SOLVING MAX-CLIQUE USING CELLULAR NEURAL

NETWORK
Y.SANTOSH REDDY

NIT

ROURKELA, ORISSA, INDIA

ABSTRACT

In this paper, we present an artificial life method of
the Cellular neural network for Max-Clique problem. The
method is intended to provide an optimum parallel
algorithm for solving the Max-Clique problem. To do this
we use the Cellular neural network to get a maximum
Clique. Some of the instances are simulated to verify the
proposed method with the simulation results showing that
the solution quality is superior to that of best existing
parallel algorithm. We also test the learning method on
total coloring problem.

INTRODUCTION

The two-dimensional binary cellular automata
(CA) have a greed structure. Each node contains the
cell that changes its state in discrete manner due to
the transition function (rule). There are thousands
different CA in the automata space. Wolfram puts
them to the four different classes, according to their
dynamical behavior. Here we used 5-elements
neighborhood cellular automata. In this automaton a
cell's next state is dependent on four of the
neighborhood cells, which are located above, below,
left, right of the central cell (CC). The 5-elements
neighborhood is shown in fig.1.

N

cc

)

Fig.1. 5-elements neighborhood

Each cell has eight adjacent elements among those four
are used to change the state of central cell (CC).

Max-Clique problem is NP-Complete problem. NP-
Complete problems are hardest problems in the set NP.
Clique is the complete subgraph of an existing graph. If
there is a graph G=(V, E) where V is the set of vertices and
E is the set of edges. Complete graph has edge between

i and J where i, JeV. Complete graph with N vertices
having N*(N-1) /2 edges.

DECOMPOSITION OF RULE

Here we used the rule, which has properties given
below.
(1) Among 5-elements shown in fig.1 if 1’'s are more next
CCis 1.
(2) Else next CC is 0.

The set of their states is called the configuration V (t).
V (t)=(CC (t), E (t), N (t), W (t), S (1))

Apart from central cell (CC) we divided the four neighbors
into six types of categories

Y.i =i number of 1’s exist where i €{0,1,...,5)
We can decompose this set into two based on CC. Those
are shown in fig.2 and fig.3. When CC is 0 then the state
table is fig.2. When CC is 1 then the state table is fig.3.In
fig.2 there is no such state of all having 1.In fig.3 there is
no such state of all having 0.

EW 01
\ 00 10 11
NS
00 Zo z, £
01
21 Z2
10
11 X,

Fig.2. State table of Cellular automata rule when CC=0

The combined state table of the cellular automata rule
is shown in fig.4. The difference between fig.2 and fig.3 is
the diagonal from right top to left bottom. That is called the
critical diagonal, which shows difference between TRUE
and FALSE states.

Published in Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications,2005, pp.

89

anjali
Text Box
Published in Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications,2005, pp. 89-93

Fig.3. State table of Cellular automata rule when CC=1

EW
} 60" 01 10 1

ool O 0

) o |[f}
il

Fig.4.Generelized State table of Cellular automata rule

N

This study we can use in the finding of maximum
Clique in a given graph. How our problem is depending on
these cellular automata rule is described in the next
section. After that we can discuss the algorithm, which is
more important part in the paper where we discuss cellular
automata updating and neural network usage in the
problem solving.

INTERCONNECTION NETWORK

| selected rule FEE87880 because this rule has the
property of self-extendibility and there must be a state
called constant state. When there are more 0’s than 1's
that will make FALSE to that cell. Otherwise make TRUE
that cell. Because of this the cellular automata state space
will increase or decrease 1's or 0's based on the initial
states. Here only two states 0 or 1.

In finding of Max-Clique of a given graph the main
thing is discovering of the nodes, which are not connected
directly. Using this rule first non-neighbor nodes are
discovered and they are combined according to that of
algorithm. So at every stage there will be new state space
produced. In this problem we must avoid loosely
connected nodes, but finding loosely connected nodes is
very much difficult because all loosely connected are not
victims. To overcome such difficulties we used neural
networks because it is the universal learner.

90

Here we introduced a cellular neural network
structure, which gives input as cellular automata state
space to the cellular automata next state generator, it will
give next state of the state space. Next there is a
comparator is there which compares input state space and
next state space, after comparison it gives differences in
the state space to the neural network. Neural network
updates the state space of the cellular automata and
produces the modified state space. This process continues
up to a constant state that is all having TRUE state or all
having FALSE state. But according to our algorithm all
having FALSE state is not reachable because neural
network is takes care about it and it make state space not
all FALSE. If it reaches all cells FALSE after comparison
neural network will make cells TRUE. The cellular
automata rule given has the property of making cells all,
which are dominating. Interconnection network among all
modules is shown in fig.5.

State space
2 Neural
=+ Comparator network
Cellular
Automata

State space
Fig.5.Interconnection network among all modules

In fig.5 cellular automata module has some
architecture, which is shown in fig.6. This is the flow
diagram of the cellular automata. Here next state is
defined from the present state variables called neighbors.

Above flow chart is only for single cell. For all cells
there may be large network. So we can construct that
using neural network. Here we approach distributed and
parallel method in simulation, because for large networks it
is difficult to simulate in single system. This method of
solving Max-Clique problem is efficient than all other
previous parallel methods.

This method is very simple to analyze and implement.
The proposed method was implemented in C++ on
PENTIUM 4 (RAM 1024) for large number of graphs. It is
peculiar method because any other method which using
neural networks may calculate energy function. But here
we can achieve final state by making all cells TRUE.
Because of this there is no optimal solutions. Here we
have to make more than one trails with same graph and
input is in different permutation.

J

v(t+1)
Fig.6.Flow chart of the cellular automata

ALGORITHM

Input: Adjacency matrix A [I[]
Output: Maximum complete subgraph

Adjacency graph is the graph, which represents the
adjacent elements of the graph with corresponding node.

Here we use + and = instead of 1 and 0 respectively. We
used adjacency matrix as described above as the state
space of the cellular automata. The algorithm described
below.

1.Pass adjacency matrix as CA state space

2.Change state space by CA rule, which we are using

3.Compare state spaces by using comparator

4.Send differences to the neural network

5.Update neural network

(Here we using competitive learning)

6.The neural network gives information about new
updated graph by which we can construct state space.

7.Repeat from step 2 until one of the termination
conditions satisfies.

Here we described some rules, which are used to
update state space.

Case (1):If changes are from only negative to positive

A. Delete nodes which are more participated in the
change for example if changes are occurred at
(1,2), (3:4), (3.5)
Then we can delete node 3 and share those
edges with nodes 3 and 5.

B. |If there are single occurrences of pairs (X,).
Then combined them.

Case (2):If changes are from only positive to negative
A. If ordered pair (x, y) occurred then take nodes x-
1, x+1,y-1, y+1 which are negative and apply
same rules as Case (1).
B. In Case (1) first prior to the neighbors of the
positive to negative changed nodes.

We used some heuristics to simplify the problem.
Heuristics:
1.If diagonal elements are the only positive elements
then we leave it and solution is 0.
2.We can remove which have no connection or least
connections.

Here we used an example to describe the algorithm
which shown in fig.7. The corresponding state space and
steps to solve is given.

Fig.7.Example graph

+ |+ | +|=|+| =]+ +]| +
+ |t | =+ |+ F| +]|+
+|+f=|=|+]|*+[| +

— | =+ |+ |+ =] +|+ |-
+| +|=|+|+|+|+]| =] -
-+ | ==+ |+ | +]|—= |-
+| + |+ |+|+|+ |+ |+ +
+ |+ |+ +| =] =]+ |+ |+
+ |+ |+ |=|=|=|+|+]|*

Fig.8.State space of graph in Fig.7

After modified by cellular automata we got the state
space given in fig.9. Then we observe the differences
between the state spaces shown in fig.8 and fig.9.
Differences are at (1,6), (2,4), (3,5), (4,6), which are

91

changed from negative to positive. Positive to negative
changes are at (1,4), (1,6), (4,9).

The most occurrences according to Case (1) are node
6. So we share node 6 with nodes 1 and 4. In Case (2)
changes (1,4) are there, we already combined 1 and 6, 4
and 6. So we combine nodes 1 and 4. Then there is
unique node pair (3, 5) exists. So share 5 with 3,which
adds nodes 3 and 5. Finally we got 6 nodes the updated
graph is shown in fig.10.

+ ++—@®+++
+++®+++++
++++®—+++
— @+ [+ +]|®) +]+]| -
@+®++++—_
@+—®+++——
++ [+ |+ |+ F |+ |+
4|+ |+]| ==+]|+
+ |+t | +|=|—=|=|+|+|T
Fig.9.Modified state space

(Circled cells represents changes occurred)

In above example we got solution with few updating. |
worked graphs with up to 500 vertices in single processor.
| observed that this method reduces more amounts of time
and complexity. This algorithm is very useful to graph
coloring problem, which is the NP-complete problem.

Fig.10.Updated graph

++ |+ +|+]+

FlE| |+ F

i+ |+ |+ |+ |+

+ |+ |+ |+ |+ |+
+ |+ |+ [+ |+ |+
+ 4+ |+ |+ [+ |+

Fig.11. State space of the graph in Fig.10

92

APPLICATION TO TOTAL COLORING
PROBLEM

In order to examine the effectiveness of our learning
method to other combinatorial optimization problems, we
tested our learning method on one of the graph coloring
problems: the total coloring problem. For general graphs,
the total coloring problem is NP-hard. Given a graph
G=(V,E) with a vertex set V and an edge set E, the goal of
this NP-complete problem is to find a color assignment on
all the vertices in V with the minimum number of colors
such that no adjacent or incident pair of elements in V
receives same color. Updating is same but here we

combine and allocate a color.
CONCLUSION

This method is better than the other methods, which
are solved by Ant Colony Optimization, Scatter search
algorithm, k-optimal local search algorithm. In order to
examine the effectiveness of our learning method to other
combinatorial optimization problems, we have also tested
our learning method on the total coloring problem. The
simulation results showed that our learning method found
optimal solution in every test graph. As far as the
computation time required by the proposed learning
method, although our simulation results verified that our
learning method finds good solutions in short computation
time, the analysis of the time complexity of the proposed
algorithm should be an issue in the future works.

REFERENCES

[1] R. Garey and S. Johnson, Computers and Intractability,
A Guide to the Theory of NP-Completeness. San
Francisco, CA: Freeman, 1991.

[2] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer,
“Some simplified NP-complete graph problem,” Theor.
Comput. Sci., vol. 1, pp. 237-267, 1976.

[3] R. M. Karp, “Reducibility among combinatorial
problems,” in Complexity of Computer Computations.
New York: Plenum, 1972, pp. 85-104.

[4] S. Even and Y. Shiloach, “NP-completeness of several
arrangement problems,” Dept. Computer Science,
Technion, Haifa, Israel, Tech.

Rep. 43, 1975.

[5] J. J. Hopfield and D. W. Tank, “Neural computation of
decisions in optimization problems,” Biol. Cybern., no.
52, pp. 141-152, 1985.

[6] J.J. Hopfield, “Neurons with graded response have
collective computational properties like those of two-
state neurons,” Proc. Nat. Acad. Sci., vol. 81, pp.
3088-3092, 1984.

[71 E.A. Akkoyunlu. The enumeration of maximal cliques
of large graphs. SIAM Journal on Computing, 2(1):1-6,
1973.

[8] B. Bollobas and P. Erdés. Cliques in random graphs.
Mathematical Proceedings of the Cambride
Philosophical Society, 80:419-427, 1976.

[9] Coen Bron and Joep Kerbosch. Finding all cliques of
an undirected graph. Communications of the ACM,
16(9):575-577, 1973.

93

