
1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Analysing the Performance of Multi-core
Architecture

Ram Prasad Mohanty #, Ashok Kumar Turuk *, Bibhudatta Sahoo #
Computer Science Department, National Institute of Technology Rourkela

1 mohantyr@nitrkl.ac.in
3 bdsahu@nitrkl.ac.in

* National Institute of Technology
 Rourkela India

2akturuk@nitrkl.ac.in

Abstract— The advancement in technology has brought
immense amount of changes in the design and productivity
of applications designed for being used in the personal
computers. By implementing greater number of cores to
the same chip also results in facing challenges. In this case
the challenge that is being faced is the core to core
communication as well as the memory in addition to cache
coherence. This paper presents a detailed analysis on
performance of FFT a divide and conquer algorithm
across with the Multi-core architecture with Internal and
external network. The architectures are being defined
using memory configuration and context configuration
with help of Multi2Sim 3.4 simulator. The performance of
these architectures have been simulated with Splash 2
Benchmark.

Keywords— Multi-core Technology, Multi-core Issues,
SPLASH2 Benchmark, performance, Multi2Sim simulator

I. INTRODUCTION

In the previous decade enhancement in the processor
speed were done on a high basis but still the
requirement was not achieved. New approach was
essential by the computer architecture so that they can
provide adequate enhancement in the performance. It
was predicted that by placing an extra processing core
in the same chip, there shall be enhancement in the
performance, as well as lower production of heat, but
the actual speed of the core was lower in comparison to
the single core processor. The IEEE reviewed in
September 2005 that the power consumption increases
up to 60% with the use of every 400 MHz rise in clock
speed, it also cited that we can get considerable
improvement in performance through the means of
dual-core approach [4].

The concept of multi-core is not an innovative one;
the idea is used in various systems, and for some period
of time it has also been used for specialized applications.
But currently this technology has become extremely
conventional with Intel and Advanced Micro Devices
(AMD) developing many commercially accessible
multi-core chips. In the year 2008, two and four core
machines were commercially accessible. Some experts
are of belief that by the year 2017, 4,096 cores would be
supported by the embedded processors, 512 cores might
be upheld by the server CPUs and 128 cores could be
used by the desktop [11]. In past 30 years the desktop

chips used a single core, but today the desktop chips use
four cores, this shows that the rate of growth is really
amazing.

In the multi-core processor technology CMP that is

Chip Multiprocessing is used. Execution cores have
their individual set of execution and architectural
resources. The different processor architecture is given
in Fig: 1 [26].

A) Single Core

B) Multi-Core
Fig. 1 Comparison of Multi-Core and Single Core Architecture

At the initial stage in order to enhance the

performance a very simple tractable method was used
and that was to increase or enhance the frequency of the
processor. Thus from generation to generation tracking
the performance of the processor was a very easy task.
But as the frequencies rose higher and higher at a
particular stage a reality came into picture that leads to
other advancements. With higher frequency the
dissipation of heat enhanced. At the same time the
power consumption also increased. Thus the concept of
implementing multiple cores onto the processor was
developed. This leads to a solution to the heat and
power issue. But it also leads to new issues and much
more interesting problematic areas.

This paper uses a simulation approach to study the

performance on two different multicore architectures
using multi2Sim. The next section discusses on various
performances related issues with multi-core processor
architecture. Section 3 describes the different multicore
architecture with processor core, cache, switch and main
memory. Simulation frame work multi2Sim is

CPU STATE
Interrupt Logic

Execution
Units

Cache

CPU STATE
Interrupt Logic

Execution
Units

Cache

CPU STATE
Interrupt Logic

Cache Execution
Units

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

discussed with configuration details for two different
multicore architecture (i) Multi-core processor using
Internal Networks and (ii) Multi-core processor using
external Networks are presented in Section 4. Finally,
conclusions and directions for future research are
discussed in Section 5.

II. MULTI-CORE CHALLENGES

Certain problems and dispute come forward when the

multiple cores are implemented and set upon a single
chip. Power and temperature supervision is an enormous
disquiet that leads to an exponential rise with the
accumulation of additional cores. Another dispute that
occurs in the multi-core is the memory inconsistency.
There will be no benefit if the programmers do not
inscribe applications that acquire the benefit of multi-
core. It is very essential that application should be
written so that varied part can run simultaneously.
Seven of the issues are described below ………..

A. Issues occurred because of handling of power and

temperature
With excessive power consumption there exists

immense amount of heat dissipation. In the same way if
the chip used for implementing a single chip holds two
or more cores on it without any kind of updation made
to the chip. In such case it may lead to consumption of
double power and likewise generation of even larger
amount of heat. Also in the extreme conditions this can
lead to combustion of the computer. In order to avoid
such cases the individual cores are executed at lower
frequencies. Even in the current trend every design
integrate a power control unit which is so designed that
it can go ahead to stop or shut down the cores that
remains unutilized thus restricting the power
consumption.

Heat generation is taken care by restricting the
quantity of hot spots over the chip. This too is handled
during the design level. The design is so made that the
hot spots does not grow too high in numbers and at the
same time the heat generated are spread across the chip.

B. Issues due to cache coherence

One of the most important issues still remaining a

prime concern in the multi-core environment is the
distribution of different types of caches across the chip.
The L1 and the L2 cache which is distributed across the
chip prove to be the prime concern in the environment
of multi-core. When each core has its own individual
cache then the value at each cache may not hold the
updated values or the actual required values.

Two types of protocols are used in general for
handling cache coherence. Snooping protocol is a
protocol which can only come into usage in systems
based on bus architecture. It takes the aid of a number of
states. Using these states it can determine which values
in the cache needs to be updated. The snooping protocol
is not at all scalable. The other protocol is directory
based which is highly scalable. This protocol can easily
be used on an arbitrary network thus it can easily be
scaled to multiple processors or cores.

C. Multithreading

The major problem in using multithreading is to

acquire great performance through the multi-core
processor. Reconstruction of the application to be
multithreading indicates that the programmers have to
revise in most of the cases. The application is to be
written by the programmers with the subroutine capable
to perform on various cores. This signifies that the data
dependence ought to be handled in a very synchronized
and structured way. The programmers are not acquiring
the benefit of the multi-core system if a particular core
is used more than the other. Few companies have
manufactured a new product with the capability of the
multi-core. The recent operating device, produced by
the Microsoft and Apple can run up to 4 cores.

D. Requirement of Enhancement in the memory system

It is very essential to increase the memory, when

numbers of cores are placed on a single chip. The
Pentium 4 processor which is a 32 bit processor has the
capacity of addressing main memory up to a limit of 4
GB. At the current juncture there exists 64 bit processor
as well which can handle infinite amount of addressable
memory. Thus it becomes highly necessary to develop
an enhanced memory system that can handle this
amount. At the same time higher amount of main
memory as well as even larger caches are required for
the current multithreaded multiprocessors.

E. Requirement of Enhancement in the in the

interconnection networks as well as the system bus
network

Even if the amount of main memory gets enhanced

still without a proper management of the time required
to handle memory request the benefit is not utilized.
These days the interconnection network that exists
between the cores has become the prime concern of the
manufacturers. When the network gets faster the latency
reduces in the communication between cores as well as
memory transactions. Recently Intel has come up with
its Quickpath Interconnect. It provides point-to-point
links at both sides of the processor which is of high-
speed. The speed of transfer is enhanced because of the
connection between the distributed shared memory, I/O
hub, Intel processors as well as the internal cores. AMD
also developed the hyper Transport technology which is
a wide bus based system. Similarly a new interconnect
could be seen in the TILE64 iMesh. This mesh consists
of five networks for high interaction between the I/O
and the off-chip memory. But till date the question
remains open as which type of communication yields
the most optimized result for multi-core processors.

F. Need of Programming in Parallel Environment

In May 2007, an employee of Intel, Shekhar Borkar

mentioned that the Moore’s Law has also been followed
by the software development. The quantity of

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

parallelism should be doubled during software
development, so that every two years it can be able to
sustain even in the fast advancing multi-core
architecture [5]. As the total amount of core present in a
processor has to be twofold in every 18 months as per
Moore’s law. Thus the programmers need to learn how
to write programs in such a way that they can be divided
and run parallel on the multiple cores instead of using
the single core hardware only. The main reason of
parallel programming is enhance the productivity of the
multi-core processors.

Some hidden concerns are being bought up in the
software being developed to be executed in the
environment of multi processors. The first question that
proves to be a big concern is how a programmer
provides priority information to tasks which have higher
priority over other tasks in the queue? This priority is
not restricted to a single core instead the priority needs
to be established throughout the processor. As per the
design of the thread, even if it has been given the high
priority within the level of the core, it is not necessary
that it shall get the highest priority all over the system. It
is also a hard task to know whether the whole system is
stopped to function or only the core on which the
application is running is stopped.

These problems should be solved while teaching the
developers the best practices for parallel programming.
It would be quite easy to be on track with the Moore’s
law concept if the programmers have the basic idea of
the multithreading and also have the power of
programming in the parallel environment.

G. Cores are not getting the data

One or many cores may be remaining idle by waiting

for the data, if a program has not been developed
properly to utilize the cores of a multiprocessor. This
can be visible if the multi-core system is used to run a
single-threaded application. In such case the thread will
function on a single core while the other cores will be
have no function to operate on? Still these cores keep on
making calls to the main memory which utilizes a loss
of clock cycles. This shall add on to the penalty thus
reducing the overall performance. Thus a proper
replacement policy need to be utilized which can lead to
removal of all the cache entries that has been processed
by the other cores. With the addition of number of cores
in the processor, this problem gets more deep and
troublesome.

III. MULTI-CORE ARCHITECTURES
This section outlines the basic details of four

different multi-core architectures (i) Multi-core
processor with Internal Network, (ii) Multi-core
Processor with External Network, (iii) Mul;ti-core
processor with Ring Network and (iv) Heterogeneous
system with CPU and GPU cores [22].

Few of the Multi-Core Architecture which can be

used for a thorough performance analysis of the divide
and conquer algorithms on Multi-core Processor with
Internal Network as described below.

Fig. 2 Multi-Core Processor using Internal Network

In the Fig. 2 the architecture of a multi-core

processor with internal network has been shown that has
a single private L1 cache per core, to unify the
instruction and data requests. Two L2 caches are being
used to share between all the three cores.

 Multi-core processor with External Network is
shown in Fig.3. The connectivity of L1-to-L2 network
consists of two distinct switches and 5 nodes (n0, n1, n2,
n3, n4) [22], which further communicate with main
memory through another switch.

 The third architecture of multi-core processor is
complex and uses ring network to connect main
memory modules with multiple cores. Typical 4 core
multi-core processor architecture is shown in Fig 4. This
architecture is a more complex architecture than the
above two. It uses a 4-core processor which have private
L1 data caches and a common L1 instruction cache
shared by every two cores as shown in Fig 4

The two L2 caches serve the independent higher level

L1 caches.
The computing capability of multicore processor can

be further optimized with the help of CPU and GPU
integration. A heterogeneous system which has CPU
and GPU cores as shown in Fig: 5

L1-0

Core 0 Core 1 Core 2

L1-1 L1-2

 SWITCH

L2-0 L2-1

 SWITCH

Main Memory

L1-0

Core 0 Core 1 Core 2

L1-1 L1-2

 SWITCH-0 SWITCH-1

n0 n1 n2

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Fig. 3 Multi-Core processor using External Networks

This architecture uses CPU and GPU cores as well as

it has a single CPU core formed of two hardware
threads which is used together with a GPU having 4
compute units. Each CPU thread has a private L1 cache,
while one L1 cache is shared with every two GPU
compute units [22]. We have analyzed the performance
of two architectures (i) Multi-Core Architecture with
internal network, and (ii) Multi-Core Architecture with
external network using multi2Sim simulator.

IV. EXPERIMENTAL RESULTS

Fig. 4 Multi-Core processor using Ring Network [22]

Four major steps were involved in our research:
1) Setting up the environment on which the code gets

executed
 2) Setting up the code that the simulator will execute

3) Execute single-core simulations (Collect and
Analyze Data)

4) Execute multi-core simulations (Collect and
Analyze Data)

For the first step it was decided to use the multi2Sim
simulator because of its versatility of implementing
multi-core architectures. Also we had to fix a commonly
used benchmark.

Fig. 5 Heterogeneous system with CPU and GPU cores [22]

The single core simulations were also executed. The

following factors were changed: L1 Cache size, L2
Cache size, and Bus width, Latency, and cache
coherence protocols. Instead of varying the values for
each factor repeatedly, we decided the best possible
values for each and then proceeded with the execution
of the code.

A. Simulation Environment

With the advancement of processor architecture over

time, benchmarks that were used to compute the
performance of these processors are not as practical
today as they were before due to their incapability to
stress the new architectures to their utmost capacity in
terms of clock cycles, cache, main memory and I/O
bandwidth.

Hence new and enhanced benchmarks have to be
developed and used. The SPLASH-2 is one such
benchmark that has concentrated workloads based on
real applications and is a descendant of the SPLASH
benchmark. Other such benchmark includes PARSEC,
CPUSPEC2006, and Mini Bench. The SPLASH-2 has
11 programs. The details of these benchmark programs
are shown in Tables 2.1 [23, 24]. All experiments were
run on systems with 32 bit LINUX operating system
and Intel Core 2 Duo processors using the multi2Sim
simulator.

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

TABLE I Specification of SPLASH2 Benchmark

The Multi2Sim 3.4 is used to conduct the experiment

that uses gcc, glib, freeglut and gtk+ packages.

B. Performance analysis of Multicore Architecture with
Internal Network

We analyzed the performance of the code across the
multi-core architectures with internal networks as well
as with external networks. The detailed architecture for
the same has been provided in the figure 3 :

The cache specification for the same architecture is
shown as below [22]:

[CacheGeometry geo-l1]
Sets = 128
Assoc = 2
BlockSize = 256
Latency = 2
Policy = LRU
Ports = 2
[CacheGeometry geo-l2]
Sets = 512
Assoc = 4
BlockSize = 256
Latency = 20
Policy = LRU
Ports = 4
[Module mod-l1-0]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2
LowModules = mod-l2-0

mod-l2-1
[Module mod-l1-1]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2

 [Network net-l1-l2]
DefaultInputBufferSize =

1024
DefaultOutputBufferSize =

1024
DefaultBandwidth = 256
[Network net-l2-mm]
DefaultInputBufferSize =

1024
DefaultOutputBufferSize =

1024
DefaultBandwidth = 256
[Module mod-l2-1]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2
LowNetwork = net-l2-mm
LowModules = mod-l2-mm
AddressRange = BOUNDS

0x80000000 0xFFFFFFFF
[Module mod-mm]
Type = MainMemory
BlockSize = 256
Latency = 200

LowModules = mod-l2-0
mod-l2-1

[Module mod-l1-2]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2
LowModules = mod-l2-0

mod-l2-1
[Module mod-l2-0]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2
LowNetwork = net-l2-mm
LowModules = mod-l2-mm
AddressRange = BOUNDS

0x00000000 0x7FFFFFFF

HighNetwork = net-l2-mm
[Entry core-0]
Type = CPU
Core = 0
Thread = 0
DataModule = mod-l1-0
InstModule = mod-l1-0
[Entry core-1]
Type = CPU
Core = 1
Thread = 0
DataModule = mod-l1-1
InstModule = mod-l1-1
[Entry core-2]
Type = CPU
Core = 2
Thread = 0
DataModule = mod-l1-2
InstModule = mod-l1-2

C. Performance of Multicore Architecture with
External Network

In the Fig 4 architecture of a multi-core processor

with external network has been shown.
In this architecture each of the cores is associated

with a L1 and L2 cache module. The nodes which are
connected to the L1 cache are connected to the switch 0
while the ones connected to the L2 cache is connected
to another switch.

The cache configuration for the given setup is given

as below:

[CacheGeometry geo-l1]
Sets = 128
Assoc = 2
BlockSize = 256
Latency = 2
Policy = LRU
Ports = 2
[CacheGeometry geo-l2]
Sets = 512
Assoc = 4
BlockSize = 256
Latency = 20
Policy = LRU
Ports = 4
[Module mod-l1-0]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n0
LowModules = mod-l2-0

mod-l2-1
[Module mod-l1-1]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n1
LowModules = mod-l2-0

mod-l2-1
[Module mod-l1-2]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n2
LowModules = mod-l2-0

mod-l2-1
[Module mod-l2-0]
Type = Cache

 [Module mod-l2-1]
Type = Cache
Geometry = geo-l2
HighNetwork = net0
HighNetworkNode = n4
LowNetwork = net-l2-mm
AddressRange = BOUNDS

0x80000000 0xFFFFFFFF
LowModules = mod-mm
[Module mod-mm]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net-l2-mm
[Network net-l2-mm]
DefaultInputBufferSize =

1024
DefaultOutputBufferSize =

1024
DefaultBandwidth = 256
[Entry core-0]
Type = CPU
Core = 0
Thread = 0
DataModule = mod-l1-0
InstModule = mod-l1-0
[Entry core-1]
Type = CPU
Core = 1
Thread = 0
DataModule = mod-l1-1
InstModule = mod-l1-1
[Entry core-2]
Type = CPU
Core = 2
Thread = 0
DataModule = mod-l1-2

Sl
No.

Benchmark Application
Domain

Problem
Size

1 Barnes High-
Performance
Computing

65536
Particles

2 Cholesky High-
performance
computing

Tk29.0

3 FFT Signal
Processing

4,194,304
data points

4 FMM High-

Performance
Computing

65536
Particles

5 LU High-
Performance
Computing

1024X10
24 matrix,
64X64
Blocks

6 Ocean High-
Performance
Computing

514X514
Grid

7 RADIOS
ITY

Graphics Large
room

8 RADIX General 8388608
integers

9 RAYTR
ACE

Graphics Car

1
0

WATER-
NSQUARE
D

High-
Performance
Computing

4096
molecules

1
1

WATER-
SPATIAL

High-
Performance
Computing

4096
molecules

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Geometry = geo-l2
HighNetwork = net0
HighNetworkNode = n3
LowNetwork = net-l2-mm
AddressRange = BOUNDS

0x00000000 0x7FFFFFFF
LowModules = mod-mm

InstModule = mod-l1-2

The network configuration set for this external

network is as shown below:
[Network.net0]
DefaultInputBufferSize =

1024
DefaultOutputBufferSize =

1024
DefaultBandwidth = 256
[Network.net0.Node.sw0]
Type = Switch
[Network.net0.Node.n0]
Type = EndNode
[Network.net0.Node.n1]
Type = EndNode
[Network.net0.Node.n2]
Type = EndNode
[Network.net0.Node.sw1]
Type = Switch
[Network.net0.Node.n3]
Type = EndNode
[Network.net0.Node.n4]
Type = EndNode
[Network.net0.Link.sw0-n0]
Source = sw0
Dest = n0
Type = Bidirectional
[Network.net0.Link.sw0-n1]
Source = sw0
Dest = n1
Type = Bidirectional

 [Network.net0.Link.sw0-n2]
Source = sw0
Dest = n2
Type = Bidirectional
[Network.net0.Link.sw0-sw1]
Source = sw0
Dest = sw1
Type = Bidirectional
[Network.net0.Link.sw1-n3]
Source = sw1
Dest = n3
Type = Bidirectional
[Network.net0.Link.sw1-n4]
Source = sw1
Dest = n4
Type = Bidirectional

V. CONCLUSIONS AND FUTURE WORK

The Multi-core processors are developed to enhance
performance of computing. The utilization of the
processor can be 100% only when the applications
being executed is multithreaded. Only a few
applications exists which are multithreaded and can be
executed parallel. At the same time only a few
programmers have the idea and intellect to write
programs that can utilize the multi-core processor
properly. This study helps us to select appropriate cores
in a processor, cache organization/configuration and
interconnect network. .

The same program shall be executed on the ring
network and heterogeneous system with CPU and GPU
cores and a thorough analysis of the performance shall
be gathered.

REFERENCES

[1] Cameron Hughes and Tracey Hughes,”Professional Multi-core
Programming”,Wiley Publishing,2009

[2] Darryl Gove, “ Multi-core Application Programming”, Pearson,
2011

[3] Julian Bui and Chegguang Xu and Sudhanva Gurumurthi,
“Understanding performance issues on both single core and
multi-core Architecture”, Computer Organization , 2007

[4] John Freuhe, “Planning Considerations for Multi-core
Processor Technology”, Dell Power Solutions, May 2005.

[5] P. Frost Gorder, “Multi-core Processors for Science and
Engineering”, IEEE CS, March/April 2007.

[6] L. Peng et al, “Memory Performance and Scalability of Intel‟s
and AMD‟s Dual-Core Processors: A Case Study”, IEEE, 2007.

[7] D. Geer, “Chip Makers Turn to Multi-core Processors”,
Computer, IEEE Computer Society, May 2005.

[8] D. Pham et al, “The Design and Implementation of a First-
Generation CELL Processor”, ISSCC.

[9] R. Goering, “Panel Confronts Multi-core Pros and Cons”,
[Online]. Available:
http://www.eetimes.com/news/design/showArticle.jhtml?article
ID=183702416

[10] R. Merritt, “CPU Designers Debate Multi-core Future”,
EETimes Online, February 2008, [Online]. Available:
http://www.eetimes.com/showArticle.jhtml?articleID=2061051
79

[11] Bryan Schauer, “Multi-core Processors – A Necessity”,
ProQuest, September 2008.

[12] Bai Jun-Feng, “Application Development Methods Based On
Multi-core Systems”, American Journal of Engineering and
Technology Research”, 2011.

[13] S. Balakrishnan et al, “The Impact of Performance Asymmetry
in Emergng Multi-core Architectures”, Proceedings of the 32nd
International Symposium on Computer Architecture, 2005.

[14] D. Geer, “For Programmers, Multi-core Chips Mean Multiple
Challenges”, Computer, September 2007.

[15] B. Brey, “The Intel Microprocessors”, Sixth Edition, Prentice
Hall, 2003.

[16] D. Stasiak et al, “Cell Processor Low-Power Design
Methodology”, IEEE Micro, September 2005

[17] W.Knight, “Two Heads are better than One”, IEEE Review,
September 2005

[18] D.Olson, “Intel Announces Plan for up to 8-core Processor”
Slippery Brick, March 2008.

[19] S.Mukherjee and M. Hill, “Using Prediction to accelerate
Coherence Protocols”, ISCA, 1998.

[20] R.Kumar et al, “Single-ISA Heterogeneous Multi-core
Architectures with Multithreaded Workload Performance”,
ISCA, June 2004.

[21] Zhongliang Chan et al, “The Multi2Sim Simulation
Framework”

[22] R. Ubal and J. Sahuquillo and S. Petit and P. L\'opez,
“ Multi2Sim: A Simulation Framework to Evaluate Multi-core-
Multithreaded Processors”,Proc. of the 19th Int'l Symposium
on Computer Architecture and High Performance
Computin,Oct, 2007

[23] S.C. Woo and M. Ohara and E. Torrie and J. P. Singh and A.
Gupta, “ The SPLASH-2 Programs: Characterization and
Methodological Considerations”,Proc. of the 22nd Int'l
Symposium on Computer Architecture, June,1995.

[24] Tribuvan Kumar Prakash, “ PERFORMANCE ANALYSIS OF
INTEL CORE 2 DUO PROCESSOR”,BioPerf, August,2007.

[25] Christian Bienia and Sanjeev Kumar and Kai Li, “ PARSEC vs.
SPLASH-2: A Quantitative Comparison of Two Multithreaded
Benchmark Suites on Chip-Multiprocessors”, Princeton
publications, September, 2008

[26] Shameem Akhter and Jason Roberts, “ Increasing Performance

through Software Multi-threading”, Intel Press, 2006

