Multi-point Geostatistical Simulation by Applying Quadratic Optimization Algorithm

Snehamoy Chatterjee

National Institute of Technology Rourkela Department of Mining Engineering

Multi-point simulation

- Statistical-based algorithm
 - Neural Network (Caers 2001)
 - SNESIM (Strebelle 2002)
 - Markov Random field (Daly 2004)
 - Markov Mesh Model (Kjønsberg & Kolbjørnsen 2008)
 - HOSIM (Mustapha and Dimitrakopoulos 2010)
- Pattern-based algorithm
 - Simpat (Arpat and Cares 2007)
 - Filtersim (Zhang et al. 2006;)
 - Multi-dimensional scaling (Honarkhah & Caers 2010)
 - Wavesim (Chatterjee et al. 2012)
 - CDF-based (Mustapha et al. 2011)
 - SOM-based (Chatterjee & Roussos, 2011)

Multi-point simulation

- The problem with all pattern-based simulation algorithm is that it is highly dependence on pattern frequencies in the training image
- The problem is not with the patterns seen in the training image rather, with how the method treats patterns that are not present in the training image
- Statistical models can interpolate between observed patterns to compute the probability of patterns that are not present in the training image

Regression model using SVM

$$f(\mathbf{x}, w) = \sum_{j=1}^{k} w_j g_j(\mathbf{x}) + b$$

$$L_{\varepsilon}(y, f(\mathbf{x}, w)) = \begin{cases} 0 & \text{if } |y - f(\mathbf{x}, w)| \le \varepsilon \\ |y - f(\mathbf{x}, w)| - \varepsilon & \text{otherwise} \end{cases}$$

X

$$\operatorname{Min} \quad \frac{1}{2} || \omega ||^{2} + C \sum_{i=1}^{N} \left(\xi_{i} + \xi_{i}^{*} \right)$$
$$\int_{\Sigma} \frac{y_{i} - f(\mathbf{x}_{i}, \omega) \leq \varepsilon + \xi_{i}^{*}}{f(\mathbf{x}, \omega) - v} \leq \varepsilon + \xi_{i}^{*}$$

 $\max \Psi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} y_i \alpha_i y_j \alpha_j K_{ij} \qquad \begin{cases} f(\mathbf{x}_i, \omega) - y_i \le \varepsilon + \xi_i \\ \xi_i, \xi_i^* \ge 0, i = 1, ..., N \end{cases}$

$$\sum_{i=1}^{N} y_i \alpha_i = 0 \qquad K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) \qquad K(x, x_i) = \exp(-\left\|x - x_i\right\|^2 / \sigma^2)$$

$$f(\mathbf{x}) = \sum_{i=1}^{n_{SV}} (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x})$$

Calculating the CCDF

Calculating the CCDF

Validation of the method

Unconditional simulation with binary image

Validation of the method

Our proposed approach

Snesim with single grid

Reproduction of statistics

•The proportion of sand and shale in TI are 0.325, and 0.675

- •The proportions of sand in 4 realisations of our proposed method are 0.317, 0.329, 0.321, and 0.33
- •The proportions of sand in four realisations of snesim are 0.28, 0.289, 0.31, and 0.298

Conclusions

- A new multi-pint simulation algorithm is proposed
- SVM model was solved by QP to generate the ccdf at unknown point
- The indicators transformed of the pattern database are used to calculate the probability value of specific threshold
- The probability values at different threshold are used to calculate the *ccdf*.
- The algorithm is verified by two- dimensional conditional and unconditional simulation

Conclusions

- The advantage of the algorithm is that the chances of reproduction of statistics are much better than filtersim as well as snesim.
- The main limitation of the proposed algorithm is that the computational time is significantly high
- Mapping the high dimensional conditioning data into another domain with significantly less number of mapped data while preserving the data variability may reduce the computational time

