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EPIGENETICS - AN INTRODUCTION

s Epigenetics 1s the study of mitotically and/or meiotically heritable changes in gene

function without changes mn the underlying DNA sequence.

¢ There 1s no change in the underlying genetic program instead, non-genetic factors
cause the organism's genes to express themselves differently resulting in differential

phenotypes
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History of The Science

Epigenesis : A theoretical aspects of developmental biology -
The Strategy of Genes by C. H. Waddington (during 1930s to
1960s)

Discovery of the molecular component, 5-methyl cytosine, in
the 1940 s after serendipitous finding of epi-cytosine by R. D.
Hotchkiss [J. Biol. Chem. 1948].

CpG islands: features and distribution in the genomes of
vertebrates. G. Bernardi, A Bird in 1980s-1990s

First cloning of mammalian DNMT-by Bestor et.al. J.Mol.Biol
1988.

Importance of DNMT1 in embryonic development in 1990 s.

How do they interact with DNA? How do the other proteins
interact?
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The building blocks of DNA
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The —CpG- dinucleotides of DNA
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Promoter-Operator Relative Positions

Upstream Promoter Transcribed region
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DNA-Histones (H2A, H2B, H3 and H4) complex




Figure 5. Nucleosome Structure

(Left) A 2.8 A model of a nucleosome. (Right) A schematic represen-
tation of histone organization within the octamer core around
which the DNA (black line) is wrapped. Nucleosome formation
occurs first through the deposition of an H3/H4 tetramer on the
DNA, followed by two sets of H2A/H2B dimers. Unstructured amino-
terminal histone tails extrude from the nucleosome core, which con-
sists of structured globular domains of the eight histone proteins.
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Multiple levels of chromatin folding

Chromonema fiber

‘),/" ... Linker histones

Long range
fiber-fibar
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Baads-on-a-string

Mucleosome

N Core histone

DNA _—tail domain
DNA compaction within the interphase nucleus (depicted at left) occurs through a
hierarchy of histone-dependent interactions that can be subdivided into
primary, secondary, and tertiary levels of structure. Strings of nucleosomes
compose the primary structural unit. Formation of 30-nm fibers through
histones tail-mediated nucleosome-nucleosome interactions provides a
secondary level of compaction, whereas tail-mediated association of individual

fibers produces tertiary structures J. C. Hansen, Annu. Rev. Biophys. Biomol.
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EPIGENETIC
MODIFICATIONS

Three major components:

DNA methylation

Histone modifications
RNAI1 mediated gene

silencing.
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DNA METHYLATION

Methylation of DNA 1s a post synthetic process catalyzed by a family of dedicated
enzymes known as DNMTs. DNMT1, DNMTS3A and DNMT3B methylate the
cytosine residue specifically at CpG rich promoter sequences in the presence of
cofactor SAM (S-Adenosyl methionine) which donates the -CHjg group and 1s
converted to SAH (S-Adenosyl homocysteine)
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Types of DNA Methylation

De novo methylation - mediated by DNMT3A and DNMT3B.

Maintenance methylation - mediated by DNMT'1
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M echanism of DNA Methylation by DNMT1, 3A, 3B
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DNA DEMETHYLATION

DNA demethylation 1s the removal of the methyl groups from
methylated-cytosine bases (MeC) of DNA and 1s the earhest observed
epigenetic mechanism in mammals.
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DNA e Role During Gametogenesis

DEMETHYLATION Active promoter demethylation of

pluripotency regulatory genes Oct 4 restores
e B pluripotency in primordial germ cells

* Role in Early Development
Rapid Demethylation of the male pronucleus
in the pre-implantation zygote

* Role During Neurogenesis
Active Demethylation of BDNF and
FGF-1 genes are critical for adult

neurogenesis.

* Role During Memory Formation
Active promoter demethylation 1s associated
with memory-promoting gene- reelin.

* Role in Immune Function
Active promoter demethylation of I1-2 and

IFN- vy results in rapid cytokine production in
memory CD8 T cells.
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DNA DEMETHYLATION

M echanisms of DNA Demethylation
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METHYLATION PARADOX IN CANCER

One mmportant epigenetic hallmark of cancer 1s a paradoxical alternation in the

It AL I 1IAlUl

established DNA methylation patterns mvolving both gene-specific hypermethylation, which
suppress tumorigenesis by silencing tumor suppressor genes, and genome-wide global
hypomethylation that targets transcriptional activation of oncogenes.

Normal Cell

Approximately 70% of CpG
dinucleatides are methylated,
and are established in a precise
location and defined pattem,

- Associated with gene silencing.
Cancer Cell - Potential markers.
Increased Tovels of DNMTs arc - Potential therapeutic targets.
often found and there {s a global
teduction in 5-MeC and regional ) Increased
hypermethylation of CpG islands, T DNMT Expression

Genome wide hypomethylation;
- Genomic instability.
- Potential activation of oncogenes.

[Melki and Clarke, 2002, Seminarsin Cancer Biology]
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DNA methylation mediates oncogenesis 1n a number of ways contributing
to many epigenetic hallmarks of cancer.

Possible Contribution of DNA Methylation to Cancer

A. Mutagenic Effects B. Epigenetic Effects
1. Spontaneous deamination of 5-mCyt — T 1. Hypomethylation of proto-oncogenes
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HOW IS DNA DEMETHYLATION
RESPONSIBLE FOR CANCER ?

AN

DOUBLE STRAND BREAKS

PGP\

MUTATIONS IN DNA

AV A

MICROSATELLITE INSTABILITY
[Wilson et al., 2007, Biochimica et Biophysica Acta]
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HISTONE MODIFICATIONS

Post-translational Covalent Modifications 1 the N-terminal tails of
Histone Proteins regulate the transcriptional state of the genome via
chromatin structure resulting in differential expression of genes.
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HISTONE MODIFICATIONS AND
HISTONE MODIFIYING ENZYMES
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HOW HISTONE MODIFICATIONS
AFFECT GENE EXPRESSION

SGHGKOUGGK ARAKAKTRSHR
2 9 13 15

PEPAK SAPAPK KGS K KAVI KAGQK KDGKERK
3 1 12 15 16 20 23 24 27 30 Gene on

Genes off

SGRHGKGGKGLGK GGA KHHRK
3 3 8 12 16 20
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Transcription factors
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e MicroRNAs are a group of small non coding
RNAs of about 19-25 nucleotides (nt) in length
that are integral elements in the post-
transcriptional regulation of gene expression

« miRNA plays important role in different
biological functions, including developmental
pattern formation, embryogenesis,
differentiation, organogenesis, growth control
and cell death



Protein coding gene
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Research 1n my laboratory 1s mainly focused on the

fundamental problems of epigenetics such as:

Reversible methylation modifications of DNA and regulation of
transcription.

Reversible Acetylation and Methylation Modifications of
Histone 3 at Lysine 4 and 9 residues (H3K4 and H3K9).

MicroRNA mediated gene silencing and correlation with the
other epigenetic modulators.

the above epigenetic moditications and their dynamicity.

Impact of gene-environment interaction in modulating the
methylation status on histones as well as many developmental

genes such as OCT4, SOX2, KL{4.
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Regulation of DNMT'1 and the various
checkpoints

We focus on the numerous intrinsic and extrinsic factors that co-
ordinate to form an extremely complex and interconnected
network for regulating the stability and activity of DNMTI1 and
also the DNA methylation machinery. A comprehensive
knowledge regarding the functional intricacy and enzymatic
activity of DNMT1 as well as its potential restraining points will
help 1n designing novel mechanistic based drugs targeting
DNMT] for effective cancer therapy in future.



VARIOUS POST-TRANSLATIONAL MODIFICATIONS
THAT AFFECT THE STABILITY AND ACTIVITY OF DNMT1

METHYLATION
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[Kar et al., 2012, Epigenetics]
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VARIOUS INTERACTIONS O
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DNMT1

DNMT1 works in concert with:

> VY

proteins found at  DNA
replication forks — PCNA.

proteins participating in
chromatin re-organization

DNMT3A, DNMT3B, HDACI,
HDAC2, MeCp2, MBD2, MBD3

and UHRF1 and polycomb
proteins.
proteins associated with cell

cycle regulation or response to
DNA  damage and tumor
suppressors — p2l1 (WAF), Rb
protein, pS3 protein, PARPI.

A number of transcription factors
and regulators involved in DNA

methylation inheritance.
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Expression of DNMT'1 in normal and

cancer cell ines

Dul45

BPH1

[Patra, et al., 2002. M ol Carcinogenesis|
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DNM Tase activity assay:
Optimum substrate concentration
Substrate: Poly [-dI-dC-dI-dC-dI-dC-] duplex, CH3- donor is SAM
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[Patra, et al., 2002. Mol Carcinogenesis]|




DNA methyltransferase activity in
normal and cancer cell lines
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[Patra, et al., 2002. M ol Carcinogenesis]

Tritium incor poration, CPM/ 1ug of cell
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Semi-Quantitative for DNA methyltransferases

100 bpBPH1 LNCaPND1 DU145 PC3 DUPro TSUPr1

S R pR—p—— N M T 1 (336 bp)

DNMT 3a (551 bp)

_ DNMT3b (190 bp)

[Patra, et al., 2002. Mol Carcinogenesis]|
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Demystitying the DNA demethylase enigma
and deciphering its mechanism

The quest for a demethylase enzyme (s), the associated cofactors
and elucidation of the detailed biochemical reaction 1s being
passionately conducted in our laboratory. The discovery will
provide new avenues for therapeutic applications 1n cancer
treatment, 1n solving the human infertility problems, in
addressing the dilemma of epigenetic engineering of induced
pluripotent stem cells and the failure of gene therapy. The lab 1s
currently focused in unraveling the active mechanism of DNA
demethylation mediated by direct removal of the CH, group from
the methylated cytosine bases catalyzed by an active DNA
demethylase enzyme.



5-Aza-2’-deoxycytidine and Mechanical Inhibition of
DNA-methylation

DNA methyvitransterase activity in
S5-AzadC treated TSUPr1 cell line

of protein

Tritium incorporation, CPM/pg

(0
Control 10nM 20mM 250nM S0OnM H

[S-AzadC]
[Patra, S. K. et al., 2001. Biochem. Biophys. Res. Commn.]
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Demethylase activity

Substrate: Methylated DNA, Poly[methyl-CpG-] duplex

600

500+

400-

300+

2001

100+

O_

PNT 14 Normal
[Patra, S.K. and Colleagues]|

Presented at A.B.N. Seal College, New Cooch Behar, W. B. ON 09/12/2012

TRAMP
tumors

38



Study of Co-Relation between Chromatin
Dynamics and Epigenetic Moditications
During Cancer Development

Gene expression profile changes during tumorigenesis. A clear
picture of the dynamic epigenome and maintenance of
epigenetic signatures, the relationship between H3 variant
deposition and H3K4 methylation during normal development
and especially during cancer development 1s still behind a shade
of mist. The main emphasis of this lab is unraveling the unique
epigenetic features of development and tumorigenesis and
studying the co-relation among reversible H3K4 methylation (—
mono,-di,-tr1), H3K9 Acetylation and DNA methylation 1n
normal and malignant tissues.



ASSOCIATION OF H3.1 AND H3K4
METHYLATION DURING CANCER DEVELOPME
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H3 VARIANTS AND CANCER
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Epigenetic Causes And Consequences With
Histone Deacetylases And D NA
Methyltransterase In Human Cancers

HDACs and DNMTs are two potent repressors of tumor
suppressor genes. Recently, a great deal of research interest has
been focused for restoration of acetylation/deacetylation balance
and methylation/demethylation balance by using HDAC and
DNMT inhibitors respectively. The lab i1s involved in developing
specific  inhibitors which may include synthetic drugs,
phytochemicals, various clements spreading
heterochromatinization in the genome such as microRNA, CLR 4
proteins etc., to achieve gene re-expression of tumor suppressor
genes as an effective cancer therapy.



HDACI AND DNMTx:
ANTI-CANCER AGENTS

HDACi> <DNMTi

»Vorinostat (SAHA) »5-Azacytidine

> MS-275 »Decitabine
>»Depsipeptide »>Zebularine

»Valproic acid »Procaine

»MGO8

Treatment of malignant cells
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Regulation of epigenetic machineries
via micro-RNA mediated gene control

MicroRNAs are now considered as important biomarker in
cancer diagnosis and prognosis. Research in this lab 1s mainly
employed 1n 1dentifying the microRNAs that target DNMT and
Histone modifying enzymes, their effects on DNMTs and
Histone modifying enzymes in cancer and creating the
methylation profile of those miRNA genes. The lab 1s aiming for
new avenues 1n the form of novel miRNA based drugs that target
the wvarious epigenetic manipulations for effective cancer
therapeutics.
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mlRNA regulates DNA Methyltransferase Expressmn
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Computational Approach to
Epigenomics Study

EPIGENOFORMATICS

An in slico approach via computational epigenomics combines
traditional genomics with computer science, mathematics, chemistry,
biochemistry and proteomics for the large-scale analysis of heritable
changes in phenotype, gene function or gene expression that are not
dependent on gene sequence. This field offers exciting and novel
opportunities to further our understanding of transcriptional regulation,
nuclear organization, development and disease. The lab employs
bioinformatics tools in directing the selection of key experiments,
formulating new testable hypotheses through detailed analysis of
complex genomic information and studying of molecular dynamics.



Bioactive Molecules in Modulation of
Epigenetic Marks

Epigenetic marks (epimutations) are more readily reversible
iIn  contrast to genetic defects, hence chemopreventive
bioactive molecules are currently evaluated for their ability
to reverse adverse epigenetic marks 1n cancer cells. The
chemopreventive  effects of these molecules on specific
epigenetic  alternations may provide unique & novel
chemopreventive  strategies to  attenuate  tumorigenic
progression, prevent metastasis or sensitize for drug
sensitivity. the lab 1s working towards developing therapeutic
strategies by the development of various bioactive molecules
like (5-azacytidine, EGCG, SAHA, TSA) that target the
activity of DNMTs & HDACs 1n order to treat various
disease including human cancer.
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MOLECULAR TARGETS OF (-)-EPIGALLOCATECHIN-3-GALLATE
SPECIFICITY AND INTERACTION WITH MEMBRANE LIPID RAFTS

Plasma membrane

[l
Cytosolic H  Nuclear

/
¥

Plasma membrane

@ EGCG, \/ LamR, €= aSMase, © FAS, I FASL, OLR
[Patraet al., 2008, Journal of physiology and phar macology]

Non-specific binding of EGCG in
membrane lipid rafts would destabilize

rafts structure and inactivate proliferative
MAPK signaling.

Uptake of EGCG by LamR would bring
EGCG into cytosol and nucleus.

EGCG binding to DNA would activate
DNA-repair based DNA-demethylation,
resulting in gene activation.

Over-expression of tumor suppressor and
pro-apoptotic genes (FAS, PAR4 and
CLU) will inhibit step 3.

aSMase and FAS is now loaded into lipid
rafts after post translational modification
by Palmitoylation.
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Flucidation of the molecular signaling
networks that co-ordinate epigenetic
modifications and their dynamicity.

Signaling networks play a crucial role 1n regulating the
transcriptional activity of cells via transmission of signals
necessary for initiation of gene expression. The epigenetic
regulatory mechanism 1s also controlled via various signaling
molecules which up-regulate of down-regulate the epigenetic
modulators according to the state of activity of the cell and the
need for that particular modification. Our laboratory investigates
the various signaling network involved in epigenetic modulation
of the genome via various pathways.



DNMT'1 mteracting partners 1n the cell cycle
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[Patra, S. K. 2008, Exp. Cell Res]
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Lipid Raft Facilitated Ras Signaling And

Plasma membrane

Proliferation

/g Epizenetic .sf.mss\
/ DNA=methylation l]f\
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J mulational activation of Ras\

Nuoclear

Cvtnsuh{: / f

rafts Plasma membrane

/]

[Patra and Syzf, 2008, FEBSjournal]

i et

1atin Modification

Epigenetic signaling for proliferation
or death emanating from the plasma
membrane microdomains. Lipid raft-
dependent (H-Ras and K-Ras-4A) and
independent (K-Ras-4B) signaling. A
model scheme proposed for the
modulation of transbilayer signaling
by clustering of raft protein H-Ras, in
which external clustering (antibody or
ligand mediated) enhances the
association of internal leaflet proteins
with the stabilized clusters, promoting
either enhancement or inhibition of
signaling.



Integrin signaling at the onset of tumorigenesis

Promoter DNA

hypermethylation
in cancer (gastric
Cancer)
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H3K4 —mono, -di,-tri methylation
regulate endosomal recycleing.
H3K4MT inhibition increase VAMP,
RAB4 expression and p1 recycling. But
the exact mechanism is unknown.

[Deb et al., 2011, Cancer Metastasis Rev]
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respect to control. However, conjoint treatment with both

Cells treated with AZA show increased apoptosis, whereas
SAM is seen to have no apparent effect on apoptosis with
SAM and AZA results in higher apoptotic rate.

. . . ' .
AZA SAM

Control AZA:SAM

[Poster presented at 2"d GCGC conference, ACTREC, Mumbai, Nov 19t"-20th, 2012]

56
Presented at A.B.N. Seal College, New Cooch Behar, W. B. ON 09/12/2012



10.
11.

12,

Recent publications from the
laboratory

Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang X-Y, Das S, Sarkar D,
and Fisher, PB (2012) Autophagy: Cancer’s Friend or Foe? Adv Cancer Res. In Press

Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S and Patra SK (2012) An insight into the various regulatory
mechanisms modulating Human DNA Methyltransferase 1 stability and function. Epigenetics, 7: 994-1007. [I.F. — 4.6]

Kar S, Deb M, Sengupta D, Shilpi A, Bhutia SK and Patra SK (2012) Intricacies of Hedgehog Signaling Pathways: A perspective
in tumorigenesis. Exp Cell Res, 318: 1959-1972. doi.org/10.1016/j.yexcr.2012.05.015 [I.F. — 3.580]

Deb M, Sengupta D and Patra SK (2012) Integrin-Epigenetics: A system with imperative impact on cancer. Cancer Metast.
Rev. 31:221-234 [I.F. - 10.573]

Patra A, Deb M, Dahiya R and Patra SK (2011) 5-Aza-2'-deoxycytidine stress response and apoptosis in prostate cancer Clin
Epigenet, 2: 339-348.

Patra SK, Deb M and Patra A (2011) Molecular Marks for Epigenetic Identification of Developmental and Cancer Stem Cells.
Clin Epigenet, 2: 27-53.

Patra SK and Bettuzzi S (2009) Epigenetic DNA-(Cytosine-5-Carbon) Modifications: 5-Aza-2'-Deoxycytidine and DNA-
Demethylation. Biochemistry (Moscow), 74 (6): 613-619. [I.F. — 1.402]

Patra SK, Patra A, Rizzi F., Silva, A. et al. (2008) Molecular targets of (—)-epigallocatechin-3-gallate (EGCG): specificity and
interaction with membrane lipid rafts. J Physiol Pharmacol, 59 (Suppl 9):217-235. [I.F. — 4.4]

Patra SK and Szyf M. (2008) DNA methylation mediated nucleosome dynamics and oncogenic Ras signaling: insights from
FAS, FASL and RASSF1A FEBSJ, 275:5217-5235. [I.F. — 3.05]

Patra SK (2008) Ras regulation of DNA-methylation and cancer. Exp Cell Res 314(6): 1193-1201. [I.F. — 4.148]

Patra SK, Patra A, Rizi F, Ghosh, T C et al. (2008) Demethylation of (cytosine-5-C-methyl) DNA and regulation of transcription
in the epigenetic pathways of cancer development Cancer Metast. Rev. 27(2): 315-334. [I.F. — 10.578]

Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta. 1785:182-206 [I.F.
—12.15]



En

an Call
Y Ul

~lhAavakape
s 1 ANVUIdAlUI O

1. Dr Jerrome Torrisani, INSERM, Tolouse, France

. Professor Moshe Szyf, McGill University,
Montreal, Canada

. Professor Faustino Mollinedo, CSIC, University of
Salamanca, Spain

. Professor Saverio Bettuzzi, University of Parma,
taly

. Dr. Sriharsa Pradhan, New England Biolab., USA

Presented at A.B.N. Seal College, New Cooch Behar, W. B. ON 09/12/2012 53



Laboratory Members

PhD Students:

Moonmoon Deb, Dipta Sengupta,
Swayamsiddha Kar, Arunima Shilpi, Sabnam
Parbin, Nibedita Pradhan, Sandip Rath

Postdoctoral Fellow/s:
Madhumita Rakshit
Lab Technician:

Chahat Kauser

Presented at A.B.N. Seal College, New Cooch Behar, W. B. ON 09/12/2012

59



The pillars of the laboratory

Madhumita Rakshit Moonmoon Deb Dipta Sengupta Swayamsiddha Kar
Post-Doctoral Fellow SRF, Institute Fellow JRF, Institute Fellow JRF, Institute Fellow

Arunima Shilpi Nibedita Pradhan Shabnam Parbeen Sandeep Kumar Rath
JRF, NET-UGC Institute Fellow JRF, DST Inspire Fellow  JRF, DST Inspire Fellow JRF, Institute Fellow

Patra, S.K. NIT, Roukela.2012.

Presented at A.B.N. Seal College, New Cooch Behar THAN KS 60

9/12/2012



