MET 

 

It focuses on minimum execution time. It schedules the tasks in FCFS sequence. Load 

balancing is not considered in this approach. 
 

3.4.3 MCT 

 

It focuses on minimum completion time. Like, it schedules the tasks in FCFS 

sequence. Completion time is the sum of execution time and ready time. Load 

imbalance is the demerit of this approach. 

 
3.4.4 Min-Min 

 

It selects small task before large task. It combines MET and MCT. First Min shows 

MET whereas second Min shows MCT. It works efficiently if and only if there are so 

many small tasks present in Grid. Otherwise, it will cause starvation to large tasks. 

 
3.4.5 Max-Min 

 

It is similar to Min-Min. But, it selects large task before small one. It is better than 

Min-Min algorithm. It causes starvation to small tasks. 

4   Proposed Algorithm 

4.1 Description 

 

Our proposed algorithm MSSA contains two phases. In first phase, scheduler 

calculates m-level of each ready task. M-level is the sum of CT, ready time and Ct 

between parent to given task. In second phase, scheduler calculates SV. It is the 



difference between two best or optimal machine. According to SV, tasks are sorted in 

descending order. The task having high SV will be given highest priority. We 

continue the above process until the ready list is empty.      

 

4.2 Algorithm 

 

1. Initially, ready list contains the entry task. 

2. Assign the entry task to the processor. 

3. Set CT of entry task as RT. 

4. Repeat 

         Calculate m-level for ready list tasks on each processor. 

M-Level (Ti) = CT + RT + Ct (Tf, Ti) 

5. Calculate SV. 

6. Sort the tasks in descending order of SV. 

7. Select the task-processor pair which gives the earliest m-level time. Ties are 

broken randomly. 

8. Assign the task to the respective processor. 

9. Remove the task from ready list. 

10. Update the RT of each processor.  

11. if (ready list is not empty) 

12.             Go to Step 7. 

13. else  

14.             Repeat.   

        Until the ready list do not have any task. 

5   Performance Analysis 

5.1 Illustration 

 

Let us consider a complex DAG (Figure 1) having seventeen tasks and three 

processors. Each node (or ellipse) in the DAG represents a task. The time required to 

execute the task is called CT. It is shown in Table 1. We are considering a 

heterogeneous grid environment. So, the execution time is different in each processor. 

Connection between two tasks is called Ct. It is represented in rectangular box. 

Communication between task Ti and task Tj is represented as Ct (Ti, Tj). A task can 

only execute if and only if its entire parent has been completed. 

 



 
 

Fig. 1. A Complex DAG. 

 

Table 1.  CT of tasks 

 
Task P1 P2 P3 

1 41 46 34 

2 46 40 41 

3 26 48 35 

4 46 33 16 

5 32 11 48 

6 40 43 41 

7 14 27 22 

8 27 34 19 

9 48 38 39 

10 49 37 40 

11 28 20 29 

12 49 33 24 



13 48 28 22 

14 24 36 32 

15 40 32 36 

16 17 14 38 

17 21 16 14 

 

Here, T1 is the start (or entry) task. So, ready list contains only one task T1. Now, 

we assign the task to a processor which takes less time. For T1, it is processor 3. All 

other processors are idle at the same time because T1 is the parent of next level tasks. 

The CT of T1 is 34. Ready time (RT) is initialized as 34. 

After T1 has successfully processed, the next level tasks are T2, T3 and T4. In order 

to assign the tasks to the processors, we have designed a two-phase process. At first 

phase, we calculate m-level of the tasks. M-Level of the task is the sum of CT, ready 

time and Ct between parent tasks to the given task. The m-level of tasks are shown in 

Table II. In second phase, we calculate SV of the tasks [1]. SV is the difference 

between the m-level of two best processors. It is shown in Table III. 

 

Table 2.  M-Level of tasks 

 

 
Task           Processor 1           Processor 2              Processor 3 

 CT RT+Ct M-level CT RT+Ct M-level CT RT+Ct M-level 

2 46 58 104 40 58 98 41 34 75 

3 26 47 73 48 47 95 35 34 69 

4 46 50 96 33 50 83 16 34 50 

 

Table 3.  SV of tasks 

 
 Processor 1 Processor 2 Processor 3  

Task M-level M-level M-level SV 

2 104 98 75 23 

3 73 95 69 4 

4 96 83 50 33 

 

Now, we sort the tasks in descending order of SV. Ready list is updated in the 

following sequence: T4, T2 and T3. T4 is assigned to processor 3. The RT of processor 

3 is modified to 50. The updated m-level is shown in Table IV. We need not calculate 

SV again. 



 

Table 4.  Updated SV of tasks 

 
 Processor 1 Processor 2 Processor 3 

Task M-level M-level M-level 

2 104 98 91 

3 73 95 85 

 

Again, T2 is assigned to processor 3. The RT of processor 3 is altered to 91. The 

updated m-level is shown in Table V. 

 

Table 5.  Updated SV of tasks 

 
 Processor 1 Processor 2 Processor 3 

Task M-level M-level M-level 

3 73 95 126 

Finally, T3 is assigned to processor 1. After this, ready list is empty. So, we 

repeat the algorithm again and again until there is no task in the ready list. Final Gantt 

chart is shown in Figure 2. Dotted mark represents idle time and star mark represents 

communication delay time. 

 

 
Fig. 2. Gantt chart 

 

 



5.2 Results 

 

The result shows that our proposed algorithm (MSSA) is better and efficient than the 

traditional scheduling algorithms. We have considered two performance measures to 

compare our proposed algorithm with other task scheduling algorithms. First, 

Makespan is used to calculate the scheduling length. It is the total time required to 

complete the task execution. Second, Resource utilization is the percentage of time a 

particular resource (or processor) is busy. We need maximum resource utilization as 

well as minimum scheduling length. We have taken two cases to evaluate the 

performance measure in all task scheduling algorithms. Performance metrics are 

shown in figure 3 (case 1), figure 4 (case 1), figure 5 (case 2) and figure 6 (case 2) 

respectively. Number of machines and tasks are varying in one case to another case. 

Each case has a complex DAG. In each case, we compare our results with the 

traditional algorithms results. X-axis denotes the number of machines and Y-axis 

denotes the Makespan (in figure 3 and 5), average resource utilization (in figure 4 and 

6). If number of processor is restricted to one then the performance for all algorithms 

remains same.   
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     Fig. 3. Case 1 Makespan results              Fig. 4. Case 1 resource utilization results 
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    Fig. 5. Case 2 Makespan results                Fig. 6. Case 2 resource utilization results 



6 Conclusion 
 

MSSA scheduling introduces a new concept called m-level in which earliest time is 

calculated. By considering m-level value, SV is calculated. It provides priority among 

tasks. This scheduling has an improvement over all traditional algorithms in grid 

environment. Our result shows this. Makespan is reduced in greater extent. Resources 

are utilized efficiently in our algorithm. This proposed scheduling will help to faster 

execution in grid environment. Finally, it gives sub optimal or optimal solution.     

In future work, we can further extend MSSA algorithm by using security, time 

constraints to the tasks and duplication of tasks. Communication between tasks and 

resources may be failed due to network problems, energy limitations and many more. 

It can be one of the best future works. It can be more realistic if all criteria are 

considered. 
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